
An Empirical Comparison of Collaborative Filtering
Approaches on Netflix Data

Nicola Barbieri, Massimo Guarascio, Ettore Ritacco
ICAR-CNR

Via Pietro Bucci 41/c, Rende, Italy

{barbieri,guarascio,ritacco}@icar.cnr.it

ABSTRACT
Recommender systems are widely used in E-Commerce for
making automatic suggestions of new items that could meet
the interest of a given user. Collaborative Filtering ap-
proaches compute recommendations by assuming that users,
who have shown similar behavior in the past, will share a
common behavior in the future. According to this assump-
tion, the most effective collaborative filtering techniques try
to discover groups of similar users in order to infer the pref-
erences of the group members. The purpose of this work
is to show an empirical comparison of the main collabora-
tive filtering approaches, namely Baseline, Nearest Neigh-
bors, Latent Factor and Probabilistic models, focusing on
their strengths and weaknesses. Data used for the analysis
are a sample of the well-known Netflix Prize database.

Categories and Subject Descriptors
H.2.8 [Database Application]: Data Mining

Keywords
Recommender Systems, Collaborative Filtering, Netflix

1. INTRODUCTION
The exponential growth of products, services and infor-

mation makes fundamental the adoption of intelligent sys-
tems to guide the navigation of the users on the Web. The
goal of Recommender Systems is to profile a user to suggest
him contents and products of interest. Such systems are
adopted by the major E-commerce companies, for example
Amazon.com 1, to provide a customized view of the systems
to each user. Usually, a recommendation is a list of items,
that the system considers the most attractive to customers.
User profiling is performed through the analysis of a set of
users’ evaluations of purchased/viewed items, typically a nu-
merical score called rating. Most recommender systems are
based on Collaborative Filtering (CF) techniques [6], which
analyze the past behavior of the users, in terms of previ-
ously given ratings, in order to foresee their future choices

1http://amazon.com/

Appears in the Proceedings of the 1st Italian Information Retrieval
Workshop (IIR’10), January 27–28, 2010, Padova, Italy.
http://ims.dei.unipd.it/websites/iir10/index.html

Copyright owned by the authors.

and discover their preferences. The main advantage in us-
ing CF techniques relies on their simplicity: only users’ past
ratings are used in the learning process, no further informa-
tions, like demographic data or item descriptions, are needed
(techniques that use this knowledge are called Content Based
[10, 14]). Four different families of techniques have been
studied: Baseline, Neighborhood based, Latent Factor anal-
ysis and Probabilistic models. This work aims to show an
empirical comparison of a set of well-known approaches for
CF, in terms of quality prediction, over a real (non syn-
thetic) dataset. Several works have focused on the analysis
and performance evaluation of single techniques (i.e. exclud-
ing ensemble approaches), but at the best of our knowledge
there is no previous work that performed such a deep anal-
ysis comparing different approaches.

2. BACKGROUND
The following notation is used: u is a user, m is a movie,

r̂um is the rating (stored into the data set) expressed by the
user u with respect to the movie m (zero if missing), and
given a CF model, rum is the predicted rating of the user u
for the movie m. On October 2006, Netflix2, leader in the
movie-rental American market, released a dataset contain-
ing more of 100 million of ratings and promoted a competi-
tion, the Netflix Prize 3, whose goal was to produce a 10%
improvement on the prediction quality achieved by its own
recommender system, Cinematch. The competition lasted
three years and was attended by several research groups from
all over the world. The dataset is a set of tuple (u,m, r̂um)
and the model comparison is performed over a portion of the
entire Netflix data 4. This portion is a random sample of
the data, and is divided into two sets: a training set D and a
test set T . D contains 5, 714, 427 ratings of 435, 659 users on
2, 961 movies, T consists of 3, 773, 781 ratings (independent
from the training set) of a subset of training users (389, 305)
on the same set of movies. The evaluation criterion chosen
is the Root Mean Squared Error (RMSE):

RMSE =

√∑
(u,m) ∈ T (rum − r̂um)2

|T | (1)

Cinematch achieves (over the entire Netflix test set) an RMSE
value equals to 0.9525, while the team BellKor’s Pragmatic
Chaos, that won the prize, achieved a RMSE of 0.8567. This
score was produced using an ensemble of severeal predictors.

2http://www.netflix.com/
3http://www.netflixprize.com/
4http://repository.icar.cnr.it/sample netflix/

3. COLLABORATIVE
FILTERING MODELS

Studied models belong to four algorithm families: Base-
line, Nearest Neighbor, Latent Factor and Probabilistic mod-
els. A detailed description of all the analyzed techniques
follows.

3.1 Baseline Models
Baseline algorithms are the simplest approaches for rat-

ing prediction. This section will focus on the analysis of
the following algorithms: OverallMean, MovieAvg, UserAvg,
DoubleCentering. OverallMean computes the mean of all
ratings in the training set, this value is returned as predic-
tion for each pair (u,m). MovieAvg predicts the rating of
a pair (u,m) as the mean of all ratings received by m in
the training set. Similarly, UserAvg predicts the rating of a
pair (u,m) as the mean of all ratings given by u. Given a
pair (u,m), DoubleCentering compute separately the mean
of the ratings of the movie rm, and the mean of all the rat-
ings given by the user ru. The value of the prediction is a
linear combination of these means:

rum = α rm + (1− α) ru (2)

where 0 ≤ α ≤ 1. Experiments on T have shown that the
best value for α is 0.6 (see Fig. 1).

Figure 1: RMSE vs. α

3.2 Nearest Neighbor models
Neighborhood based approaches compute the prediction

basing on a chosen portion of the data. The most common
formulation of the neighborhood approach is the K-Nearest-
Neighbors (K-NN). rum is computed following simple steps.
A similarity function associates a numerical coefficient to
each pair of user, then K-NN finds the neighborhood of u
selecting the K most similar users to him, said neighbors.
The rating prediction is computed as the average of the rat-
ings in the neighborhood, weighted by the similarity coeffi-
cients. User-based K-NN algorithm is intuitive but doesn’t
scale because it requires the computation of similarity coef-
ficients for each pair of users. A more scalable formulation
can be obtained considering an item-based approach [15]:
the predicted rating for the pair (u,m) can be computed by
aggregating the ratings given by u on the K most similar
movies to m: {m1, . . . ,mK}. The underlying assumption is
that the user might prefer movies more similar to the ones
he liked before, because they share similar features. In this
approach the number of similarity coefficients (respectively
{s1, . . . , sK}) depends on the number of movies which is

much smaller than the number of users. The prediction is
computed as:

rum =

∑K
i=1 si r

u
mi∑K

i=1 si
(3)

In the rest of the paper, only item-based K-NN algorithms
will be considered. The similarity function plays a central
role : its coefficients are necessary for the identification of
the neighbors and they act as weights in the prediction. Two
functions, commonly used for CF, are Pearson Correlation
and Adjusted Cosine [15] coefficients: preliminary studies
proved that Pearson Correlation is more effective in detect-
ing similarities than Adjusted Cosine. Moreover as discussed
in [9], similarity coefficients based on a larger support are
more reliable than the ones computed using few rating val-
ues, so it is a common practice to weight the similarity coef-
ficients using the support size, technique often called shrink-
age. Shrinkage is performed as follows. Let U(mi,mj) be
the set of users that rated movies mi and mj , and let smi,mj

be the similarity coefficient between these two movies:

s′mi,mj
=
smi,mj |U(mi,mj)|
|U(mi,mj)|+ α

(4)

Where α is an empirical value. Experiments showed that the
best value for α is 100, so in the following K-NN algorithms
with Pearson Correlation and shrinkage with α = 100 will
be considered. This first model will be called SimpleK-NN.
An improved version can be obtained considering the dif-
ference of preference of u with respect to the movies in the
neighborhood ({m1, . . . ,mK}) of m. Formally:

rum = bum +

∑K
i=1 si (r̂umi

− bumi
)∑K

i=1 si
(5)

Where {s1, . . . , sK} are the similarity coefficients between m
and its neighbors, bum and bumi

are baseline values computed
using Eq. 2. In this case the model is named BaselineK-NN,
otherwise, if the baseline values are computed according to
the so called User Effect Model [2], the model will be called
K-NN (user effect). An alternative way to estimate item-
to-item interpolation weights is by solving a least squares
problem minimizing the error of the prediction rule. This
strategy, proposed in [1, 3], defines the Neighborhood Rela-
tionship Model, one of the most effective approaches applied
during the Netflix prize. rum is computed as:

rum =

K∑
i=1

wmmi
r̂umi

(6)

Where mi is a generic movie in the neighborhood of m, and
wmmi

are weights representing the similarity between m and
mi computed as the solution of the following optimization
problem:

minw
∑
v 6=u

(
rvmi
−

K∑
j=1

wmmi
r̂vmj

)2

(7)

Fig. 2 shows the behaviors of K-NN models with different
values of K. Best performances are achieved by the Neigh-
borhood Relationship Model.

Figure 2: RMSE vs. α

3.3 Latent Factor Models via Singular Value
Decomposition (SVD)

The assumption behind Latent Factor models is that the
rating value can be expressed considering a set of contributes
which represent the interaction between the user and the
target item on a set of features. Let A be a matrix [|users|×
|movies|], Au,m is equal to the rank chosen by the user u
for the movie m. A can be approximated as the product
between two matrices: A ≈ U ×M , where U is a matrix
[|users| × K] and M is a matrix [K × |movies|], K is an
input parameter of the model and represents the number of
features to be considered. Intuitively, A is generated by a
combination of users (U) and movies (M) with respect to
a certain number of features. Fixed the number of features
K, SVD algorithms try to estimate the values within U and
M , and give the prediction of rum as:

rum =

K∑
i=1

Uu,iMi,m (8)

where Uu,i is the response of the user u to the feature i, and
Mi,m is the response of the moviem on i. Several approaches
have been proposed to overcome the sparsity of the original
rating matrix A and to determine a good approximation
solving the following optimization problem:

(U,M) = arg min
U,M

 ∑
(u,m)in D

(
r̂um −

K∑
i=1

Uu,iMi,m

) (9)

Funk in [5] proposed an incremental procedure, based on
gradient descent, to minimize the error of the model on ob-
served ratings. User and movie feature values are randomly
initialized and updated as follows:

U ′
u,i = Uu,i + η (2eu,m ·Mi,m) (10)

M ′
i,m = Mi,m + η (2eu,m · Uu,i) (11)

where eu,m = r̂um − rum is the prediction error on the pair
(u,m) and η is the learning rate. The initial model could
be further improved considering regularization coefficients
λ. Updating rules become:

U ′
u,i = Uu,i + η (2eum ·Mi,m − λ · Uu,i) (12)

M ′
i,m = Mi,m + η (2eum · Uu,i − λ ·Mi,m) (13)

An extension of this model could be obtained considering
user and movie bias vectors, which define a parameter for
each user and movie:

rum = cu + dm +

K∑
i=1

Uu,iMi,m (14)

Where c is the user bias vector and d is the movie bias vector.
An interesting version of the SVD model was proposed in
[13]. According to this formulation, known as Asymmetric
SVD, each user is modeled through her the rated items:

Uu,i =
1√

|M(u)|+ 1

∑
m∈ M(u)

wi,m (15)

Where M(u) is the set of all the movies rated by the user
u. A slight different version, called SVD++, proposed in
[9], models each user by using both a user-features vector
and the corresponding implicit feedback component (movies
rated by each user in the training set and the ones for whom
is asked the prediction in the test-set).
Latent factor models based on the SVD decomposition change
according to the number of considered features and the struc-
ture of model, characterized by presence of bias and base-
line contributes. The optimization procedure used in the
learning phase plays an important role: learning could be
incremental (one feature at the time) or in batch (all fea-
tures are updated during the same iteration of data). In-
cremental learning usually achieves better performances at
the cost of learning time. Several version of SVD models
have been tested, considering the batch learning with learn-
ing rate 0.001. Feature values have been initialized with the
value

√
µ
K

+ rand(−0.005, 0.005) where µ is the overall rat-
ing average and K is the number of the considered features.
The regularization coefficient, where needed, has been set
to 0.02. To avoid overfitting, the training set has been par-
titioned into two different parts: the first one is used as
actual training set, while the second one, called validation
set, is used to evaluate the model. The learning procedure
is stopped as soon the error on the validation set increases.
Performance of the different SVD models are summarized in
Tab.1, while Fig.3 shows the accuracy of the main SVD ap-
proaches. An interesting property of the analyzed models is
that they reach convergence after almost the same number
of iteration, no matter how many features are considered.
Better performances are achieved if the model includes bias
or baseline components; the regularization factors decrease
the overall learning rate but are characterized by an high
accuracy. In the worst case, the learning time for the regu-
larized versions is about 60 min. The SVD++ model with
20 features obtains the best performance with a relative im-
provement on the Cinematch score of about 5%.

Model Best RMSE Avg #Iter.
SVD 0.9441 43

SVD with biases 0.9236 45
SVD with baseline 0.9237 45

Reg. SVD 0.9388 32
Reg. SVD with biases 0.9053 186

Reg. SVD with baseline 0.9062 190
SVD++ 0.9039 8

Table 1: Performance of SVD Models

3.4 Probabilistic Approaches
Several probabilistic methods have been proposed for the

CF, they try to estimate the relations between users or
products through probabilistic clustering techniques. The
Aspect Model [8, 7], also called pLSA, is the main prob-
abilistic model used in the CF, and belongs to the class of
Multinomial Mixture Models. Such models assume that data
were independently generated, and introduce a latent vari-

Figure 3: SVD Models Performance

able (also called hidden), namely Z, that can take K values.
Fixed a value of Z, u and m are conditionally independent.
The hidden variable is able to detect the hidden structure
within data in terms of user communities, assuming that
Z, associated to observation (u,m, r̂um), models the reason
why the user u voted for the movie m with rating r̂um. For-
mally, assuming the user community version, the posterior
probability of r̂um = v is:

P (r̂um = v|u,m) =

K∑
z=1

P (r̂um = v|m, z)P (Z = z|u) (16)

Where P (Z = z|u) represents the participation in a pattern
of interest by u, and P (r̂um = v|m, z) is the probability that
a user belonging to pattern z gives rating v on the movie m.
A simplified version of the Aspect Model is the Multinomial
Mixture Model that assumes there is only one type of user
[11]:

P (r̂um = v|u,m) =

K∑
z=1

P (r̂um = v|m, z)P (Z = z) (17)

The standard learning procedure, for the Multinomial Mix-
ture Model, is the Expectation Maximization algorithm [12].
Fig. 4 shows the RMSE achieved by the Multinomial Mix-
ture Model with different number of latent class. The model

Figure 4: RMSE - Multinomial Mixture

has been initialized randomly and the learning phase re-
quired about 40 iterations of the training set but since the
first 10 iterations the model reaches the 90% of its poten-
tiality. The best result (0.9662) is obtained considering 10
latent settings for Z. The pLSA model was tested assum-
ing a Gaussian distribution for the rating probability given
the state of the hidden variable and the considered movie
m, in the user-community version. The model was tested
for different values of user-communities, as in Fig. 5. To
avoid overfitting was implemented the early stopping strat-
egy, described in the previous section. The best pLSA model
produces an improvement of around 1% on Cinematch. The

Figure 5: RMSE - pLSA

drawback of the model is the process of learning: a few iter-
ations (3 to 5) of the data are sufficient to overfit the model.

4. MODEL COMPARISON
In this section it is performed a comparative analysis of

the above described models. Each model is tuned with it
best parameters settings. As said before Cinematch, the
Netflix’s Recommender System, achieves an RMSE equals
to 0.9525. Figure 6 shows the RMSE of all Baseline mod-
els mentioned. The best model is the doubleCentering, but

Figure 6: Baseline models

no one of them outcomes the accuracy of Cinematch. Fig-
ure 7 shows the mentioned K-NN models performances.
Performances are really better than baseline ones. Except

Figure 7: K-NN models

the SimpleK-NN, all approaches improve Cinematch’s preci-
sion, especially the Neighborhood Relationship Model. Qual-
ity of SVD models is shown in figure 8. SVD models show
the best performances, note SVD++. Figure 9 shows the
behavior of the two proposed probabilistic models. Only
pLSA outcomes Cinematch. Finally, figure 10 compare the
best models for each algorithm family. In this experimen-

Figure 8: SVD models

Figure 9: Probabilistic models

Figure 10: Best models

tation SVD++ results to be the best model among all pro-
posed ones.

5. CONCLUSIONS AND FUTURE WORK
This work has presented an empirical comparison of some

of the most effective individual CF approaches applied to
the Netflix dataset, with their best settings. Best perfor-
mances are achieved by the Neighborhood Relationship and
the SVD++ models. Moreover, the symbiosis of standard
approaches with simple baseline or biases models improved
the performances, obtaining a considerable gain with respect
to Cinematch. From a theoretical point of view, proba-
bilistic models should be the most promising, since the un-
derlying generative process should in principle summarize
the benefits of latent modeling and neighborhood influence.
However, these approaches seem to suffer from overfitting
issues: experiments showed that their RMSE value is not
comparable to the one achieved by SVD or K-NN models.
Future works will focus on the study of the Latent Dirichlet
Allocation (LDA) [4] that extends the pLSA model reduc-
ing the risk of over fitting, and on the integration of base-
line/bias contributes in probabilistic approaches.

6. REFERENCES
[1] R. Bell, Y. Koren, and C. Volinsky. Modeling

relationships at multiple scales to improve accuracy of
large recommender systems. In KDD ’07: Proceedings
of the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 95–104,
New York, NY, USA, 2007. ACM.

[2] R. M. Bell and Y. Koren. Improved
neighborhood-based collaborative filtering. In In Proc.
of KDD-Cup and Workshop at the 13th ACM
SIGKDD International Conference of Knowledge
Discovery and Data Mining, pages 7–14, 2007.

[3] R. M. Bell and Y. Koren. Scalable collaborative
filtering with jointly derived neighborhood
interpolation weights. In ICDM ’07: Proceedings of the
2007 Seventh IEEE International Conference on Data
Mining, pages 43–52, Washington, DC, USA, 2007.
IEEE Computer Society.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. J. Mach. Learn. Res., 3:993–1022,
2003.

[5] S. Funk. Netflix update: Try this at home. URL:
http://sifter.org/ simon/Journal/20061211.html.

[6] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry.
Using collaborative filtering to weave an information
tapestry. Communications of the ACM, 35:61–70,
1992.

[7] T. Hofmann. Collaborative filtering via gaussian
probabilistic latent semantic analysis. In SIGIR ’03:
Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in
informaion retrieval, pages 259–266, New York, NY,
USA, 2003. ACM.

[8] T. Hofmann. Latent semantic models for collaborative
filtering. ACM Trans. Inf. Syst., 22(1):89–115,
January 2004.

[9] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In KDD
’08: Proceeding of the 14th ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 426–434. ACM, 2008.

[10] H. Lieberman. Letizia: An Agent that Assists Web
Browsing. In Proc. of Int. Joint Conf. on Artificial
Intelligence, pages 924 – 929, 1995.

[11] B. Marlin. Modeling user rating profiles for
collaborative filtering. In In NIPS*17, 2003.

[12] T. K. Moon. The expectation-maximization algorithm.
Signal Processing Magazine, IEEE, 13(6):47–60, 1996.

[13] A. Paterek. Improving regularized singular value
decomposition for collaborative filtering. Proceedings
of KDD Cup and Workshop, pages 39–42, 2007.

[14] M. J. Pazzani and D. Billsus. Content-based
recommendation systems. In P. Brusilovsky, A. Kobsa,
and W. Nejdl, editors, The Adaptive Web, volume
4321 of Lecture Notes in Computer Science, pages
325–341. Springer, 2007.

[15] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl.
Item-based collaborative filtering recommendation
algorithms. In WWW ’01: Proceedings of the 10th
international conference on World Wide Web, pages
285–295. ACM, 2001.

