
Mapping Interconnection Choreography Models to
Interaction Choreography Models

Oliver Kopp, Frank Leymann, and Fei Wu

Institute of Architecture of Application Systems, University of Stuttgart, Germany
lastname@iaas.uni-stuttgart.de

Abstract Choreographies offer a global view on interacting processes. There
are two ways to capture this global view: interaction models and interconnection
models. Although there is a mapping from interaction models to interconnection
models, there is no mapping vice versa. This paper fills this gap and provides a first
approach mapping interconnection models to interaction models: The presented
approach transforms BPMN models into iBPMN models by using Petri nets as
intermediate format.

1 Introduction

Service choreographies describe the interactions between multiple processes [1]. Cur-
rently, there are two modeling types available: interaction models and interconnection
models. The basic building block of interaction models is the interaction activity. This
activity describes a message exchange between two participants in a choreography.
In the case of interconnection models, messaging activities of different processes are
interconnected. These two metamodels can be seen as different views on the same
choreography.

Decker and Weske [2, 3] show a way to generate interconnection models out of
interaction models. Currently, there is no work to generate interaction models out
of interconnection models. This paper presents a first idea for such a mapping. The
motivation is to provide a high-level view on existing interacting services. For this paper,
we assume that an interconnection BPMN model—a BPMN model having pools with
activities and message flows—has already been constructed out of interacting services.

Consequently, this paper is structured as follows: First, Sect. 2 provides background
information and presents related work in the field. Section 3 presents an overview on the
approach and Sect. 4 discusses the approach. Finally, Sect. 5 concludes and provides an
outlook on future work.

2 Background and Related Work

Figure 1 presents different viewpoints in service-oriented design, adapted to current
languages in the Web services stack. (A) On the top service value networks are shown.
Service value networks provide a high view on the relationship between services without
giving details on the collaboration [4]. (B) Below the service value networks, we see
interaction choreography models, such as BPMN 2.0



S i V l N t kAA

BPELgoldiBPMN / BPMN 2.0 
choreography

Service Value Networks

ct
io
n

AA

BB

BPEL4ChorBPMN+ / 
BPMN 2.0 collaboration

choreography

el
 o
fA

bs
tr
a

CC

Abstract BPELBPMN 1.x / 2.0
single pool

Hi
gh
er
 L
ev
e

DD

Executable BPELBPMN 2.0
single pool

H

EE

Figure 1. Different viewpoints

choreographies [5], iBPMN [6] or
BPELgold [7]. They provide a high-
level view on the collaboration proto-
col by modeling message exchanges
as single activities. Most interaction
choreography languages hide inter-
nal behavior [8]. (C) Interconnection
choreography models model each par-
ticipant as a separate process and may
provide internal behavior. Samples
for interconnection choreography lan-
guages are BPMN 2.0 collaborations,
BPMN 1.2 models with more than one pool [9], BPMN+ [10] or BPEL4Chor [11].
(D) The behavior of each participant can be expressed as a single BPMN pool or an
abstract BPEL process. Additional possibilities to specify behavior of a participant
include the open net approach [12]. (E) At the lowest level of abstraction, executable
BPMN models or executable BPEL models reside. Each of these models can be deployed
on a workflow engine and be enacted.

Different viewpoints in service-oriented design were first presented in [13], where
especially the choreography view and the orchestration view are distinguished. The
choreography view does not distinguish between interaction and interconnection models.
Thus, it is unclear, whether interconnection models really are on a lower level than
interaction models. That aspect should be investigated in future work. Barros et al. [14]
propose role-based views, milestone models and scenario models as views on top of
choreography modeling. They regard interaction models as the most abstract choreogra-
phy models available. Using the technique presented in this paper interaction models
can be derived out of interconnection models. The generated interaction models in turn
may form a basis to extract a role-based view. This view can then be used to identify
potentials for improvement.

The need to generate view on the protocol of running service interactions has
been identified by Motahari-Netzhad et al. [15], too. One motivation for them is the
evolution of services: in case the implementation of a service evolves, protocol discovery
provides an up-to-date protocol definition. Motahari-Netzhad et al. call interaction
models protocols and model them by finite state machines [16]. In contrast to our work,
they generate interaction models out of audit logs and not out of interconnection models.

It has not yet been investigated whether interaction choreography models or in-
terconnection choreography models are more suitable to capture choreographies. The
expressiveness of the two modeling styles, however, is not equal: Decker and Weske [2,3]
show that there are anti-patterns in BPMN which cannot be rendered in iBPMN. One
example is anti-pattern “D2: Impossible data-based decisions”. For instance, a bidder
deciding for himself whether he has won an auction—and not waiting for a decision
message—is an instance of that anti-pattern. An additional distinction is that most
interaction models do not support internal activities [8].

Regarding the mapping of interaction models to interconnection models, Decker et
al. [17] study the property of “non-desynchronizability”: it is impossible to map all inter-
action models mapped to interconnection models by just splitting an interaction task to a



send task and a receive task. The reason is that interaction models assume synchronous
communication, whereas interconnection models assume asynchronous communication.
In our mapping, we go from asynchronous communication to synchronous communica-
tion. Our issue is then the property of “synchronizability”, which has been studied by Fu
et al. [18]: a set of interacting processes is synchronizable if they are (a) synchronous
compatible and (b) autonomous with respect to the choice of the next action. A set of
interacting processes is synchronous compatible if for each state where a send task is
active, a receive task is reachable by internal transitions only. The autonomous condition
demands that each process can only terminate, send or receive a message at one time.
This conditions disallows the choice between sending and receiving a message.

A “realizable” choreography model is an interaction model which can be imple-
mented by a set of processes where the composition exactly shows the specified message
exchange behavior [19, 20]. Realizability is a property of an interaction choreogra-
phy model. Our transformation generates a realizable interaction choreography model,
since the input of the transformation is a set of processes which realizes the generated
interaction choreography model.

Currently, following transformations between the languages presented in Fig. 1 are
available: The interplay between Service Value Networks and choreographies is shown
in [4]. The integration between BPMN 1.2 choreographies and BPEL4Chor has been
investigated in [21]. A mapping from BPELgold to BPEL4Chor is presented in [7]. A
mapping from executable BPEL processes to a BPEL4Chor description is presented
in [22]. Currently, there is neither a mapping from BPMN 1.2 choreographies to iBPMN
nor a mapping from BPEL4Chor to BPELgold. This paper presents a first approach of
a possible mapping. In case the techniques are applied to a BPEL4Chor to BPELgold

mapping, it is possible to generate an interaction choreography view out of executable
BPEL processes.

Figure 2. Interconnection model describ-
ing investment offers

Figure 2 presents a sample choreography
for investments using the BPMN 1.2 nota-
tion. First, a financial advisor offers a prod-
uct to a client. Subsequently, the client has 24
hours time to decide whether he accepts the
investment proposal or rejects the proposal.
The example is used in [23] to check chore-
ography conformance during runtime. The
equivalent interaction model is presented in
Fig. 3. Here, the control flow is rendered be-
tween the pools and the local messaging ac-
tivities have been replaced by interaction activities. The timer event and the data-based
exclusive gateway are annotated with the controlling role customer indicating that the
customer is responsible to control the time and the decision which message to send.



Investment 
proposal

Customer

24h [Customer]

Acceptance

Financial Advisor

Rejection

[Customer]

Figure 3. Interaction model describing in-
vestment offers

Decker and Barros [6] introduce inter-
action Petri nets (iPNs) as formal founda-
tion of iBPMN. Transitions are separated
into interaction transitions, controlled silent
transitions and uncontrolled silent tran-
sitions. Interaction transitions represent
an interaction between two participants,
controlled silent transitions represent de-
cisions and timers controlled by a set of
dedicated participants. Uncontrolled silent
transitions are used solely for routing pur-
poses. We use iPNs as an intermediate for-
mat to go from BPMN to iBPMN.

Reduction techniques for Petri nets are presented in [24] and [25]. Murata [24]
presents basic techniques to collapse redundant structures, such as a sequence of places
and transitions, where a transition only has one incoming edge and one outgoing edge.
Berthelot et al. [25] introduce the definition of redundant places. We use their definition
to reduce the Petri net resulted from the mapping.

Dijkman et al. [26] present a mapping from BPMN to classical Petri nets. The
mapping supports multi-instance loops if the number n of instances is known at design
time. In this case, the part of the Petri net representing the respective part of the loop is
duplicated n times. As the semantics of the OR join in BPMN is not formally defined,
the work does not map OR joins at all. The work of Dijkman et al. is an integral part of
our transformation.

Lohmann et al. [27] present a survey on current transformation approaches from
BPEL, BPMN and EPC process models to Petri nets. There, the work of Dijkman et al.
is also regarded as the de facto approach to transform BPMN models to Petri nets.

3 Overview on the Approach

The goal of the transformation is to keep the ordering of the message exchanges and
to provide an iBPMN model with as least nodes and edges as possible. Thus, we want
to keep the set of traces as well as the branching behavior as Decker et al. did in their
mapping from interconnection models to interconnection models [19]. Since this paper
presents a first idea, we do not present a formal definition of the properties we want to
preserve here.

We require the input BPMN model to be sound and safe. Furthermore, we require
them to contain only following elements: sequence flows, plain start events, start message
events, intermediate message events, tasks, data-based exclusive gateways, event-based
exclusive gateways, parallel gateways, intermediate timer events as well as plain end
events. Tasks may be configured as while or repeat until loop. Regarding message
flows, we demand that tasks and events are only connected to at most one message
flow and that each message flow has a source and a target. Thus, our work focuses on
the positive control flow only and excludes exception, termination and compensation
handling. Finally, we require the BPMN model to be free of the anti-patterns presented
in [2, 3] and to be synchronizable.



BPMN

transformation

iPN

reduction

iPN

transformation

iBPMN

Figure 4. Overview

Figure 4 presents the overview on the approach. We
start with a BPMN 1.2 model. This model is transformed
directly into an interaction Petri net model. In this step,
control flow structures are transformed using the ap-
proach presented in [26] and pairs of interaction activ-
ities are directly transformed to interaction transitions.
The restriction on message flows in the input model
ensures that this transformation is unambiguous. Tasks
configured as loops are expanded to gateways surrounding the mapped content of the
task.

The control flow surrounding the interaction transitions is not modified in the first
step. To gain a proper interaction control flow, the resulting Petri net is reduced using the
techniques of [24] and [25]. The reduced iPN model is then transformed into an iBPMN
model.

In the following, we present the idea of the algorithm by transforming the interaction
model presented in Fig. 2 into an iBPMN model. A detailed and formal description of
the transformation is out of scope of this paper, but is presented in [28].

Figure 5 presents the interaction Petri net after mapping the BPMN choreography to
iPNs. The nodes p0, t0,p1, t1,p2, t2, t7,p3 represent the financial advisor. p2 in combina-
tion with t2 and t7 represents the event-based gateway. The nodes p4, t3,p5, t1,p6, t4,p7,
t5, p8, t2, t6,p9, t7,p10 represent the customer. t4 is the mapped timer event with the
controlling role customer. We introduce an additional timer marking to controlled transi-
tions to be able to correctly map timer events back to timer events. If the marker was
not present, these transitions would have been mapped to a gateway. Finally, p7, t5, t6
represent the data-based exclusive gateway.

A place p is redundant to a place q 6= p if p is not marked in the initial marking and
p is always marked if q is marked [25]. Thus, the analysis of the iPN leads to following
results: 1) p0, t0 and p4, t3 can be removed, 2) then, p1 and p5 have no preceding transition
and target the same transition. Hence, p5 can be removed. 3) t5,p8 and t6,p9 can be
removed, 4) p2 is redundant to p7 and can be removed, 5) p3 is redundant to p10 and can
be removed.

Result 4 cannot be gained by applying the structural reduction rules of [24] only,
because the rules are only applicable for a transition between two places or a place
between two transitions. The intermediary steps are not shown due to space limitations.
The overall result is presented in Fig. 6.

p4

Investment Proposal

Financial 
Advisor Customer

p6 p7

Rejection

Customer Financial 
Advisor

Acceptance

Customer Financial 
Advisor

p3

p10

p0 p2

t1

t4 t2t7

p5

p1

t0

t3

t6

t5

p9

p8

Figure 5. Interaction Petri net derived from the investment offer scenario



p1
Investment Proposal

Financial 
Advisor Customer

p6 p7Customer

Rejection

Customer Financial 
Advisor

Acceptance

Customer Financial 
Advisor

p10

t1 t4

t2t7

Figure 6. Reduced interaction Petri net

To map the reduced iPN to an iBPMN model, the iPN has to be modified to enable a
pattern-based transformation. The modification ensures that all interaction transitions
have exactly one incoming and one outgoing arc. If an interaction transition ti has
more than one incoming arc, a transition t is added before ti and all arcs targeting ti
are retargeted to t and a new arc from t to ti is added. A similar approach is taken for
outgoing arcs. Now, parallel gateways are always generated out of a transition with
multiple outgoing arcs.

iBPMN supports both event-based and data-based gateways to offer a choice between
alternative message exchanges. iBPMN demands that an event-based gateway is used in
the case a timer-event is involved in the current conversation and a data-based gateway in
all other cases. In case the interaction transition is preceded by a place which is followed
by multiple transitions, the place has to be transformed into a data-based gateway or
to an event-based gateway depending on the type of the subsequent transitions. BPMN
does not support mixed choices [17]. That means, the interactions following a place
are always initiated by the same sender. In case a timer transition is present after the
place, the place is transformed into an event-based gateway. Otherwise, the place is
transformed into a data-based gateway with controlling S, where S is the sender in all
interaction transitions following.

The remaining constructs are transformed by applying the rules of [2, 3] “backward”.
That means, we map the constructs from iPN to iBPMN instead of mapping iBPMN to
iPNs. The result is presented in Fig. 3.

4 Discussion of the Approach

Interconnection choreography models assume asynchronous communication, whereas
interaction models assume synchronous communication. The latter means, the sender
is blocked until the receiver consumes the message. In this paper, we assume that
the asynchronous model is “synchronizable”. Future work, however, has to provide a
detailed investigation whether the synchronizability definitions given by Fu et al. [18]
are applicable to interconnection BPMN models.

The approach uses Petri nets as intermediate format for the mapping. The approach
cannot handle multi-instance loops without a priori knowledge of the number of instances.
As the Petri net is not used for verification, the entry place of the loop can be labeled with
a marker. That marking can later be used to transform the loop back to a multi-instance
loop in iBPMN.



BPMN 1.2 does not foresee to mark participants as multi-instance participants.
These extensions have been introduced in [29] to overcome this limitation. Thus, the
start place of the participant can be marked if it is a multi-instance participant to enable
a transformation to a multi-instance participant in iBPMN.

The idea of markings can also be used for OR joins. An OR join can be transformed
into a transition marked with “OR”. Then, the reduction part of the algorithm does not
reduce that transition and the mapping from iPN to iBPMN transforms that transition to
an OR gateway.

5 Conclusion and Outlook

This work presented a first mapping from BPMN to iBPMN using Petri nets as interme-
diate formalism. We mapped the positive control flow only and thus leaving the negative
control flow for future work. As the algorithm was sketched, future work has to provide
a formal presentation of the algorithm as well as a formal presentation of the properties
the algorithm preserves and proofs of them.

Besides using Petri nets as intermediate formalism, it seems to be possible that BPMN
can be directly mapped to iBPMN. The phases of that approach are: (i) transformation
of pairs of messaging activities to one interaction activity and (ii) reduce the resulting
iBPMN model. Thus, we currently investigate whether and how the reduction rules
presented in [24, 25] can be applied to iBPMN models. Subsequently, we are planning a
detailed investigation on the direct BPMN to iBPMN mapping and a comparison to the
presented approach.

Acknowledgments We thank the anonymous reviewers for their valuable comments
and new insights on the opportunities and limitations of the approach.

References

1. Decker, G., Kopp, O., Barros, A.: An Introduction to Service Choreographies. Information
Technology 50(2) (2008) 122–127

2. Decker, G., Weske, M.: Interaction-centric Modeling of Process Choreographies. (2010) in
submission.

3. Decker, G.: Design and Analysis of Process Choreographies. PhD thesis, Hasso Plattner
Institute, University of Potsdam (2009)

4. Bitsaki, M., et al.: An Architecture for Managing the Lifecycle of Business Goals for Partners
in a Service Network. In: ServiceWave 2008, Springer (2008) 196–207

5. Object Management Group (OMG): Business Process Model and Notation (BPMN) Specifi-
cation 2.0. (2009) v2.0 Beta 1.

6. Decker, G., Barros, A.P.: Interaction Modeling Using BPMN. In: 1st International Workshop
on Collaborative Business Processes 2007, Springer (2007) 208–219

7. Engler, L.: BPELgold: Choreography on the Service Bus. Diploma thesis, University of
Stuttgart, IAAS (2009)

8. Kopp, O., Leymann, F.: Do We Need Internal Behavior in Choreography Models? In: ZEUS
2009. Volume 438., CEUR-WS.org (2009) 68–73

9. Object Management Group (OMG): Business Process Modeling Notation (BPMN) Version
1.2. (January 2009) http://www.bpmn.org/.

http://www.bpmn.org/


10. Pfitzner, K., Decker, G., Kopp, O., Leymann, F.: Web Service Choreography Configurations
for BPMN. In: WESOA 2007, Springer (2007) 401–412

11. Decker, G., Kopp, O., Leymann, F., Weske, M.: Interacting services: from specification to
execution. Data & Knowledge Engineering 68(10) (2009) 946–972

12. Wolf, K.: Does my service have partners? LNCS T. Petri Nets and Other Models of
Concurrency 5460(2) (2009) 152–171

13. Dijkman, R., Dumas, M.: Service-oriented Design: A Multi-viewpoint Approach. Interna-
tional Journal of Cooperative Information Systems 13(4) (2004) 337–368

14. Barros, A., Decker, G., Dumas, M.: Multi-staged and multi-viewpoint service choreography
modelling. In: SEMSOA 2007. (2007) 1–15

15. Motahari-Nezhad, H.R., et al.: Deriving Protocol Models from Imperfect Service Conversation
Logs. IEEE Transactions on Knowledge and Data Engineering 20 (2008) 1683–1698

16. Benatallah, B., Casati, F., Toumani, F.: Representing, analysing and managing web service
protocols. Data Knowl. Eng. 58(3) (2006) 327–357

17. Decker, G., Barros, A.P., Kraft, F.M., Lohmann, N.: Non-desynchronizable Service Chore-
ographies. In: ISCOC 2008. (2008) 331–346

18. Fu, X., Bultan, T., Su, J.: Synchronizability of Conversations among Web Services. IEEE
Trans. Softw. Eng. 31(12) (2005) 1042–1055

19. Decker, G., Weske, M.: Local Enforceability in Interaction Petri Nets. In: Business Process
Management 2007, Springer (2007) 305–319

20. Fu, X., Bultan, T., Su, J.: Conversation protocols: a formalism for specification and verification
of reactive electronic services. Theor. Comput. Sci. 328(1-2) (2004) 19–37

21. Decker, G., Kopp, O., Leymann, F., Pfitzner, K., Weske, M.: Modeling Service Choreographies
using BPMN and BPEL4Chor. In: CAiSE ’08, Springer (2008) 79–93

22. Steinmetz, T.: Generierung einer BPEL4Chor-Beschreibung aus BPEL-Prozessen. Student
Thesis, University of Stuttgart, IAAS (2007) in German.

23. Kopp, O., van Lessen, T., Nitzsche, J.: The Need for a Choreography-aware Service Bus. In:
YR-SOC 2008. (2008) 28–34

24. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4)
(1989) 541–580

25. Berthelot, G., Lri-Iie: Checking properties of nets using transformations. In: Advances in
Petri Nets 1985, Springer (1986) 19–40

26. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models
in BPMN. Information and Software Technology 50(12) (2008) 1281–1294

27. Lohmann, N., Verbeek, E., Dijkman, R.: Petri Net Transformations for Business Processes –
A Survey. In: ToPNoC, Springer (2009) 46–63

28. Wu, F.: Mapping interconnection choreography models to interaction models. Diploma thesis,
University of Stuttgart, IAAS (2009)

29. Decker, G., Puhlmann, F.: Extending BPMN for Modeling Complex Choreographies. In:
CoopIS 2007, Springer (2007) 24–40


