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Abstract. An important property of interacting services is their observ-
able behavior. There exist different formalisms to describe service behavior
(e.g. BPEL, BPMN, Petri nets, automata). Based on an extension of
automata, in previous work we proposed a compact representation to
characterize the behavior of sets of services and introduced a set algebra
on it. In this paper, we present with Safira a tool which implements the
fundamental set operations for such set of services.

1 Introduction
The observable behavior is an important aspect of interacting services. For
studying correct interaction, the concept of operating guidelines [1] was introduced.
An operating guideline is an annotated automaton which represents the set
of all correctly interacting partners of a given service. In [2] the concept of
annotated automata has been extended such that fundamental set operations
can be realized for sets of services. These operations have a number of useful
applications, including reasoning about substitutability, behavioral constraints,
and organizing a service registry [2].

This paper is devoted to our tool Safira which implements the fundamental
set operations complement, intersection and union for sets of services. Section 2
introduces the basic formalisms. In Sect. 3 we define the algorithms of these
set operations and highlight interesting issues of their implementation in Safira.
Section 4 gives an overview of how to obtain and use Safira. Section 5 presents
experimental results. Finally, we conclude the paper and give directions to future
work in Sect. 6.

2 Background
To model the behavior of a single service, we use service automata [1]. A service
automaton is a finite state automaton whose edges are labeled with asynchronous
message events. As an example, Fig. 1(a) and Fig. 1(b) show two service automata.
In the graphical representation, sending events are preceded by “!” and receiving
events are preceded by “?”. Multiple labels on one edge are a short hand notation
for multiple transitions – each one being labeled with one of the events. Initial
states have an incoming arc from nowhere. Final states are double-lined. The
service automaton V models a simple vending machine expecting a customer
to insert coins (?c) and to press a button for iced tea (?t), or orange juice (?o).
If enough money has been inserted, the vending machine returns the beverage
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Fig. 1: The service automata in (a) and (b) model the behavior of a vending machine
and a single customer. The extended annotated service automaton in (c) represents a
set of customers for the vending machine in (a).

(!b). If not enough money has been inserted, the customer does not receive the
beverage. Instead, the money is returned (!r). The service automaton T represents
the behavior of a customer who orders iced tea. Note that sending events of T
are receiving events of V and vice versa.

For the finite representation of a (possibly infinite) set of service automata,
we use extended annotated automata [2]. They are also finite automata whose
edges are labeled with asynchronous message events. To be able to characterize a
set of services, we additionally annotate each state with a local Boolean formula
φ and add a global Boolean formula χ to the automaton. In comparison to
service automata, an extended annotated automaton does not have final states.
Instead, the proposition final in the local formulas may define final states of the
represented service automata.

Each service automaton S belonging to the set of service automata character-
ized by the extended annotated automaton A fulfills the following requirements.
First, S is a subautomaton of A (including an initial state). Further, each state
q of S satisfies the Boolean formula φ of its corresponding state in A and the
global formula χ is evaluated to true. Thereby, φ determines which outgoing
edges must be present in state q and χ defines which combinations of states are
allowed in S. The interested reader is referred to [2].

Figure 1(c) depicts an extended annotated service automaton Q which char-
acterizes the set of all customers of the vending machine V . An edge labeled with
“*” means that there is a transition for each label of Q. “?*” is a placeholder for
all receiving events of Q. The customer T in Fig. 1(b) is a subautomaton of Q.
The corresponding states are (t0, q0), (t1, q2), (t2, q3) and (t3, q4). Furthermore,
all states of T satisfy the local formulas of the corresponding states in A. For
example, t0 evaluates the formula !c∨?t∨?o of q0 to true, because there is a
leaving edge labeled with !c. Since the global formula χ is equal to true, there are
no additional constraints to the states of T . Thus, T is characterized by Q. As all
possible customers of V are represented, Q is also called an operating guideline
[1] of V .

3 Set Operations on extended annotated automata
In this section, we introduce the algorithms for the fundamental set operations.
This means, given two extended annotated service automata representing sets



M1 and M2 of services, we show how to compute an extended annotated service
automaton that represents the complement M1, the intersection M1 ∩M2 and
the union M1 ∪M2. Since the result of each operation is again an extended
annotated automaton, arbitrary nested structures are possible.

Due to the page limit we only sketch the algorithms (see [2] for a detailed
description), but focus on the interesting details of their actual implementation
in our tool Safira. At the end of each subsection, we also discuss the complexity
of the operation.

3.1 Complement
Theory. The most challenging of the three operations is the complement. To
compute the complement, we first normalize the extended annotated automaton
by applying two transformations. Both transformations modify the shape of
the extended annotated automaton, but do not change the represented set of
service automata. Having a normalized extended annotated automaton the actual
complement operation turns out to be very simple.

The first transformation totalizes the extended annotated automaton A. That
means, in each state of the totalized A there exists at least one outgoing edge
for each label of A. To compute a total extended annotated automaton without
changing its semantics, we insert missing edges with label x but explicitly forbid
their usage by adding a conjunction with ¬x to the corresponding local Boolean
formula. Each inserted edge is connected to a trap state t that contains a self-loop
for every label of A.

Figure 2(a) illustrates this procedure for state q1 of the extended annotated
automaton Q in Fig. 1(c). The set of the labels is {!t, !o, !c, ?b, ?r}. State q1 has
only three outgoing edges labeled with !c, ?b and ?r. Therefore, we insert two
new edges labeled with !t and !o connecting q1 with the trap state qt and set the
Boolean formula of state q1 to !c ∧ ¬!t ∧ ¬!o.

In the second transformation, we complete the extended annotated automaton
such that for each state q and all labels y the disjunction of the formulas of
all states q′ with q y−→ q′ is equivalent to true. In Fig. 2(b), we illustrate the
completion of state q1 of the annotated automaton Q in Fig. 1(c). State q1
has only one !c-labeled edge leading to state q3. Since the Boolean formula
φ(q3) =?b∧?r is not equivalent to true we add an edge labeled with !c to a new
state q30. State q30 has for every label an outgoing edge to the trap state qt. The
local formula of q30 is set to ¬(?b∧?r). Now, the disjunction of the local formulas
of all ?c-successors is equivalent to true. The remaining successor states of state q1
are treated likewise. To avoid a change in the semantics of Q by inserting the new
states q30 and q40 we explicitly forbid their usage by setting the global formula
to χ = true ∧ ¬q30 ∧ ¬q40. That means, as soon as a service automaton S covers
one of these new states, the global formula is evaluated to false. Consequently, S
is correctly classified as a non represented service automaton.

After applying the two transformations to an extended annotated automaton
A, every service automaton with the same interface as A is a subautomaton of A.
Only the global formula χ decides wether or not the service is represented by A.
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Fig. 2: In (a), the procedure of making the automaton total is shown for state q1 of Q
(from Fig. 1(c)). (b) illustrates the procedure of completion for the same state. The
dashed parts are those that are inserted in the course of a transformation.

Consequently, the complement operation for a total and complete automaton
turns out to be very simple: only the global formula χ has to be negated.

Figure 3(b) depicts the extended annotated automaton Q that represents the
complement set of service automata represented by Q in Fig. 1(c). Figure 3(a)
shows a service automaton T ′ which is represented by Q. As both the button for
iced tea and orange juice are pressed, it is not a customer of Q.

Implementation. Overall, Safira follows the procedure described above. As
both transformations can be executed independently for every node, we store the
nodes in a list, which is traversed. The totalization of the automaton can easily be
done by checking the outgoing edges for every node. In contrast, the completion
is more complicated, as boolean formulas have to be evaluated. Therefore, we
integrated the open-source SAT solver Minisat1 as a library into our tool Safira.

To use Minisat, every question concerning Boolean formulas must be converted
into a satisfaction problem. Thus, to proceed with the completion, we negate
the disjunction f of the formulas of all y-successors for each node q and ask
Minisat, wether the formula ¬f is satisfiable. If the answer is ‘yes’, then f is not
equivalent to true and an additional y-edge for q is inserted.

Although, the satisfaction problem is NP-complete, the experimental results in
the next section show that the complement can be computed efficiently. As there
usually are only a small number of labels and the length of the formulas is rather
small, the satisfaction problems we formulate for the complement generation are
not challenging Minisat.

Our experimental results in Sect. 5 show that the complement of an extended
annotated automaton can be computed. The applications mentioned in the first
section of this paper require a further use of the resulting automaton. Thus,
Safira also implements an optimization algorithm aiming at reducing the size of
the result.

The main idea of this optimization is to merge added states with the same
Boolean formula. This can be done, because all successors of each added state
lead to the same state – the trap state qt. To decide if a newly computed state
can be merged with another state, we build a special decision tree during the
completion operation. Each inner node of the tree contains an assignment over
the labels of the automaton and has two outgoing edges labeled with ‘yes’ and ‘no’.
Each leaf represents a state, which was already added to the automaton by the
completion operation. Figure 4 depicts the decision tree which was built during
1 See the website of Minisat at http://minisat.se.

http://minisat.se
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Fig. 3: The extended annotated service automaton Q in (b) is the Complement of Q in
Fig. 1(c). For reducing the number of edge crossings, we depicted two copies of state
q10 and the trap state qt. (a) depicts a service automaton T ′, represented by Q.

the complement generation for the vending machine Q. Each leaf represents one
of the states q7, ..., q11 which was inserted into the automaton by the completion
operation (cf. Figure 3(b)).

Consider a leaf l representing state p with its local Boolean formula g. The
decision tree is constructed such that the assignment β of each inner node n along
the path leading to l holds the following condition: β is a satisfying assignment of
g if the outgoing edge of n leading to l is labeled with ‘yes’ and is a non-satisfying
assignment, otherwise. As an example, see Figure 4. The assignments β0 and β1
both do not satisfy the Boolean formula of state q7.

At the beginning of the completion operation we start with an empty decision
tree. When we insert the first new state q0 to the automaton, we also add q0 to
the decision tree. Thus, at this moment the decision tree contains only a leaf
which represents q0. Then, we proceed as follows: Suppose, we want to connect
an existing state of the automaton with a new state q by edge e. Let f be the
local Boolean formula of q. To find out if there already exists a state which is
annotated with the same Boolean formula, we traverse the decision tree. At each
inner node n, we check if the assignment β of n satisfies f . If this is the case, we
follow the outgoing edge labeled with ‘yes’. Otherwise, we follow the outgoing
edge labeled with ‘no’. Arriving at a leaf representing a state p, we check if its
formula h is equivalent to f . If the answer is ‘yes’, no new state has to be inserted.
Instead, the new edge e is directed to the existing state p. Otherwise, there is
an assignment α that satisfies f , but not h or vice versa. In the decision tree, at
the place of the leaf representing q, we insert a new inner node, containing α. Its
outgoing edges are then directed to two leafs representing q and p, respectively.

In this manner, the decision tree is built successively during the completion
operation. Note that for the totalization of the automaton, no additional nodes
are necessary. Therefore the decision tree is not needed during this procedure.
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Complexity. Due to our optimization, for each state in the given automaton at
most one new state (with the negated formula) is added. Thus, in the worst case
the size complexity for completion is linear in the number of the states. The time
complexity for the completion depends mainly of the shape of the decision tree.
Assuming the decision tree is a balanced tree, the automaton is completed in
O(n · log n · l), whereas n is the number of the states and l the number of labels.
For the transformation to a total automaton, the worst case complexity for both
space and time is O(n · l).

3.2 Intersection
Theory. The idea of implementing the intersection of two extended annotated
automata is to construct the product automaton known from classical automata
theory. A product automaton implements the idea that both constituents run
synchronized – in every step executing transitions with the same label. The
states in the product automaton are annotated with the conjunction of the local
Boolean formulas of the constituents [3]. The global formulas are connected by ∧.

Implementation. The algorithm for the intersection is well known from classical
automata theory. It was just adapted to the specific characteristics of extended
annotated automata.

Complexity. The size of the resulting automaton mainly depends on the degree
of similarity of the given automata. The worst case complexity regarding both
space and time of the intersection algorithm is in the product of the number of
states of the two involved automata.

3.3 Union
Theory. Given the two operations of intersection and complement from the previ-
ous subsections, the implementation of union is trivial by using De Morgan’s rule:
M ∪N =M ∩N .

Implementation. We already proofed that the product of two total and com-
plete automata is again total and complete [2]. Thus, we do not need to transform
the product automaton of M ∩N to generate the complement. Instead, we only
have to negate the global formula of the automaton representing M ∩N .

Complexity. The complexity of the union results by the complexity of the
underlying operations complement and intersection.



4 Obtaining and using Safira
Safira is free software2 and can be downloaded at http://service-technology.
org/safira. It is written in C++ and uses the GNU build system to compile the
binary. Thus, it is available for a several platforms, including Linux, Microsoft
Windows (using cygwin) and Mac OS X.

Safira is a command-line tool implementing the following use cases. We assume
that two extended annotated automata are given in files “coffeeVendor.og” and
“juiceVendor.og”.

– Complement. Call Safira with
safira -opdf -t --complement coffeeVendor.og

– Intersection. Call Safira with
safira -opdf -t --intersection coffeeVendor.og juiceVendor.og

– Union. Call Safira with
safira -opdf -t --union coffeeVendor.og juiceVendor.og

Option -t measures the time for computing the result and option -o triggers
the output of Safira. In the examples above, a PDF file is generated which shows
the graphical representation of the resulting extended annotated automaton. For
a full description of the command line parameters, type safira --help.

5 Experimental results
In this section, we study how the algorithms for computing the complement
automaton scale in practice. We do not examine the intersection, because the
algorithm is of no issue and the size of the result mainly depends on the degree
of similarity of the given automaton.

To generate the input automata for our experiments , we used the tool
Wendy3. Wendy computes the operating guideline of a given service automaton.
The examples are industrial service models and have been extracted from real
BPEL processes using the tool BPEL2oWFN4 (except the first one).

We executed the examples on a computer with a 1.83 GHz Intel Core 2 Duo
processor and 2 GB of memory. The results are listed in Tab. 1. As expected, the
number of states of the complement automaton computed by the optimization
algorithm A2 (usage of decision tree) is significantly smaller than the number
of states of the automaton obtained by the basic algorithm A1 (no usage of
decision tree). The memory usage shows a similar result. There is one case
(service ”Car Analysis”) in which the results concerning the memory usage
diverge. This can be explained by the structure of the resulting decision tree.
Compared with the decision trees generated for the other automata, this tree
is not well balanced. Moreover, A2 consumes more time than A1. This can be
explained by the additional data structure – the decision tree – which has to
be built up and is traversed when a new state of the complement automaton is
2 GNU Affero Public License Version 3, http://gnu.org/licenses/agpl.html.
3 Available at http://service-technology.org/wendy.
4 Available at http://service-technology.org/bpel2owfn.
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Table 1: Experimental results showing the number of state of the complement automaton,
the execution time and the memory usage for both the optimization algorithm A2 and
the basic algorithm A1.

states of
service automaton complement time [sec] memory [MB]

A1 A2 A1 A2 A1 A2

Vending Machine 6 23 12 0.0 0.0 0.5 0.5
Purchase Order 169 887 338 0.1 0.1 1.3 0.8
Car Analysis 733 3,931 987 0.6 6.51 1.9 2.9
SMTP 3,307 19,995 3,460 2.9 29.4 10.9 10.6
Quotation1 7,937 61,571 14,594 14.8 208.0 24.7 15.5
Quotation2 11,265 88,323 22,539 19.2 286.1 132.8 36.1

calculated. The overall time, however, is not a crucial measure because in our
application settings the complement automaton is usually calculated at a point
in time in which the calculation time is not an issue. The number of states of
the complement automaton is more critical. In most settings, the complement
automaton is used as an input for complex, nested operations such as union and
intersection, for instance.

6 Conclusion and Future Work
In this paper, we presented the tool Safira implementing the set operations
complement, intersection, and union. With the help of experimental results, we
demonstrated that the algorithms used for the calculation of the complement scale
well. The implementation of the set operations is an important step towards their
applications: substitutability, behavioral constraints, and organizing a service
registry. For their realization, the decision problem membership S ∈ M for a
service S and a set M of services, and also the emptiness check M = ∅ still
need to be implemented. For both, we already introduced the theory [2]. The
complexity for the membership problem is linear in the size of S so that we do
not expect problems during the implementation. In contrast, we could proof that
the emptiness check is NP-complete. Consequently, we have to find heuristics to
decide this problem efficiently in practice.
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