
An efficient approach to detect lack of

synchronization in acyclic workflow graphs

Cédric Favre

IBM Research — Zurich,

ced@zurich.ibm.com

Abstract. Control-flow analysis of business process models requires to

check the absence of lack of synchronization. We use workflow graphs,

which may contain inclusive OR gateways, to represent the control-flow

of business process models. We structurally characterize lack of synchro-

nization in an acyclic workflow graph. Based on this characterization, we

show how to detect lack of synchronization in quadratic time.

1 Introduction

A business process model can be simulated, used for automated code generation,
or directly executed by a workflow engine. With the increasing popularity of
these use cases, ensuring that a process is free of control-flow errors is essential.
A process is sound [1] if and only if it is free of two control-flow errors: the
deadlock and the lack of synchronization. The control-flow of a process can be
modeled by a workflow graph or a workflow net [1]. We use workflow graphs
with the inclusive OR (IOR) gateways.

In this paper, we show how to efficiently check the absence of lack of synchro-
nization in acyclic workflow graphs with IOR gateways. In Section 3, we show
that a lack of synchronization in acyclic workflow graphs with IOR gateways can
be fully characterized in term of a path with a handle. In Section 4, we show how
to detect a path with a handle by using an extension of the approach of Perl and
Shiloach [2]. The time and space complexity of this approach is in O(|N | · |E|),
where |N | is the number of nodes and |E| the number of edges of the workflow
graph.

Related work: In case a workflow graph does not contain IOR gateways, it can
be easily converted into a Petri net and vice versa [1]. However, it is not clear if
a workflow graph that contains IOR gateways can be converted into a Petri net.
Our notion of handles is similar to the one of Esparza and Silva [3] for nets. If
we restrict to workflow graphs without IOR gateways, one of the directions of
our characterization follows from a result of Esparza and Silva [3]. The converse
direction does not directly follow. Our notion of handles has been described by
Aalst [4] who shows that, given a Petri net N , the absence of some type of path

with handle in N is a sufficient condition to the existence of an initial marking
i of N such that (N, i) is sound. He points out that path with handles can be
computed using a maximum flow approach. Various algorithms exist to compute
the maximum flow (see [5] for a list). The complexity of these algorithms ranges
between O(|N | · |E|2) and O(|N | · |E| · log(|N |)). The existence of a handle can
be checked by applying a maximum flow algorithm to each pair of transition
and place of the net. Therefore, the complexity of detecting handles with such
approach is at best O(|N |3 · |E| · log(|N |). Moreover, algorithms to determine a
maximum flow are significantly more complex to implement than our approach,
especially the ones with the lowest complexity.

2 Preliminaries

We use number of known concepts from set theory, graph theory, and the work-
flow graph verification which are defined below:

Let U be a set. A multi-set over U is a mapping m : U → N. We write
m[e] instead of m(e). For two multi-sets m1,m2, and each x ∈ U , we have :
(m1 + m2)[x] = m1[x] + m2[x] and (m1 − m2)[x] = m1[x] − m2[x]. By abuse
of notation, we sometimes use a set X ⊆ U in a multi-set context by setting
X [x] = 1 iff x ∈ X and X [x] = 0 otherwise.

A directed graph G = (N,E) consists of a set N of nodes and a set E of
ordered pairs (s, t) of nodes, written s→ t. A directed multi-graph G = (N,E, c)
consists of a set N of nodes, a set E of edges and a mapping c : E → (N ∪
{null})× (N ∪ {null}) that maps each edge to an ordered pair of nodes or null
values. If c maps e ∈ E to an ordered pair (s, t) ∈ N , then s is called the source

of e, t is called the target of e, e is an outgoing edge of s, and e is an incoming

edge of t. If s = null, then we say that e has no source. If t = null, then we say
that e has no target. For a node n ∈ N , the set of incoming edges of n is denoted
by ◦n. The set of outgoing edges of n is denoted n◦. If n has only one incoming
edge e, ◦n denotes e (◦n would denote {e}). If n has only one outgoing edge e′,
n◦ denotes e′.

A path p = 〈x0, ..., xn〉 from an element x0 to an element xn in a graph
G = (N,E, c) is an alternating sequence of elements xi in N and in E such that,
for any element xi ∈ E with c(xi) = (si, ti), if i 6= 0 then si = xi−1 and if i 6= n
then ti = xi+1. If x is an element of a path p we say that p contains x. A path
is trivial, when it is contains only one element. A cycle is a path b = 〈x0 . . . xn〉
such that x0 = xn and b is not trivial. If there exists a path from an element x1

to an element x2 of a graph, we say that x1 precedes x2, denoted x1 < x2.

A workflow graph W = (N,E, c, l) consists of a multi-graph G = (N,E, c)
and a mapping l : N → {AND,XOR, IOR} that associates a logic with every
node n ∈ N , such that: 1. An edge with null as source is a source of the workflow
graph and an edge with null as target is a sink of the workflow graph. 2. The
workflow graph has one source and at least one sink. 3. For each node n ∈ N ,

there exists a path from the source to one of the sinks that contains n. W is
cyclic if there exists a cycle in W .

Figure 1 depicts an acyclic workflow graph. A diamond containing a plus
symbol represents a node with AND logic, an empty diamond represents a node
with XOR logic, and a diamond with a circle inside represents a node with IOR
logic. A node with a single incoming edge and multiple outgoing edges is called
a split. A node with multiple incoming edges and single outgoing edge is called
a join. For the sake of simplicity, we use workflow graphs composed of only
splits and joins. This syntactic restriction does not reduce the expressiveness of
workflow graphs. We usually label the source of the workflow graph s and use
workflow graphs with a unique sink labeled t.

D

F J

S

M

O

s

b

a

c

d

e

f

h

g

t

Fig. 1. A workflow graph .

Let, in the rest of this section,
W = (N,E, c, l) be an acyclic work-
flow graph.

The semantics of workflow graphs
is, similarly to Petri nets, defined as a
token game. If n has AND logic, exe-
cuting n removes one token from each
of the incoming edges of n and adds
one token to each of the outgoing edges
of n. If n has XOR logic, executing n
removes one token from one of the incoming edges of n and adds one token to
one of the outgoing edges of n. If n has IOR logic, n can be executed if and
only if at least one of its incoming edges is marked and there is no marked edge
that precedes a non marked incoming edge of n. When n executes, it removes
one token from each of its marked incoming edge and adds one token to a non-
empty subset of its outgoing edges. The outgoing edge or set of outgoing edges
to which a token is added when executing a node with XOR or IOR logic is non-
deterministic, by which we abstract from data-based or event-based decisions in
the process model. In the following, this semantics is defined formally.

A marking, m : E → N, of a workflow graph with edges E is a multi-set over
E. When m[e] = k, we say that the edge e is marked with k tokens in m. When
m[e] > 0, we say that the edge e is marked. The initial marking ms of W is such
that the source edge s is marked by one token in ms and no edge, other than s,
is marked in ms.

Let m and m′ be two markings of W . A tuple (E1, n, E2) is called transition

if n ∈ N , E1 ⊆ ◦n, and E2 ⊆ n◦. A transition (E1, n, E2) is enabled in a marking
m iff for each edge e ∈ E1 we havem[e] > 0 and any of the following proposition:

– l(n) = AND, E1 = ◦n, and E2 = n◦.

– l(n) = XOR, there exists an edge e such that E1 = {e}, and there exists an
edge e′ such that E2 = {e′}.

– l(n) = IOR, E1 and E2 are not empty, E1 = {e ∈ ◦n | m(e) > 0}, and,
for every edge e ∈ ◦n \ E1, there exists no edge e′, marked in m, such that
e′ < e.

A transition T can be executed in a marking m iff T is enabled in m. When T is
executed in m, a marking m′ results such that m′ = m− E1 + E2.

An execution sequence of W is an alternate sequence σ = 〈m0, T0,m1, T1...〉
of markingsmi ofW and transitions Ti = (Ei, ni, E

′

i) such that, for each i ≥ 0, Ti
is enabled inmi andmi+1 results from the execution of Ti inmi. An execution of
W is an execution sequence σ = 〈m0, ...,mn〉 ofW such that n > 0,m0 = ms and
there is no transition enabled inmn. As the transition between two markings can
be easily deduced, we often omit the transitions when representing an execution
or an execution sequence, i.e., we write them as sequence of markings.

Let m be a marking of W , m is reachable from a marking m′ of W iff there
exists an execution sequence σ = 〈m0, ...,mn〉 of W such that m0 = m′ and
m = mn. The marking m is a reachable marking of W iff m is reachable from
ms.

A lack of synchronization is a reachable marking m of W such that there
exists an edge e ∈ E that carries more than one token in m.

3 Handles and Lack of Synchronization

To characterize the lack of synchronization, we follow the intuition that poten-
tially concurrent paths, i.e., paths starting with an IOR-split or an AND-split,
should not be joined by XOR-join. In the following, we formalize this character-
ization and show that such structure always leads to lack of synchronization in
deadlocks free acyclic workflow graphs.

Definition 1 (Path with a AND-XOR or a IOR-XOR handle). Let

p1 = 〈n0, ..., ni〉 and p2 = 〈n′0, ..., n
′

j〉 be two paths in a workflow graph W =
(N,E, c, l).

The paths p1 and p2 form a path with a handle1 iff p1 is not trivial, p1∩p2 =
{n0, ni}, n0 = n′0, and ni = n′j. We say that p1 and p2 form a path with an

handle from n0 to ni. The paths p1 and p2 form a path with a AND-XOR
handle iff they form a path with a handle, n0 is an AND-split, and ni is an

XOR-join. The paths p1 and p2 form a path with a IOR-XOR handle iff they

form a path with a handle, n0 is an IOR-split, and ni is an XOR-join. In the

rest of this document, we use handle instead of path with a AND-XOR handle

or path with a IOR-XOR handle. The node n0 is the start node of the handle
and the node ni is the end node of the handle.

1 Strictly speaking, one path is the handle of the other path and vice versa.

Theorem 1. In an acyclic workflow graph that contains no deadlock, there is a

lack of synchronization iff there is a handle.

The outline of the only if direction of the proof of Theorem 1 is that, whenever
there is a handle, this handle can be ‘executed’ in the sense that there exists
an execution such that a token reaches the incoming edge of the start node of
the handle and then two tokens can be propagated to reach two incoming edges
of the end node of the handle to create a lack of synchronization. We believe
that, due to its direct relationship with an erroneous execution, the handle is an
adequate error message for the process modeler. Note that it is necessary that
the workflow graph is deadlocks free in order to show that the handle can be
executed and thus a lack of synchronization be observed. However, even if the
workflow graph contains a deadlock, a handle is a design error because, once the
deadlock is fixed, the handle can be executed and a lack of synchronization can
be observed.

4 Handle Detection

Given an acyclic directed graphG = (N,E) and four different nodes s1, s2, t1, t2 ∈
N , Perl and Shiloach [2] show how to detect two node disjoint paths from s1 to
t1 and from s2 to t2 in O(|N | · |E|). We extend their algorithm in order to detect
two edge disjoint paths between two nodes of an acyclic workflow graph.

Our intuitive view of the approach proposed by Perl and Shiloach [2] is to try
to move two tokens from a start node to an end node of a handle without allowing
the two tokens to visit the same edge, i.e., without allowing the tokens to follow
paths that overlap. To achieve this, we build a so called state graph which records
the state space of the possible combinations of marked edges and a transition
relation. Note that the size of the state graph is quadratic with respect to the
number of edges of the original graph because we only consider combinations
of two edges. Checking the existence of a handle in the workflow graph reduces
to check the existence of a special path in the state graph. We ensure that the
special path in the state graph does not allow the two tokens to visit the same
edge in two ways: 1. We do not represent the states where two tokens are on
the same edge. 2. We restrict the transition relation in a way that, if two tokens
visit paths that overlap, they visit the overlapping edge synchronously (which
is ruled out by 1). This synchronization is achieved by only allowing the token
that is the most upstream in the graph to move.

In the remainder of the this section, we describe how to obtain a line graph:
a directed graph in which the edges are represented as nodes. Based on the
line graph and a numbering allowing us to detect which edge is upstream from
another, we show how to build the state graph. Finally, we describe how to detect
handles using the state graph.

Computing a line graph: Perl and Shiloach [2] describe how to detect two
node disjoint paths in a directed graph whereas we want to detect two edge
disjoint paths in a workflow graph; a directed multi-graph. To do so, we transform
the workflow graph into its line graph [6]. A line graph G′ of a graphG represents
the adjacency between edges of G. The nodes of G′ are the edges of G.

For the purpose of checking handles, there are two types of nodes that are
of interest: 1. The start nodes of a possible handle S = {x | x ∈ N∧ x is an
AND-split or an IOR-split}. 2. The end nodes of a possible handle T = {x |
x ∈ N ∧ x is an XOR-join}. We include these nodes in the line graph.

I

f

g

F

c

d

M h

O t
b

a e

s

Fig. 2. The line graph of Figure 1.

In the following, for any edge e of a directed graph t(e) references the target
node of e and s(e) references the source node of e.

Definition 2 (Line graph). Let W = (N,E, c, l) be an acyclic workflow graph.

The line graph L = (N ′, E′) of W is a directed graph such that:

N ′ = E ∪ S ∪ T

E′ = {a→ b | a, b ∈ E ∧ t(a) = s(b)}

∪ {a→ b | a, b ∈ N ′ ∧ ((a ∈ S ∪ T ∧ a = s(b)) ∨ (b ∈ S ∪ T ∧ t(a) = b))}

Figure 2 shows the line graph of the workflow graph of Figure 1. The orange
octagons with double line are nodes in S. The red diamonds are the nodes in T .

Generating the state graph: We build a state graph from the line graph of
an acyclic workflow graph. Each node of the state graph is a multi-set containing
two nodes of the line graph, i.e., two edges of the original workflow graph. Such
multi-set represents a state of the line graph where the two nodes carry a token.
The edges of the state graph represent the allowed token moves. In order to
determine which node of the line graph is upstream of another, i.e., to determine
the allowed token moves, we compute a value v(n) given by the reverse post
order numbering of the nodes [7]. The token on the node with the lowest reverse
post order value is allowed to move. Similarly to Yang et al. [8], we perform a
straightforward extension of the algorithm of Pearl and Shiloach [2]: We add to
the state graph the the states where there are two tokens on a node in S or two
tokens on a node in T . This allows us to check for two disjoint paths between

one pair of node in S and T instead of two pairs of nodes as originally described
by Perl and Shiloach.

Definition 3 (State graph). A state graph of an acyclic simple directed graph

L = (N ′, E′) is an acyclic directed graph F = (N ′′, E′′) such that:

N ′′ = {[x, y] | x, y ∈ N ∧ x 6= y} ∪ {[x, x] | x ∈ S ∪ T }

E′′ = {[x, y]→ [x′, y] | x→ x′ ∈ E′ ∧ v(x) ≤ v(y)}

Figure 3 shows the state graph of the line graph of Figure 2. As shown by
Perl and Shiloach [2] the number of edges |E′′| in the state graph is in O(|N |·|E|)
in terms of the original graph.

[F,F]

[F,d] [F,c] [I,I]

[I,f][I,g]

[O,O]

[M,M]

[M,h][h,O]

[f,h]

[f,M][f,O]

[M,O] [g,h]

[g,f]

[g,M]

[g,O]

[e,h]

[e,f][e,g]

[e,I]

[I,M]

[e,M][e,O] [d,h]

[d,f][d,g]

[d,I]

[d,M][d,O]

[c,h]

[c,f][c,g][c,d]

[d,e]

[c,I]

[c,M][c,O]

[I,h]

[I,O] [F,h]

[F,f][F,g]

[F,e]

[c,e]

[F,I]

[F,M][F,O]

Fig. 3. The state graph of Figure 2 .

Checking for handles: In order to detect the existence of a handle in the
original workflow graph, we have to check if there exists a path in the state
graph from a state with two tokens on a node in S to a state with two tokens on
a node in T . This is achieved by traversing the graph from each unvisited node

in S until reaching a node in t ∈ T or having visited all the reachable nodes. In
the worst case, the graph traversal visits each node of the graph once. The edges
that belong to the handle in the workflow graph can be easily retrieved: They
are the edges that are on the path from the state with two tokens on a node
s ∈ S to the state with two tokens on a node t ∈ T of the handle in the state
graph. On Figure 3 we observe that there is a path between [I, I] and [O,O]
which indicates that there is an handle between I and O in workflow graph of
Figure 1.

5 Conclusion

We propose an intuitive structural characterization for lack of synchronization in
acyclic workflow graphs that contain inclusive OR logic: the handle. The handle
is an adequate error message to the process modeler. We show how to check
for handles by building a state graph. The size of the state graph is quadratic
with respect to the original graph. All other operations are linear either with
respect to the size of the original graph or the state graph. Thus, our approach
requires quadratic time and space to check for handles. Note that the approach
can be easily adapted to detect potential concurrency between two elements of
the process. This has multiple applications. For example, we can detect two tasks
accessing concurrently the same data store.

References

1. W. van der Aalst, A. Hirnschall, and H. Verbeek, “An alternative way to analyze

workflow graphs,” Lecture Notes in Computer Science, pp. 535–552, 2002.

2. Y. Perl and Y. Shiloach, “Finding two disjoint paths between two pairs of vertices

in a graph,” J. Assoc. Comput. Mach, vol. 25, no. 1, p. 9, 1978.

3. J. Esparza and M. Silva, “Circuits, handles, bridges and nets,” Advances in Petri

nets, vol. 483, pp. 210–242, 1990.

4. W. van der Aalst, “Workflow verification: Finding control-flow errors using Petri-

net-based techniques,” Lecture Notes in Computer Science, pp. 161–183, 2000.

5. A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum-flow problem,”

J. ACM, vol. 35, no. 4, pp. 921–940, 1988.

6. F. Harary, “Graph Theory. 1969.”

7. J. Gross and J. Yellen, Graph theory and its applications. CRC press, 2006.

8. B. Yang, S. Zheng, and E. Lu, “Finding two Disjoint Paths in a Network with

Normalized α–Min-Sum Objective Function,” 2005.

