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Abstract. Enterprise-wide process harmonisation initiatives require the
analysis of commonalities of existing business process models. That is, cor-
respondences between activities are identified, such that the behavioural
equivalence of the models can be assessed thereafter. Due to refinements,
these correspondences can relate sets of activities to each other, i.e.,
there are complex 1:n or n:m correspondences. In this paper, we discuss
how notions of behaviour inheritance can be applied in this context. In
addition, we elaborate on how structural information can be leveraged to
identify violations of behaviour inheritance.

1 Introduction

Enterprises model their business processes for various purposes, e.g., documenta-
tion of business operations, staff planning, or process automation. As a conse-
quence, process models might show deviations in terms of level of detail, control
flow, and activity labels, even if they capture a common real-world process.

In order to detect inconsistencies between related process models, their com-
monalities and differences have to be identified [1]. As a first step, this requires
the identification of activities that correspond to each other. Note that this
might not imply semantic equivalence of the activities (e.g., ‘Get Quote’ might
correspond to ‘Enter Quote Details’ although both activities are not semantically
equivalent). Such correspondences can be elementary 1:1 matches between ac-
tivities, or complex 1:n (or even n:m) matches due to refinements of activities.
Correspondences may stem from a system analyst inspecting the models or from
automatic matching, cf., [2, 3]. As a second step, the behavioural equivalence of
process models aligned by correspondences is assessed to detect inconsistencies
and guide process harmonisation efforts.

Although not in a straight-forward manner, existing notions of behaviour
inheritance might be applied for this purpose even in the presence of complex
correspondences between two process models. However, we argue that certain
violations of behaviour inheritance can be detected structurally. In this paper, we
show that a structural decomposition of a sound free-choice WF-system might
provide valuable hints at correspondences that violate behaviour inheritance. In
particular, we focus on the notion of projection inheritance in the context of
trace semantics, i.e., an adapted version of the trace equivalence criterion [4].
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Fig. 1. Two exemplary process models, (a) focussing on the organisational perspective,
(b) depicting the respective technical process, along with complex correspondences

Fig. 1 illustrates the problem addressed by this paper using two Petri nets
that model a project planning process. Model (a) assumes an organisational
perspective, whereas (b) shows the processing according to a supporting IT system.
There are four complex correspondences highlighted using dash-dotted lines. Note
that τ -transitions are never considered to be part of any correspondence. Clearly,
the execution dependencies for transitions that are part of correspondences are
not always consistent in both models. For instance, transitions D and H might
be enabled concurrently in model (a), whereas their corresponding transitions,
e.g., 5 and 7, are causally related in model (b). The question of whether and how
such inconsistencies can be detected structurally is addressed in this paper.

The remainder of this paper is structured as follows. Section 2 gives pre-
liminaries for our work. We discuss structural properties of correspondences
in Section 3. Section 4 elaborates on behavioural analysis of correspondences.
Finally, Section 5 reviews related work, before Section 6 concludes the paper.

2 Preliminaries

We recall basic definitions for workflow (WF-) systems based on [5, 6]. A net is a
tuple N = (P, T, F ) with P and T as finite disjoint sets of places and transitions,
and F ⊆ (P × T ) ∪ (T × P ) as the flow relation. We write X = (P ∪ T ) for all
nodes and F+ for the transitive closure of F . For a node x ∈ X, •x := {y ∈
X | (y, x) ∈ F}, x• := {y ∈ X | (x, y) ∈ F}, inN (x) := {(n, x) | n ∈ •x}, and
outN (x) := {(x, n) | n ∈ x•}. A net N is free-choice, iff ∀ p ∈ P with |p • | > 1
holds •(p•) = {p}. N is conntected, if ∀ x1, x2 ∈ X [ x1F

+x2 ∧ x2F
+x1 ]. A

workflow (WF-) net is a net N = (P, T, F ), such that there is exactly one place
i ∈ P with •i = ∅, exactly one place o ∈ P with o• = ∅, and the short-circuit net
N ′ = (P, T ∪ {tc}, F ∪ {(o, tc), (tc, i)}) is connected. M : P 7→ N is a marking of
N and Mp denotes the marking that puts a token on p and no token elsewhere
for a place p ∈ P . Given a WF-net N with Mi as its initial marking, we refer
to the tuple S = (N,Mi) as a WF-system and assume N to be defined always
as N = (P, T, F ). We do not recall semantics for WF-systems but refer to [5, 6].
(N,Mi) is sound, iff the short-circuit system (N ′,Mi) is live and bounded [7].
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Fig. 2. (a) WF-system and its canonical fragments, (b) its RPST (without T -fragments)

We apply the structural decomposition technique introduced as the RPST
in [8] to parse a WF-system into a hierarchy of fragments with a single entry node
and a single exit node. Then, the RPST is a containment hierarchy of canonical
fragments of the system that can be computed in linear time.

Definition 1 (Fragments, RPST). Let N = (P, T, F ) be a WF-net with initial
place i and final place o.
– A node x ∈ X ′ of a connected subnet N ′ = (P ′, T ′, F ′) of a net N is a

boundary node, if ∃ e ∈ inN (x)∪ outN (x) [ e /∈ F ′ ]. If x is a boundary node,
it is an entry of N ′, if inN (x) ∩ F ′ = ∅ or outN (x) ⊆ F ′, or an exit of N ′,
if outN (x) ∩ F ′ = ∅ or inN (x) ⊆ F ′.

– Any connected subnet ω of N , is a fragment, if it has exactly two boundary
nodes, one entry and one exit.

– A fragment ω = (Pω, Tω, Fω) is canonical in a set of fragments Ω of N , iff
∀ γ = (Pγ , Tγ , Fγ) ∈ Ω [ ω 6= γ ⇒ (Fω ∩ Fγ = ∅) ∨ (Fω ⊂ Fγ) ∨ (Fγ ⊂ Fω) ].

The RPST of N is a tuple RN = (Ω,χ, t), where:
– Ω is a set of all canonical fragments of N ,
– χ : Ω → P(Ω) is a function that assigns to fragment its child fragments,
– t : Ω → {T, P,B,R} is a function that assigns a type to a fragment.

Fig. 2 shows the canonical fragments for one of the WF-systems of our example
along with the corresponding RPST. Note that each canonical fragment can
be classified as being either a trivial (T ) fragment (a single edge), a polygon
(P ) fragment (a sequence of fragments), a bond (B) (fragment collection with
common boundary nodes), or a rigid (R) fragment (any other structure).

3 Structural Properties of Correspondences

This section clarifies the notion of a correspondence between two WF-systems.
Following on the terminology known from the domain of schema matching or
ontology matching [9], a correspondence is defined by two sets of transitions of
the WF-systems.

Definition 2 (Correspondence). Let (N ′,M ′i) and (N ′′,M ′′i ) be two WF-
systems. The correspondence relation ∼ ⊆ ℘(T ′)×℘(T ′′) associates corresponding



transitions of both systems to each other. Let T1 ⊆ T ′ and T2 ⊆ T ′′. If T1 ∼ T2
then (T1, T2) is referred to as a correspondence. (T1, T2) is called elementary, iff
|T1| = |T2| = 1, and complex otherwise.

Further on, we discuss the structural relation between multiple correspondences
between two systems by means of two structural properties. First, correspondences
might be overlapping, i.e., they share a transition in at least one of the WF-
systems.

Definition 3 (Overlapping Correspondences). Let (N ′,M ′i) and (N ′′,M ′′i )
be two WF-systems and C1 = (T1, T2) and C2 = (T3, T4) two correspondences
between them, such that T1, T3 ⊆ T ′ and T2, T4 ⊆ T ′′. C1 and C2 are called
overlapping, iff T1 ∩ T3 6= ∅ or T2 ∩ T4 6= ∅.

Fig. 3. Pre-processing

Regarding the example in Fig. 1, we see that all cor-
respondences are non-overlapping.

Second, we provide an additional property for the
structural relation between two correspondences, which
is based on the RPST. Here, we have the assumption
that all transitions that are part of a correspondence have a single incoming and
single outgoing flow arc. If not, a behaviour preserving pre-processing is done, cf.,
Fig. 3. Note that the systems in Fig. 1 are pre-processed. The property requires
that two correspondences are not overlapping in terms of their lowest enclosing
fragments in the RPST.

Definition 4 (Structurally Independent Correspondences). Let (N ′,M ′i)
and (N ′′,M ′′i ) be two WF-systems, R′N ′ = (Ω′, χ′, t′) the RPST of N ′, and C1 =
(T1, T2) and C2 = (T3, T4) with T1, T3 ⊆ T ′ and T2, T4 ⊆ T ′′ two correspondences.
C1 and C2 are structurally independent in N ′, iff |T1| = |T3| = 1 or ∀ ω =
(Pω, Tω, Fω) ∈ Ω′ [ T1 ∩ Tω 6= ∅ ∧ T3 ∩ Tω 6= ∅ ⇒ T1 ⊆ Tω ∧ T3 ⊆ Tω ].

Our example in Fig. 1 illustrates correspondences that are structurally inde-
pendent in one or both systems. For instance, the pair of correspondences C1
and C2 is independent in model (a), as every fragment containing transition A
and either B or C contains all three transitions, cf., Fig. 2. However, the very
same pair of correspondences is not independent in model (b), as there is a bond
fragment that represents a subnet comprising transitions 3, 4, and 5, but which
does not contain transition 1. In contrast, C1 and C4 are an example for a pair
of correspondences that are structurally independent in both models (a) and (b).

4 Behavioural Analysis of Correspondences

Based on the structural properties of correspondences introduced in the previous
section, this section discusses behavioural analysis of correspondences. First, we
elaborate on the behavioural ambiguity of overlapping correspondences. Second,
the application of common notions of behaviour inheritance in the context of com-
plex correspondences is discussed. Subsequently, we introduce heuristics to detect
violations of behaviour inheritance for structurally independent correspondences.
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Overlapping Correspondences. Overlapping
correspondences raise various questions regarding their
intended meaning. That is, it is unclear whether an
occurrence of a transition that is part of both overlap-
ping correspondences should be considered for one or
for both correspondences. For instance, consider the
systems depicted in Fig. 4. Here, the trace A1, X in the
lower system might correspond to both, the occurrence
of transition A only, or the occurrence of both transitions, A and B, in the upper
system. Thus, the semantic ambiguity of such overlapping correspondences has
to be addressed as a prerequisite for any behavioural analysis.

Behaviour Inheritance. In order to judge about behaviour equivalence
in the context of correspondences between process models, first and foremost,
the treatment of transitions without counterparts has to be addressed. To this
end, two notions of behaviour inheritance can be distinguished, i.e., protocol
inheritance or projection inheritance, cf., [10, 11]. That is, transitions in one model
that are without counterpart in the second model are either blocked (protocol
inheritance) or hidden (projection inheritance). Although these notions have
been defined based on branching bisimulation, they can easily be transferred to
trace-based behaviour analysis. It is worth to mention that the term inheritance
is slightly misleading in our context as it implies a directed relation between two
models (one model is a subclass of the other model). As illustrated by our example
in Fig. 4, such a directed relation might not exist between aligned models.

The choice between protocol inheritance or projection inheritance is indepen-
dent of the structural characteristics of the correspondences. However, we focus
on projection inheritance in the context of this paper. In particular, this notions
seems to be more appropriate when comparing models that focus on different
modelling perspectives (e.g., organisational vs. technical) as intermediate process
steps that are mandatory in one perspective may be without counterpart in the
other model. For instance, transition F of model (a) in Fig. 1 is not part of any
correspondence even though its execution is required for completion of process
(a). Thus, any notion of protocol inheritance would be bound to failure.

In the general case, projection inheritance in terms of trace semantics between
two models is assessed as follows. The language of both process models is
checked for equivalence, when all correspondences are resolved. In case of 1:1
elementary correspondences this resolution is straightforward as an occurrence of
one transition in one model corresponds to the occurrence of another transition in
the other model. For the case of complex correspondences, this resolution involves
a replacement of all valid subtraces involving the transitions of the correspondence
in the one model with all valid subtraces comprising the corresponding transitions
in the other model. Consider the example in Fig. 1 and neglect correspondence
C2 and C3 for the time being. Then, the traces A,D and A,E in model (a) (all
other transitions are hidden) would be rewritten as follows. According to the
correspondences, an occurrence of A is replaced by the subtraces 1, 3, 4 or 1, 4, 3,
while the subtraces D and E are replaced by an occurrence of transition 7. That



yields the two traces 1, 3, 4, 7 and 1, 4, 3, 7. As both traces described the language of
model (b) when taking only transitions of correspondences C1 and C4 into account,
we conclude that both correspondences do not violate projection inheritance. Note
that during this analysis, the interleaving of transitions belonging to different
correspondences has to be considered. Based thereon, each pair of correspondences
can be assessed. If all correspondences show pairwise projection inheritance,
projection inheritance for the two models and their alignment in terms of a set
of correspondences can be concluded.

Structural Characterisation of Violations. While the aforementioned
approach of comparing the set of all resolved traces can always be taken, violations
of projection inheritance may already be discovered using a heuristic approach. It
uses the RPST decomposition technique for sound free-choice WF-systems and is
applicable for correspondences that are structurally independent in both systems
(cf., Section 3). In previous work, we showed that the RPST of sound free-choice
WF-systems can be annotated with behavioural details. That is, bond fragments
are either transition bordered or place bordered, but there cannot be a mix of
place and transition boundary nodes [12]. The former represents a parallel block,
whereas the latter represents either an exclusive block or a loop fragment.

This information, in turn, can be leveraged to identify violations of projection
inheritance that are induced by correspondences. Given two correspondences we
proceed as follows.
1. Determine the lowest common ancestor (LCA) in the respective RPST of all

trivial T fragments for which the entry node is a transition aligned by one of
the two correspondences. Derive the LCA in both models.

2. Compare the type of the LCA fragments.
– If one LCA fragment is of type P , the other LCA fragment has to be of

type P as well and the order of the respective child fragments (transitively)
containing all T fragments of the correspondences has to coincide in both
LCA fragments.

– If one LCA fragment is of type B and not cyclic, the other LCA fragment
has to be of type B and acyclic as well. In addition, the fragments are
either both place bordered or both transition bordered.

– If one LCA fragment is of type B and cyclic, the other LCA fragment
has to be of type B and cyclic as well.

This observation can be explained as follows. As both correspondences are
structurally independent, the LCA of all T fragments that are related to the
transitions of the correspondence must have at least two children, one (transitively)
containing all T fragments related to one correspondence and the other one
(transitively) containing all T fragments related to the other correspondence.
Therefore, the type of the LCA induces a constraint on the potential order of
occurrence between all transitions of one correspondence and all transitions of the
other correspondence. This constraint has to hold in the second model as well. For
instance, if there is a sequential order (LCA is P fragment) between the respective
T fragments (and, therefore, the transitions) of the two correspondences in one
model, there cannot be a potential concurrent enabling (LCA is B fragment



that is transition bordered) of the corresponding transitions in the other model.
Such a setting will never show projection inheritance. It is important to see two
limitations of this approach. On the one hand, conclusions cannot be drawn, if
one of the two LCAs is a rigid (R) fragment, as the constraints on the order of
potential execution cannot be derived directly. On the other hand, this check
is solely a heuristic that formulates a necessary, but not a sufficient condition
for a violation of projection inheritance. Even if the type of the LCA is equal,
projection inheritance might be violated by the two correspondences. For instance,
if both LCAs are of type P , it might still be the case that the occurrence of
all transitions of one correspondence is optional in one model, whereas it is
mandatory in the other model.

Besides (C1, C2) and (C1, C3), all pairs of correspondences in Fig. 1 are
structurally independent in both models, such that the types of the respective
LCA fragments can be compared. That, in turn, yields the following result. For
the pairs (C1, C4), (C2, C3), and (C2, C4) the LCA fragments show a consistent
type in both models. In contrast, for correspondence (C3, C4) the LCA fragment
is of type B (transition bordered) in model (a) and of type P in model (b).
Thus, the structural analysis revealed that correspondences C3 and C4 violate
projection inheritance between both models. Transitions of both correspondences
might be enabled concurrently in model (a), which is not possible in model (b).

Regarding correspondences that are not structurally independent in both
systems, we already discussed the case of correspondences C1 and C2 of our
example in Fig. 1. These correspondences obviously violate projection inheritance.
However, our example also illustrates that correspondences that are structurally
dependent do not necessarily lead to violations. Consider, for instance, corre-
spondences C1 and C3, which are not structurally independent in model (b), due
to fragments that represent subnets containing transitions 3, 4, 5, 6, but not 1.
Nevertheless, the order between all transitions of correspondence C1 and C3 as
imposed by model (a) is also reflected in model (b). Albeit beyond the scope of
this discussion, we foresee that necessary conditions for violations can also be
specified for the case of correspondences that are not structurally independent.

5 Related Work

We already discussed related work in the field of behaviour equivalence [4] and
behaviour inheritance [10, 11]. Further on, work on trace-based assessment of
similarity is related to our work. For instance, the set n-grams of possible traces
two models can be compared [13]. In other work, a trace is replayed in a model
and the number of valid replay steps is leveraged for measuring similarity [14].

Moreover, the assessment of behaviour inheritance in the presence of complex
correspondences is related to work on behaviour preserving model refinements,
see [15] for a thorough survey. A transition refinement is defined by replacing a
transition with a block-structured refinement net with a dedicated set of initial
and final transitions. However, other approaches allow refinement nets to also
show so-called distributed input or distributed output places [15].



6 Conclusion

In this paper, we addressed the challenge of assessing behaviour equivalence for
process models aligned by complex correspondences. In particular, we discussed
how the notion of behaviour inheritance can be applied for complex correspon-
dences and also introduced necessary conditions for violations of this notion by a
pair of correspondences based on structural decomposition techniques for sound
free-choice workflow systems.

As a next step, the discussed application of behaviour inheritance in the
context of complex correspondences needs to be formalised. In addition, we want
to further investigate the structural characterisation of correspondences and their
relation to the notions of behaviour inheritance. Here, the goal would be the
specification of structural characterisations that are not only a necessary, but
also a sufficient condition for a violation of behaviour inheritance.
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