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ABSTRACT
Programming languages typically support a fixed set of com-
position operators, with fixed semantics. This may impose
limits on software designers, in case a desired operator or se-
mantics are not supported by a language, resulting in subop-
timal quality characteristics of the designed software system.
We demonstrate this using the well-known State design pat-
tern, and propose the use of a composition infrastructure
that allows the designer to define custom, composable com-
position operators. We demonstrate how this approach im-
proves several quality factors of the State design pattern,
such as reusability and modularity, while taking a reason-
able amount of effort to define the necessary pattern-related
code.

1. INTRODUCTION
One of the most important quality characteristics of source
code is its modularity. Good modularity is achieved, when
each distinct piece of behavior (also called concern) in a
program is encapsulated in one or only a few modules; and
when it is possible to extend and refine this behavior in a
way that requires no changes to existing code. A high degree
of modularity in source code, thus, favors its re-usability and
maintainability.

The degree of modularity that can be achieved, is signif-
icantly influenced by the composition power of operators
offered by a language to compose modules. Therefore, re-
search in the field of programming languages is intensively
concerned with providing new composition operators. Ex-
amples are method or function calls, aggregation, inheri-
tance, mixin-composition, or aspect-oriented composition.

However, we have observed that in each programming lan-
guage only a few of the known composition operators are at
the developer’s disposal as language features. This hinders
the modularity of source code. Thus, the ability to mod-
ularize source code is limited by the choice of composition
operators made by the language designers. In our research,

we want to enable the developer to freely use and mix all
existing—and future—composition operators.

For most of the composition operators, different variations
exist, e.g., when inheriting from a class, either the parent
(e.g., in Beta) or the child implementation (e.g., in Java)
may have precedence. While approaches exist to support
different variants of single operators simultaneously (e.g.,
Beta-style and Java-style inheritance in [12]), the developer
is typically provided with very limited choice. That is, dif-
ferent concerns may be well modularizable in different com-
position styles; but if no language exists that supports all
necessary styles, not all concerns can be optimally modular-
ized.

To avoid this limitation, often domain-specific languages
(DSL) are developed that provide composition operators tai-
lored toward a specific program domain. However, develop-
ing a DSL only pays off, when it is used sufficiently often.
If this approach, thus, is not feasible and a general-purpose
language is used, often the missing composition operators
are emulated by a specific programming style, e.g., in terms
of design patterns [10], which encode interactions between
(and thus compositions of) objects.

To emulate composition operators, design patterns typically
require some pieces of code which are application-independent
(possibly tailored with element names from the application
program) but cannot be localized in one module; we refer to
these code pieces as boilerplate code. Boilerplate code entails
several disadvantages.

• Firstly, it obfuscates the design; instead of specifying
the relation of two or more modules explicitly, this code
defines their composition imperatively. Because this
code is scattered over multiple participating modules,
the design intention becomes even more implicit.

• Secondly, boilerplate code is difficult to write. While
it is not very sophisticated, its correctness is not eas-
ily enforced; for example, consider the Visitor pat-
tern, where each Element class must implement the
method void accept(Visitor visitor){ visitor.accept

(this); }
1. Each class contains the same line, but it

is not possible to factor it out into the superclass.

1In languages like Java with an overloading semantics for
methods, the static type of the argument distinguishes be-
tween the accept methods for different Element types in a
Visitor.



• Finally, while it is sometimes necessary to combine
multiple composition operators, not all required op-
erators can be emulated by design patterns. As an
example, consider the expression problem [8], where
the building blocks of the application are data types
and operations on them. With an object-oriented lan-
guage, the data types are easily extensible, but not the
operations. The Visitor pattern emulates a functional
composition style, which makes it easy to extend the
operations, but in turn the data types cannot be eas-
ily extended. Different language-level solutions to this
problem have been proposed that are all founded on
combining multiple composition operators [5, 8].

As also others have noticed [7, 26, 13], we claim that quality
characteristics of design pattern implementations can often
be improved if the implementation language supports par-
ticular composition operators. However, while this decreases
the complexity of programs using a supported pattern, pro-
viding such support by extending the syntax of a language
will increase the language’s complexity [19].

In our research, we are concerned with developing a compo-
sition infrastructure, where the developer can choose from
different composition operators and from different variations
thereof. However, we do not simply aim at providing a
fixed set of composition operators to choose from; but we
aim to provide an infrastructure in which composition op-
erators can be user-defined. In addition, our approach al-
lows to re-use and combine implementations of composition
operators—thereby developing new composition operators—
because they are first-class. This also makes our approach
open for future developments in the research of composition
operators.

In this paper we present our approach through the exam-
ple of the State pattern and our prototypical Co-op lan-
guage. We have chosen this pattern because it is suitable
to demonstrate the interplay between different composition
operators, namely forwarding and delegation semantics as
well as aspect-oriented composition. By this example we
show that customizable composition operators can lead to
a re-usable implementation of design patterns as well as to
improved modularity of source code.

2. COMPOSITION ISSUES DEMONSTRATED
In this section, we demonstrate the occurrence of issues
caused by language limitations, based on a concrete exam-
ple. For this purpose, we discuss the object-oriented “State”
design pattern [10], which realizes a state machine.

Figure 1 shows a concrete instance of the State pattern that
(partially) implements the TCP/IP protocol. Based on this
figure, which is very similar to the example found in the
Design Patterns book [10], we identify several issues.

First, the State pattern has to be instantiated and tailored to
this specific application. In general, many patterns (includ-
ing the State pattern) specify roles that have to be mapped
to implementation-specific classes. However, parts of these
classes represent common pattern-defined behavior, made
specific for a particular instantiation of the pattern. This
obfuscates the generality of the design pattern, decreases the
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Figure 1: State pattern instantiation partially rep-
resenting TCP/IP

separation between application-specific and pattern-generic
code, and makes it harder to reuse common parts of the
pattern implementation (“boilerplate” code).

Specifically in this example, the most important occurrence
of boilerplate code is found in the methods defined in class
TCPInterface. For each action (e.g., openPort, receive-
Syn, etc.) supported by the state machine, this interface
class has to define a method that forwards calls to the cur-
rently active state. As shown in figure 1, the forwarding
method has to pass the this reference to the state object,
such that it can, e.g., call changeState on the context
object. Similarly, whenever a new action has to be added
to the state machine, additional boilerplate code has to be
added to both the State superclass TCPState, as well as
TCPInterface. Both issues can be addressed more con-
cisely in languages that support explicit delegation [22].

Second, pattern implementations may impose limitations on
the way a particular concept is expressed. In the case of the
State pattern implementation as shown in figure 1, the be-
havior associated with each state is modularized. However,
state transitions are encoded as part of the actions, and
thus become scattered over multiple State implementation
classes.

As an alternative, the State pattern therefore also explicitly
suggests that all state transitions can be kept in a single
location, e.g., a transition table. This addresses the scatter-
ing of transition statements over the program, thus making
it easier to, e.g., check whether an instantiation of the State
pattern matches a corresponding state diagram, or to modify
several transitions in one go. However, in many languages
this alternative requires additional boiler-plate code, as is
shown in figure 2.

In this alternative design, the constructor of TCPInterface
constructs a table of state transitions. The methods in class
TCPInterface each call the method changeState(..).
This method is parameterized by the action that is being
executed, which is needed to look up the “next” state in
the transition table. Similar to the code that “manually”
forwards method calls to the current state object, the invo-
cation of method changeState, passing the action, is thus
replicated for each action supported by the state machine
implementation.
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Figure 2: State pattern implementation using a
transition table

One way to improve on the situation described above, is
by addressing limitations in the underlying implementation
language. In this case specifically, both implementations
can benefit from a language that supports explicit delega-
tion, whereas the table-based design can additionally benefit
from a language that supports pointcut-advice constructs.
We demonstrate this in detail in the next section; it should
be noted, however, that this example is meant as a demon-
strator for the usefulness of more flexible composition oper-
ator support in general, even if space limitations prevent us
from discussing other examples here.

3. USING COMPOSABLE COMPOSITION
OPERATORS

Our approach is based on a composition infrastructure, which
supports composition primitives that allow programmers to
design custom or domain-specific composition operators. This
infrastructure is implemented as an object-based language
called Co-op, which is discussed in detail elsewhere [14, 15].

Figure 3 shows a schematical overview of a Co-op-based de-
sign of the State pattern, applied to the TCP/IP example.
As is the case with the original OO pattern, it supports both
design alternatives discussed in the previous section (i.e., en-
coding transitions as part of the state implementations, or as
a separate transition table). The lower half of the diagram
contains the reusable, pattern-generic parts, which should
fulfill two main tasks. First, it establishes and controls a
delegation relation between a context object (as it is called
in the original pattern description; in our example, class
TCPInterface fulfills the role of context) and state imple-
mentation objects (instances of TCPClosed, TCPListen,
etc.). Second, in case a table-based implementation is de-
sired, it automatically ensures that the specified state tran-
sitions are executed at the appropriate moment, i.e., without
adding any invocations to the application-specific state im-
plementations (in the upper half of the diagram).

Below, we discuss each module described in the diagram in
some detail, and show how this approach reduces the amount
of boiler-plate code in the application-specific part.

Listing 1 shows the implementation of the generic, reusable
parts of the State pattern. An instance of the State pat-
tern can be created by constructing an instance of module
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Figure 3: Design diagram of the Co-op-based State
pattern

StatePattern. To facilitate the delegation from the con-
text object to an object representing the current state, each
state pattern instance keeps references to the context and
currentState objects, and a reference to the delegation
operator2. These instance variables of the pattern are de-
fined on line 2. The constructor (lines 4–8) calls the oper-
ation that establishes the delegation relation (line 7). This
operation, changeDelegatorOperator(..) (lines 10–
18), which should be invoked whenever a state change is re-
quired, deactivates the delegation to the current state object
(lines 12–13), and activates a new delegation relation from
the context object to the new state object (lines 16–17).

We lack the space to discuss the internal details of the Dele-
gation operator in detail, but a discussion of this exact
operator can be found in prior work [14]. Here, it suffices
to know that the constructor of the Delegation module
establishes and activates delegation from the object refer-
enced by the first argument (here: @context) to the object
referenced by the second argument (here: newState). Ef-
fectively, this means that invocations on the context object
are forwarded to the indicated state object, while the “this”-
object still refers to the context object (i.e., this-calls are
all directed to the context object).

Finally, lines 20–22 implement the state transition mecha-
nism used in the table-based pattern implementation: by in-
voking addTransition, a pointcut-advice instance is con-
structed, which triggers after the specified action is in-
voked on the fromState. Whenever the pointcut triggers,
as an advice the operation stateChangeImpl is invoked,
as defined on lines 33–35, which changes the state to the
selected toState. The module StateTransition stores
references to the pattern instance, as well as the desired
toState, so that these can be used by the advice3.

2In Co-op, operators are themselves implemented as mod-
ules, and can be referenced as first-class objects. For a de-
tailed explanation, see [14].
3Ideally, these could be supplied as advice parameters, mak-



1 module StatePattern {
2 var context, currState, currDelegator;
3
4 initWithContext:aContext initState:initState {
5 context = aContext;
6 currState = initState;
7 this changeDelegatorOperator: initState;
8 }
9

10 changeDelegatorOperator:newState {
11 // Deactivate the existing delegation (if any)
12 (currDelegator isDefined) ifTrue:
13 [currDelegator deactivate];
14
15 // Active delegation to new state object
16 currState = newState;
17 currDelegator = Delegation newFrom: context to:

newState;
18 }
19
20 addTransitionFrom:fromState action:action to:toState {
21 AspectJTargetPointcutAdvice new: "after" matchTarget:

fromState matchOperation:action aspectInstance: (
StateTransition new:this to:toState) advMethod: "
stateChangeImpl";

22 }
23 ... // trivial accessors not shown here
24 }
25
26 module StateTransition {
27 var patternInstance, toState;
28
29 init:aPatternInstance to:aToState {
30 patternInstance = aPatternInstance;
31 toState = aToState;
32 }
33 stateChangeImpl {
34 patternInstance changeDelegatorOperator: toState;
35 }
36 }

Listing 1: Co-op-based implementation of the State
pattern

As mentioned in section 2, we found two types of function-
ality in the State pattern that can be made more reusable,
while also removing the need for a lot of boilerplate code.
First, by using delegation, it is no longer necessary to write
manual forwarding operations in the context class (here:
TCPInterface). Second, when using a table-based im-
plementation, the pointcut-advice composition operator re-
moves the need to manually invoke a method that decides
about the next state. Note that although our approach al-
lows the use of such a transition table, this is by no means
obligatory; embedding transitions in action implementations
works fine, as well. However, when transition tables are
used, our approach removes the need for boilerplate associ-
ated with the original implementation.

Listing 2 shows how the State pattern implementation de-
fined above as a custom, “pluggable” composition operator
that can be used in any Co-op program, is applied to the
TCP/IP example discussed in section 2.

1 module TCPInterface {
2 var portNumber, fsm;
3
4 init:aPortNumber {
5 var closedState, listenState, synReceivedState,

establishedState;
6

ing the module StateTransition superfluous, but our
much simplified implementation of AspectJ-like pointcut-
advice does not support this at present.

7 portNumber = aPortNumber;
8 closedState = TCPClosed new;
9 listenState = TCPListen new;

10 synReceivedState = TCPSynReceived new;
11 establishedState = TCPEstablished new;
12
13 fsm = StatePattern newWithContext: this initState:

closedState;
14
15 fsm addTransitionFrom: closedState action: "openPort"

to: listenState;
16 fsm addTransitionFrom: listenState action: "receiveSyn

" to: synReceivedState;
17 fsm addTransitionFrom: synReceivedState action: "

receiveAck" to: establishedState;
18 fsm addTransitionFrom: synReceivedState action: "

receiveRst" to: listenState;
19 // ...additional transitions not shown here
20 }
21 getPortNumber { return portNumber; }
22 }
23
24 module TCPClosed
25 {
26 openPort {
27 Console writeln: "TCPClosed: opening port: " with: (

this getPortNumber);
28 }
29 }
30
31 module TCPListen
32 {
33 receiveSyn {
34 Console writeln: "TCPListen: received SYN; sending SYN

-ACK";
35 }
36 }
37 // etc. for other TCP states not shown here

Listing 2: Application of the generic State-pattern
implementation

In this listing, the constructor of module TCPInterface,
found on lines 4–21, sets up the state machine: it creates an
instance of each TCP state modeled in this example (lines
8–11), and initializes a State pattern instance (line 14), ap-
pointing itself as the context object, and setting closed-
State as the initial state object. In this example, we also
used the pointcut-advice based transition mechanism, which
is initialized in lines 16–19. Note that all the initializa-
tion code here is completely application-specific, and also,
no boilerplate related to the internal “machinery” required
by the pattern implementation is visible. Once the state
machine is thus set up, the delegation and pointcut-advice
operators automatically take care of effectuating the desired
state machine behavior.

The remaining code in listing 2 shows the mock-up state im-
plementations. Note that the state modules do not contain
or need any references to the state pattern. Still, because of
delegation, you can still use behavior of class TCPInterface
by means of this-calls, such as this getPortNumber (line
27).

An example demonstrating how the complete state machine
can be instantiated and executed is shown in listing 3. Note
that in listing 3, no boilerplate code or references to the
state pattern are necessary either.

1 module Main {
2 main { var tcpserver;
3 tcpserver = TCPInterface new: "80";
4 tcpserver openPort; // Request port open



5 tcpserver receiveSyn; // Receive incoming conn.
6 //etc.
7 } }

Listing 3: Using the state machine implementation

When the state machine is initialized (line 5), calls will be
delegated to the initial state, an instance of TCPClosed.
Thus, when openPort is invoked (line 6), the call is dele-
gated to the operation openPort in TCPClosed, as shown
before. After this action has been executed, the pointcut-
advice that executes the state transition to listenState,
an instance of TCPListen, is automatically invoked, since it
triggers after the invocation of openPort on the instance of
TCPClosed. Thus the state machine implementation auto-
matically delegates calls to the appropriate implementation,
and automatically triggers state changes.

The complete example as well as a prototype Co-op-interpreter
(a plain jar-file, no installation required) can be downloaded
from the Co-op website [1].

4. RELATED WORK
The work in this paper is related to a large body of re-
search on defining new languages that support novel com-
position techniques, especially in the domain of object-based
and aspect languages. Many papers also present a (small)
set of composition techniques that aim at unifying exist-
ing ones. However, most of such related research proposes
a fixed set of composition operators, presented as part of a
language, extension of a language, or an application frame-
work. In contrast, our work focuses on a language that has
no—or just one—built-in composition operators, but rather
is a platform for constructing a wide range of user-defined
composition operators.

To the best of our knowledge, there are no other languages
that offer dedicated support for user-defined composition op-
erators (that can be reused and combined), at least not
within the domain of object-oriented and aspect-oriented
languages. Please note that this excludes languages that of-
fer generic extension mechanisms—such as macros in Lisp—
or allow for the extension and modification of the program
through metaprogramming; our work is particularly related
to metaprogramming [6] and especially meta-object proto-
cols [21]. As explained, e.g., in [20], the power of metapro-
gramming comes with more complexity and responsibility.

This means that the difficulty of language design—except for
the concrete syntax—is now on the MOP designer. Indeed,
our work might just as well have been presented as a novel
design of a MOP, but for practical reasons we chose to use
a concrete language, Co-op. We are not aware of any MOPs
(or languages, or frameworks) that offer similar generic ab-
stractions and structure as we presented in this paper. In
particular, we do not know any MOPs that provide abstrac-
tions for defining new composition operators with similar
variety, expressiveness and composability. For example, Co-
op explicitly supports a variety of object-oriented as well as
aspect-oriented composition operators.

Of the research that aims at providing frameworks for higher-
level languages through reflection or meta object protocols,

we just mention COLA [24], AspectS [18], MetaClassTalk [4]:
please refer to [14] for a discussion of these. There are several
frameworks that aim at offering a generic platform for OO
and AOP language implementations. For such platforms,
the designers have typically made efforts to find a small set
of generic constructs that typically serve as a target ‘lan-
guage’ for a compiler/code transformation. An important
distinction with our work is that these platforms do not aim
at, and hence do not support, the ability of creating user-
defined composition operators within the same language.

We have used the example of a modular, reusable implemen-
tation of a design pattern to exemplify that a single fixed
composition technique is insufficient, while at the same time
demonstrating that a design pattern implementation can in
fact be modeled as a composition operator that ‘extends’
the language.

In [3], Bosch argues that language support is needed for
explicit representation of design patterns in programming
languages. The LayOM language offers a number of com-
mon design patterns as built-in constructs. These can be
extended by growing the language, which supports modular
extension of the lexer, parser and code generators for a new
pattern: in contrast to our approach, the extension is not
specified in the programming language itself. Also in [17],
techniques for explicit representation of design patterns are
proposed that are based on extension of the language and,
consequently, the compiler.

Rajan and Sullivan [25] argue that design patterns are a
suitable test case for evaluating and comparing aspect lan-
guages, because (1) design patterns are standard, well-docu-
mented design structures, and (2) existing examples [13]
of design pattern implementations in AOPLs are available.
They base their evaluation of the EOS language on a com-
parison with the AspectJ implementations of patterns in
[13], following the metrics that have been proposed by Gar-
cia et al. in [11].

Several efforts have been made to represent design patterns
as first-class entities. For example, in [9], the fragment
model is introduced to represent design patterns and their
components. The FACE approach [23] extends the OMT
notation with pattern-specific entities. Similarly, [26] pro-
poses a modeling notation for representing design patterns—
specifically for the support of the design and integration of
object-oriented frameworks. All of these approaches build
on the assumption that a design pattern has roles, which
must be filled in by entities that use the design pattern.
These roles are called participants in [10].

Hanneman and Kiczales [13] shows how to implement the
GoF design patterns using aspect-oriented modularization
techniques; in several cases this enables the modularization
of all pattern-generic code within a single module (aspect).

5. EVALUATION AND CONCLUSION
Support for flexible, user-definable composition operators
can help to improve the modularity and reusability of design
pattern implementations, as we have shown for the State
design pattern specifically in this paper.



Although this paper shows only one example, the results
can be generalized. As has been discussed by the example
of the Visitor pattern in section 1, or by the example of other
patterns in [16, 15, 2, 13], rich composition operators in the
language provide a powerful way to solve problems which are
typically only“worked-around”by means of Design Patterns,
i.e., requiring boilerplate code in several locations.

In addition, our approach of using a composable composition
infrastructure (called Co-op) allows the definition of new
composition operators that reuse existing ones. We have
shown this by expressing the State design pattern as a cus-
tom composition operator, which reuses two existing opera-
tors that implement explicit delegation and a basic pointcut-
advice mechanism. Also as a result of this, we could define
such a relatively complex and reusable operator in less than
50 lines of code.
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