
Supporting Variability with Late Semantic Adaptations of
Domain-Specific Modeling Languages

Tom Dinkelaker Martin Monperrus Mira Mezini

Technische Universität Darmstadt, Germany
{dinkelaker,monperrus,mezini}@cs.tu-darmstadt.de

ABSTRACT
Meta-object protocols are used to open up the implemen-
tations of object-oriented general-purpose languages to sup-
port semantic variability. They enable performing appli-
cation-level semantic adaptations to the language even at
runtime. However, such meta-object protocols are not avail-
able for domain specific-modeling languages. Also, existing
approaches to implementing domain-specific modeling lan-
guages do not support semantic adaptations, where the ap-
plication basically redefines specific parts of the language
semantics. We propose a new approach for the implementa-
tion of domain-specific modeling languages that uses meta-
objects and meta-object protocols to open up the implemen-
tation of domain-specific abstractions. This approach en-
ables runtime semantic variability of the form of application-
specific late semantic adaptations of domain-specific model-
ing languages that depend on the runtime application con-
text.

Categories and Subject Descriptors
D.3.3 [Software Engineering]: Language Constructs and
Features—Classes and Objects, Frameworks; D.2.11 [Soft-
ware Architectures]: Languages

General Terms
Design, Languages

Keywords
Domain-Specific Modeling Languages, Variability, Semantic
Adaptation, Meta-Object Protocols

1. INTRODUCTION
Domain-specific modeling languages (DSMLs) facilitate

the development of software in a certain application domain
by providing direct means to express domain-specific ab-
stractions and operations. DSMLs are supported by domain-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
First International Workshop on Composition and Variability colocated
with AOSD’2010 Rennes, St. Malo, France
Copyright 2010 ACM ...$10.00.

specific interpreters or compilers, which implement DSML
syntax and semantics [22].

Previous work showed that most of the current methods
for implementing DSMLs are closed with respect to changes
in their semantics [30, 22]. For instance, van Deursen pointed
that extensible DSL compilers and interpreters [30] have
been little explored and Mernik stated [22] that “building
DSLs [...] in an extensible way” is an open problem. To
support the need for extensible modeling languages, note
that even UML2 [25] defines an extension mechanism of its
semantics called semantic variation point. This is where
this makes its contribution: we propose a new approach for
implementing DSMLs which supports semantic variability.

This approach allows DSML users to define the DSML se-
mantics that exactly fits their needs, in the spirit of semantic
variation points of UML2 [25]. For illustration, consider a
model of a travel package booking Web service defined in a
DSML for composing Web services. Let us assume that the
initial DSML semantics only supports synchronous events
consumption, thus DSML programs can only handle syn-
chronous Web service partners. What happens if the de-
fault Web service for booking flights fails and that the only
other partner available works asynchronously? The DSML
application has to be rewritten using another modeling lan-
guage. If the user could change the DSML semantics in an
application-specific manner, she could implement an adapta-
tion of the DSML semantics in order to enable asynchronous
event consumption to also support asynchronous partners,
while still reusing the initial DSML application and most of
the default DSML semantics. If the DSML application has
to support at runtime both synchronous and asynchronous
partners, i.e. be self-adaptive to recover dynamically if a
partner fails [2], the semantic adaptation has to depend on
the execution context.

In [31], van Gurp coined the term late variability in the
context of product lines, where it means changing a product
after its delivery. In this paper, we explore the use of late
variability in the context of DSML, which means being able
to change the DSML semantics after the default interpreter
or compiler has been delivered. To do so, we define the
concept of late semantic adaptation as a replacement of one
or more parts of the default semantics of the DSML within
a DSML program; late meaning that the adaptation occurs
after the delivery of the DSML and even as late as during
the execution of a DSML program.

Let us now list and define what could be adapted in a
DSML: A domain type is a type of the metamodel of the
DSML, i.e. a type representing a domain abstraction. Adapt-

ing a domain type means that every instance created after
the adaptation will have the new semantics. Domain types
contain domain operations that may change the state of do-
main objects. A domain object is an instance of a domain
type. Adapting a domain object means that the semantics
(the implementation) of its domain operations (and only the
operations of this particular object) are changed.

Existing approaches to implementing DSMLs (e.g. DSML
compilation [1], domain virtual machine [23], and polymor-
phic embedding [14]) do not support such late semantic
adaptations, where the application basically redefines spe-
cific parts of the language semantics. In existing approaches,
changing the semantics at runtime is only possible if the se-
mantic adaptations had already been anticipated at design
time. However, it is not possible to envision every possi-
ble semantic adaptation a priori at design-time. Even if it
would be possible to embed into the DSML variation points
for the known adaptations, the resulting implementation of
the DSML semantics would be bloated with additional at-
tributes and conditional logic. Such a one-size-fit-alls solu-
tion hampers the design of the default semantics which is
used by most of the DSML programs. Last but not least,
the DSML semantics could not be causally connected to the
application state (i.e., dependent on the application state).

Our contribution is a method to implement DSMLs which
are able to support runtime semantic adaptations. Meta-
object protocols (MOPs) are interfaces to change the seman-
tics of object-oriented programming languages [17]. MOPs
define meta-objects that for instance handle the dispatch
of method calls. Our key insights are that: 1) domain ob-
jects can be linked to a meta-object and 2) by implementing
a DSML in a specific manner, an existing general-purpose
MOP enables to change the semantics of the DSML itself.
The method supports unanticipated semantic adaptations
after the default DSML implementation has been delivered
to a particular domain, as late as during the execution of a
DSML program.

To evaluate our approach, we instantiate the method by
building a DSML for state machines. This DSML supports
semantic adaptations discussed previously in literature [25,
3].

The remainder of this paper is structured as follows. Sec-
tion 2 presents different dimensions along which semantic
adaptations may be defined. The proposed DSML method
is presented in Section 3. Section 4 evaluates the support for
semantic adaptations of a DSML implemented following our
method. Related work is discussed in Section 5. Section 6
concludes the paper and discusses future research directions.

2. DIMENSIONS OF
LATE SEMANTIC ADAPTATIONS

It’s not straightforward to adapt the DSML semantics at
the application level. DSML programmers require analysis
means to design their adaptations. Hence, we have identified
the following dimensions of semantic adaptations.

2.1 Scope of Variability
The first dimension along which we classify DSML seman-

tic adaptations is the scope of variability. This dimension
is discrete and has two values: (a) domain type semantic
adaptation and (b) domain object semantic adaptation. A
domain type semantic adaptation affects the semantics of

--- DSL Loading
+++ Adaptation
+++ Adaptation
%%% DSL Execution
%%%
%%%
%%%
%%% End of Execution

--- DSL Loading
%%% DSL Execution
%%%
+++ Adaptation
%%%
+++ Adaptation
%%%
%%% End of Execution

(D3.a) Pre-Execution
Semantic Adaptation

(D3.b) Execution Context Dependent
Semantic Adaptation

Figure 1: Semantic Adaptations and DSML Pro-
gram Execution

all domain objects of a given domain type. On the con-
trary, a domain object semantic adaptation affects only one
particular domain object.

2.2 Granularity of Changes
The second dimension of semantic adaptations is the gran-

ularity of adaptations that are made. The size of these adap-
tations ranges from one single domain operation to multiple
parts of the DSML semantics. Indeed changing one part of
the semantics often requires also changing another part of
the semantics, and multiple “elementary” semantic adapta-
tions have to be packed into a unit of change.

2.3 Relation to DSML Execution
The third dimension characterizes the relation between

the point in time in which the semantic adaptations happen
and the point in time when DSML programs are executed.
In most cases, the right semantics for a program execution
can be determined beforehand and stays fixed for a complete
program run. Sometimes, the selection of the right seman-
tics depends on the execution state of a DSML program, i.e.,
a change in the DSML program context triggers a semantic
adaptation.

Let us consider the following two abstract examples of ex-
ecution traces that illustrate the two possible points in time
when adaptations may take place. Figure 1 shows the differ-
ence in the execution traces of a pre-execution adaptation
and a context-dependent adaptation. In both traces, the
first step is to load the DSML program of which the cor-
responding trace is prefixed by “– – –”. Then, two kinds of
execution steps can occur: semantic adaptation (“+ + +”)
and normal DSML execution (“% % %”).

The left-hand side of figure 1 schematically depicts a pre-
execution semantic adaptation: the semantics of the DSML
changes before any domain object is created, or any call to a
domain operation has occurred. Note that multiple adapta-
tions can be applied as indicated. Then, the DSML program
is evaluated until completion. In this case, the adaptation
is independent of the DSML execution. The right-hand side
of figure 1 depicts an execution context-dependent seman-
tic adaptation, as used in the running example. Unlike the
previous trace, the adaptation happens during DSML exe-
cution, depending on the concrete values of domain objects.
This is symbolized by the interlacing of several regular do-
main operation execution and semantic adaptation steps.
Such context-dependent adaptations enable semantic self-
adaptation of DSML programs.

3. A NEW METHOD FOR
IMPLEMENTING DSMLS

This section presents a method for implementing DSMLs.
DSMLs interpreters implemented with this method have
the particularity to allow late semantic adaptations (as de-
scribed in 2), i.e. semantic adaptations of the DSML inside
DSML programs. We use the Groovy programming lan-
guage to demonstrate the feasibility of the approach, as well
as to fully instantiate the approach later in section 4.

3.1 Using Groovy to Implement DSMLs
Groovy [5, 18] is an object-oriented scripting language

that nicely integrates with Java [12]. We have selected
Groovy as the implementation language of our method for
the following reasons:

1. Groovy provides a runtime MOPs in which meta-objects
are first-class entities that can be directly accessed and
modified by users1.

2. Groovy has a flexible syntax that enables the definition
of embedded DSMLs with a small syntax overhead.
While for other host languages, such as Haskell, a
large syntax overhead has been measured [19], Groovy
supports named parameters and command expressions
that allow the DSML implementer to design the syntax
of the embedded DSML more openly.

3. Groovy is accessible to a broad community of devel-
opers since it has a syntax that is close to the Java
syntax. Groovy is seamlessly integrated into Java and
Groovy code can be called from Java code and vice
versa. Hence, DSML programs can be called from Java
and DSML programs can call existing Java libraries.
All these argument allow an easy dissemination of our
method.

While our method for implementing DSMLs could be imple-
mented using other programming languages that come with
a meta-object protocol (Smalltalk [10], CLOS [17], Ruby
[27]), none of these languages satisfy all the aforementioned
requirements.

Let us now give a quick overview of the features of Groovy
that our method uses for implementing DSMLs2. Every
Groovy object is bound to a meta-object [17]. This meta-
object has several responsibilities: 1) it contains the logic
related to introspection (e.g. the method getMethods) and
2) it handles every method call to this object. It is possible
to change or replace this meta-object at runtime.

Also, there is a registry that links a class name to its
default meta-object. Every new instance of a class, say x, is
bound to the meta-object for its class in the registry. Hence,
when the registry is updated, already existing objects keep
the old meta-object and the new generation of objects is
bound to the updated meta-object.

Groovy supports first-class closures. A closure can be
created dynamically, passed as parameters to methods and
functions, and executed. Listing 1 illustrates these points

1Note that users do not have to understand and use the
MOP as long as they use the default semantics of a DSML
and do not need to adapt it.
2Note that our approach is not bound to Groovy specifically,
but to dynamic languages with a MOP. For instance, our
approach is completely applicable in the context of Ruby.

1 // creating a closure
2 aClosure = {x->
3 print ”hello ”+x }
4

5 def m(Closure c) {
6 c(”world”) // executing the closure
7 }
8

9 // passing the closure as parameter
10 m(aClosure)

Listing 1: Closures in Groovy

1 // creating a closure
2 aClosure = {-> bar() }
3

4 // two different contexts
5 class Context1 {
6 def bar() { println ”bar” } }
7 class Context2 {
8 def bar() { println ”bar2” } }
9

10 // executing the closure with Context1
11 aClosure.delegate=new Context1()
12 aClosure() // output ”bar”
13 // executing the closure with Context2
14 aClosure.delegate=new Context2()
15 aClosure() // output ”bar2”

Listing 2: Delegates in Groovy

Also, an important feature of Groovy closures is that their
execution can be parameterized by a delegate context. By
default, a closure has access to the lexical context in which it
has been created. The lexical context contains all local vari-
ables of the closure. If it has been created within a method
body, all variables available in the method are also avail-
able for the closure. In particular, all instance attributes
and methods of the object that has created the closure are
available when the closure is executed. This creating object
is called the owner of the closure. In addition to the lexical
context, the available context can be extended. When using
a delegate for the closure, by changing its delegate attribute
to refer to the delegate, the lexical context of the delegate
becomes accessible in the closure. This way, the instance at-
tributes and methods of another object than its owner can
be used. If a function is not found in the closure’s lexical
context, a method with same signature is looked up in the
delegate context, as shown in listing 2. Note that depending
on the current binding of the delegate, the execution of the
same closure can produce different results.

Technically, extending the available context for a closure
is possible because Groovy uses a special meta-object for ev-
ery closure. This meta-object first tries to lookup attribute
accesses and method calls in the lexical context of a closure,
i.e., in the local variables and in the owner. If no attribute or
method with a corresponding name or signature is available
in the lexical context and if the closure’s delegate attribute
is set, then the meta-object tries to lookup the attribute or
method in the class of the delegate object. Only if the at-
tribute or method can be found neither in the lexical context
nor in the delegate, Groovy throws a runtime error.

3.2 The Embedding of DSMLs
Our method is based on Hudak’s method to implement

DSLs [15], i.e., no parser and compiler has to be written.

handleEvent(…)
…

State

fire(...)
...

Transition

fsm (…)
state (…)
when (…)
enter (…)
…
execute (…)

StateMachineDSL

*
next

receiveEvents(...)
...

Fsm

*

doIt()
...

Actionson_entry

current on_selection

Figure 2: Architecture of the Default Interpreter

Implementing a DSML relies on two main steps. First, a
metamodel specifies domain types, domain operations, and
associated semantics in terms of a set of interrelated Groovy
classes. Second, a syntactic language interface – a Groovy
class – maps DSML syntax to DSML semantics by map-
ping DSML keywords to domain objects. There is a method
in the syntactic language interface for each keyword in the
DSML. DSML programs are enclosed in Groovy closures and
the latter are assigned an instance of the language interface
class as their delegate. The delegation mechanism of Groovy
closures then maps DSML keywords to the corresponding
method calls to a closure’s delegate.

For instance, let us consider the implementation of the
default semantics for a DSML for state machines. Figure 2
depicts the design of this DSML. The metamodel consists
of classes Fsm, State, Transition, Actions. The Fsm class
maintains a set of states, refers to a current state and im-
plements some default semantics of state machines, e.g., the
method receiveEvents(...) defines the dispatch mecha-
nism of events received by a state machine. State instances
maintain a set of outgoing transitions and may have an
on_entry action and implement the state semantics. For
instance, the method handleEvent(...) defines the state
event handling mechanism. A Transition points to the
next state. The fire(...) method is called whenever a
transition is selected. The class Action encapsulates a set of
domain-specific actions; the semantics of an action execution
is encoded in the doIt method. Finally, the syntactic lan-
guage interface is implemented in class StateMachineDSML.
There is a method in StateMachineDSML for each keyword in
the DSML. When called, these methods instantiate domain
objects.

Listing 3 shows an excerpt of an embedded DSML pro-
gram for state machines. The DSML program is contained
in the closure dslPackage (cf. line 3) which is configured in
line 22 to have an instance of StateMachineDSML as its dele-
gate and whose evaluation starts at line 24. The evaluation
is performed in two steps.

The first step transforms the textual DSML program (from
line 5 to 9), embedded into the host language syntax, to
a representation as a network of interrelated domain ob-
jects (instances of the domain classes from the metamodel,
e.g., the instance MyFsm of class Fsm). During the execu-
tion of the closure, keywords, e.g. fsm, state, and when,
are encountered in the DSML program. These keywords
are turned into method calls due to the flexible syntax of
Groovy. When using curly brackets at the end of a key-
word method call, Groovy creates a closure and passes the
closure to the method call as the last parameter. For in-
stance, the program segment fsm ’MyFsm’, {...} is turned

1 // this closure contains
2 // the DSML program + adaptations
3 def dslPackage = {
4 // the DSML program
5 fsm ’MyFsm’, {
6 state ’S1’, { ... }
7 ...
8 state ’SX’, { ... }
9 }
10

11 // will execute the DSML program
12 // when the closure dslPackage is called
13 // with the event list passed as a parameter
14 MyFsm.execute({’ok’,’error’,...})
15 }
16

17 // in Groovy a delegate is
18 // the interpretation context for closures
19 // we set the interpretation context for dslPackage
20 // to be the default interpreter for state machines
21 dslPackage.delegate =
22 new de.tud.statemachine.StateMachineDSML()
23

24 dslPackage(); // evaluates the closure

Listing 3: State Machine Embedded in Groovy

aDomainObj:
DomainClass

x:MetaObject

barImpl:Operation

fooImpl1:Operation

<<meta-object>>

<<impl>>

<<impl>>

foo()
bar()

DomainClass:Class
<<meta-object>>

<<instance of>>

Figure 3: A Meta-Level for Domain Objects

into a method call of the form fsm(’MyFsm’, closure-in-

brackets) with the dslPackage closure as the receiver. These
calls are dispatched to closure’s delegate, in this case a StateMa-

chineDSML, of which the method with the corresponding key-
word name and signature is called. These methods serve
mostly as factories of domain objects. The second step, in
line 14, is the execution of the DSML program as a method
call to a domain object (resp. MyFsm and execute), given
a specific execution context ({’ok’,’error’,...}). This
triggers a cascade of method calls on domain objects cre-
ated during the first step.

3.3 How to Support Late Semantic Adapta-
tions in DSMLs

In the following, we explain how to use meta-objects to en-
able late semantic adaptations. The meta-level introduced
by our method is schematically depicted in Figure 3. Every
domain type is mapped to a domain class A domain class,
e.g., DomainClass in Figure 3, defines the domain operations
of its instances – the domain objects, e.g., aDomainObj. The
semantics of domain objects is reified in meta-objects, which
are responsible for handling the execution of domain opera-
tions. Every domain class is associated with a meta-object,
which is the default meta-object of any new instance of the
domain class. Meta-objects, e.g., x in Figure 3, dispatch
method calls received by domain objects to concrete imple-
mentations of domain operations. The links meta-object

and/or impl can be changed at runtime, which is the key to
allow dynamic semantic adaptations.

A:Class

x:MetaObject

a:A

<<default>>
New instances
have default
semantics

A:Class

x:MetaObject y:MetaObject

b:A

New instances
have adapted
semantics

(D
1.a

) D
om

ain
 Ty

pe
Se

ma
nti

c A
da

pta
tio

n
before semantic adaptation after semantic adaptation

c:A

x:MetaObject

d:A

Both objects have
been instantiated
with the same
semantics

c:A

x:MetaObject z:MetaObject

d:A

Only b has
adapted
semantics

(D
1.b

) D
om

ain
 O

bje
ct

Se
ma

nti
c A

da
pta

tio
n

Figure 4: Dimension 1 – Scope of Variability

a:A

foo()
bar()

x:MetaObject barImpl:Operation

fooImpl1:Operation

(D
2.a

) D
om

ain
-op

era
tio

n l
ev

el before semantic adaptation after semantic adaptation

(D
2.b

) M
od

ule
 le

ve
l

fooImpl2:Operation

a:A

foo()
bar()

y:MetaObject barImpl:Operation

fooImpl1:Operation

fooImpl2:Operation

a:A

foo()
bar()

x:MetaObject
fooImpl2:Operation

fooImpl1:Operation

barImpl1:Operation

a:A

foo()
bar()

z:MetaObject

barImpl2:Operation

fooImpl2:Operation

fooImpl1:Operation

barImpl1:Operation

barImpl2:Operation

semantic module

...

Figure 5: Dimension 2 – Granularity of Changes

Our base embedding method in Groovy presented above
supports this meta-level: 1) all domain classes are Groovy
classes whose semantics can be modified at runtime; 2) all
domain objects are Groovy objects, and the corresponding
meta-object can be changed for a single instance only.

3.3.1 Scope of Variability
Figure 4 shows how the two kinds of variability with re-

gard to the scope dimension – domain type versus domain
object – are supported in the proposed meta-level.

The upper part shows the effects of semantic adaptations
whose scope is an entire domain type; the lower part corre-
sponds to an adaptation that is specifically scoped for a par-
ticular domain object, thus, only domain objects are shown
there. Both parts show the relation between domain types
and domain objects to their corresponding semantics (encap-
sulated in a meta-object) before and after the adaptation.

In the upper left quadrant, the domain type A is bound
to the default semantics represented by the meta-object x.
Every new domain object that is created, e.g., a, runs under
the default semantics. The semantic adaptation defines new
semantics for domain type A. In the upper right quadrant,
a new meta-object y is defined to represent the new seman-
tics and A is associated with it. Any domain object created
subsequently runs under the new semantics: the domain ob-
ject b is created after the adaptation, hence, it is linked to
the new meta-object y. Objects that were created before
the semantic adaptation continue to run under the previous
semantics, e.g., a is still linked to the meta-object x.

In the lower left quadrant, the domain objects c and d are
created with the same semantics. The object-level semantic
adaptation depicted here modifies the semantics of d only.
The lower right quadrant shows the domain objects, meta-
objects, and their relations after the semantic adaptation
has taken place. While c keeps the former semantics, d uses
the new semantics represented by meta-object z.

3.3.2 Granularity of Changes
Figure 5 depicts how adaptations at different levels of

granularity are also supported by the proposed meta-level.
The upper part shows the most fine-grained semantic adap-
tation at the level of an atomic domain operation. Unlike
figure 4, the meta-objects are represented along with the do-
main operations. Doing so, we can highlight that the adap-
tation can separately impact a particular operation. In the
upper left quadrant, the object a is attached to meta-object
x; in the upper right quadrant, the same object is attached
to a new meta-object y, which is the result of cloning x

and binding foo to a new implementation, called fooImpl2.
This way, the whole default semantics gets reused except the
re-bound domain operation(s).

In general, it is likely that a semantic adaptation affects
several places in the default implementation of the seman-
tics. Obviously, it is preferable to apply the changes together
as a unit of semantic adaptation. In contrast to the atomic
adaptation at the level of a single domain operation, in this
case the changes have to be packed into a bigger variability
unit. This abstract unit is depicted as the gray rectangle
in the lower left part of figure 5. When an adaptation hap-
pens, all changes of this adaptation unit are performed in
concert. The impacted domain objects are then bound to
a new meta-object, which is the result of mixing the previ-
ous meta-object and the semantic adaptation unit. In figure

Interpreter

a:A

z:MetaObject

<<create>>

call a domain operation

adapt domain operations

<<create>>

Domain object a is
bound to the default
meta-object x

Domain object a
will execute under
default semantics
of x

call a domain operation
Domain object a
will execute under
the semantics of z

replace <<meta-object>> link

Figure 6: Context-Dependent Semantic Adaptation

5, after the change, the domain object a is attached to the
meta-object z, which binds both foo and bar to new imple-
mentations.

3.3.3 Relation to DSML Execution
Semantic adaptations may occur at loading time or at

runtime of DSML programs. Figure 6 depicts the sequence
diagram of context-dependent semantic adaptation. Nor-
mal execution and semantic adaptation are interlaced. After
loading DSML program the first execution phase starts. In
this phase, while executing the DSML program and when
entering a context that requires a semantic adaptation, a
special phase is started that consists of applying seman-
tic adaptations onto domain objects (respectively domain
types). At the end of the adaptation phase, control is passed
back to DSML execution. The subsequent execution phase
will run under the new tailored semantics. It is worth men-
tioning that several adaptation phases can be executed, e.g.,
the adaptation can be reverted or other semantics can be in-
stalled.

4. APPLYING THE METHOD
This section discusses an implementation of a DSML for

finite state machines (FSM DSML) using the method de-
scribed in section 3. We show why the DSML interpreter
supports semantic adaptations and how to implement them
in at the level of DSML programs.

4.1 Possible Semantic Adaptations for the FSM
DSML

The UML specification [25] discusses several semantic adap-
tations for state machines. We consider here two of them.

4.1.1 Synchronous vs. asynchronous event handling.
Listing 4 shows two possible implementations of State’s

domain operation handleEvent. The first implementation is
the default one and encodes synchronous event handling; the
second implementation supports asynchronous event han-
dling.

1 // default: synchronous event handling
2 def handleEvent(Event e) {
3 this.fsm.currentState =
4 this.transitionSelection(e).fire()
5 }
6

7 // alternative: asynchronous event handling
8 def handleEvent(Event e) {
9 if (this.queue.isEmpty) {
10 this.fsm.currentState =
11 this.transitionSelection(e).fire()
12 } else {
13 this.fsm.queue.add(e)
14 }
15 }

Listing 4: Two Implementations of handleEvent

1 // default semantics: deterministic transition selection
2 def transitionSelection(Event e) {
3 return this.transitions.findAll(event).first
4 }
5

6 // alternative semantics: random transition selection
7 def transitionSelection(Event e) {
8 return this.transitions.findAll(event).getRandom()
9 }

Listing 5: Two Implementations of transitionSelec-
tion

4.1.2 Deterministic vs. random transition selections.
A given state of a state machine can have several transi-

tions matching a given event. In this case, a state machine
implementation has to provide a transition selection policy.
Following our method, the semantics of transition selection
is encoded in the transitionSelection method of the do-
main class State. Listing 5 shows two possible implementa-
tions of transitionSelection. The default implementation
of the transition selection policy is a deterministic one. It
returns the first element of the collection of matched tran-
sitions. The alternative implementation selects a random
item in the collection of matched transitions for a fairer load-
balancing.

The following sub-sections will discuss scenarios of using
our method to apply alternative semantics for event han-
dling and transition selection thereby varying the kind of
adaptation along the three dimensions discussed previously.
Section 4.3, specifically, will discuss how to combine several
variation points in one semantic module; for instance, how
to use the tailored version of both handleEvent and tran-

sitionSelection in a concise and elegant manner.

4.2 Scope of Adaptations
Listing 6 shows the implementation of the first dimension

presented in section 3.3.1.
Listing 6 illustrates domain type semantic adaptation.

The module dslPackage (lines 5-9) is a Groovy closure,
which consists of three parts: (a) the declaration of a DSML
program (lines 5 to 9), (b) a piece of meta-program that tai-
lors the semantics of the DSML (lines 17 to 19), and (c) a
piece of code that starts the execution of the DSML program
(line 26). Parts (a) and (c) have been explained in 3.2. The
adaptation consists in changing the transitionSelection

method of the default state meta-object in line 17. As ex-
plained earlier, all instances of class State are affected by

1 // this closure contains the DSML package
2 // (DSML program + adaptations)
3 def dslPackage = {
4 // the DSML program
5 fsm ’MyFsm’, {
6 state ’S1’, { ... }
7 ...
8 state ’SX’, { ... }
9 }
10

11 // adaptation of the default semantics
12 // of the domain class State
13 // by replacing the implementation of
14 // the transitionSelection method
15 // of the default meta−object associated
16 // with the State class
17 State.metaClass.transitionSelection = { event ->
18 return this.transitions.findAll(event).last
19 }
20

21 // executing the DSML program
22 MyFsm.execute({’ok’,’error’,...})
23 }
24 dslPackage.delegate =
25 new de.tud.statemachine.StateMachineDSML()
26 dslPackage();

Listing 6: Domain Type Semantic Adaptation

this kind of adaptation and will execute with the tailored
transition selection semantics.

For sake of space, we cannot elaborate on a complete
DSML program that performs a semantic adaptation at the
level of a single domain object. The code is similar to that
in listing 6, except that it is not the metaClass of class
State (line 17) that is changed but the metaClass of a do-
main object. For example, we can change the meta-object
of S1 using MyFsm.S1.metaClass.transitionSelection =

{...} .

4.3 Granularity of Adaptations
This section illustrates the second semantic dimension,

presented in section 3.3.2. On the one extreme in this dimen-
sion, a semantic adaptation affects a single domain method;
on the other extreme, a semantic adaptation may imply the
construction of a completely new meta-object.

Listing 7 shows DSML code that is embedded similarly
to listing 6. It focuses on the adaptation in lines 7 to 10.
The only element that is changed is a domain method of a
domain class.

On the contrary, listing 8 shows the creation of a seman-
tic module and its use for tailoring the semantics of a do-
main class. Similarly to using classes to represent domain
types, we use a new subclass for modularizing alternative
semantics for a domain type. In the example, lines 2–9 de-
fine such a subclass called TailoredState. Subclassing a
domain type to create a new meta-object allows leveraging
two key Groovy features used in listing 8:

1. The possibility to attach new semantics to an existing
domain class, using a registry mechanism (line 13).

2. The automatic creation of a meta-object for each new
class (line 14).

A meta-object for the new subclass is automatically cre-
ated and stored in the class variable TailoredState.meta-

Class. In listing 8 lines 13–14, we register this meta-object

1 fsm ’MyFsm’, {
2 ...
3 }
4

5 // we tailor only transition selection
6 // part of the semantics of States
7 State.metaClass.transitionSelection = {
8 event ->
9 return this.transitions.findAll(event).last
10 }
11 // executing the DSML program
12 MyFsm.execute({’ok’,’error’,...})

Listing 7: Method-Level Adaptation

1 // we use classes for modularizing the semantics
2 class TailoredState extends State {
3 def transitionSelection(event) {
4 /∗ cf. variation point transitionSelection ∗/
5 }
6 def handleEvent(event) {
7 /∗ cf. variation point handleEvent ∗/
8 }
9 }
10

11 // we tailor the semantics of State in one unit
12 // for both event handling and transition selection
13 InvokerHelper.metaRegistry.setMetaClass(State,
14 TailoredState.metaClass)
15 // executing the DSML program
16 MyFsm.execute({’ok’,’error’,...})

Listing 8: Semantic Module Adaptation

also for the State class. As a consequence, the domain op-
eration implementations of TailoredState will be used for
State objects.

4.4 Moment of Adaptations
As shown figure 1, a pre-execution adaptation is simply a

piece of code preceding the DSML program that changes the
semantics of the language itself. While our method enables
such adaptations, for sake of space, we cannot elaborate on
them.

We now present a complete example of a semantic adap-
tation that occurs during the execution of a DSML program,
i.e. a context-dependent adaptation. Consider now the self-
adaptive DSML program in listing 9. This DSML program
is a state machine representing a Web service composition
for a travel booking process. The machine consists of two
states, first booking a flight and second booking a hotel. In
both states, a call to a Web service is made in the on_entry

blocks. States transitions are triggered by the reception of
Web service responses.

This program is self-adaptive since it is able to recover
from failing synchronous partners, thanks to our FSM DSML
which supports semantic adaptations: the TravelPackage

program is able:

1. to handle the error event in the BookingFlight state
(line 12);

2. to replace the failing partner whith an asynchronous
one (line 14)

3. to adapt itself to the new webservice by changing the
event reception semantics of the DSML only for state
BookingFlight in order to listen to asynchronous events
(lines 12–21).

1 def dslPackage = {
2 // declaration of the DSML program
3 fsm ’TravelPackage’, {
4 state ’BookingFlight’, {
5 on_entry {
6 /∗ synchronous call to flight webservice ∗/ }
7

8 // nominal mode
9 when ’done’, { enter ’BookingHotel’}
10

11 // error recovery mode
12 when ’error’, {
13 // change to an asynchronous webservice
14 targetService = ”another flight webservice”
15 // and we have to change the semantics too
16 this.metaClass.handleEvent = { event ->
17 /∗ new asynchronous implementation ∗/
18 }
19 // re−enter current state
20 enter ’BookingFlight’
21 } // end when
22 } // end state
23

24 state ’BookingHotel’, {
25 on_entry {
26 /∗ synchronous call to hotel webservice ∗/ }
27 }
28 }
29 }
30

31 // executing the DSML program
32 TravelPackage.execute({’ok’,’error’,’done’,...})
33 }
34 dslPackage.delegate =
35 new de.tud.statemachine.StateMachineDSML()
36 dslPackage();

Listing 9: Context-Dependent Adaptation

In such cases, the semantic adaptation code becomes part
of the code of the DSML program and the adaptation logic
is executed only when DSML execution reaches the lines 12–
21.

In this section, we have presented an instantiation of our
method as a proof of concept that has shown its real imple-
mentability. From the viewpoint of end-users of our method,
i.e. DSML designers, this section is fully complementary to
the conceptual presentation of our method in sections 2 and
3 and enables them to implement on their own a DSML that
supports late semantic adaptations.

5. RELATED WORK

Domain-Specific Languages.
The implementation of DSMLs using “traditional, closed”

compilers (e.g. [1]) does not allow semantic adaptations.
In contrast, extensible compilers, such as Polyglot [24] or
JastAdd [13, 8], target semantic adaptations of the form of
extensions to Java language. Akesson et al. [33] address the
implementation of extensible DSMLs. However, extensible
compilers do not support all the semantic adaptation dimen-
sions discussed in this paper. Only class-level adaptations
are supported, in the sense that the adaptation granularity
is the class as well as in the sense that all domain objects are
executed under the same semantics. Furthermore, dynamic
semantic adaptation that depends on application execution
state is not supported. Last but not least, the application
adaptation are very different as opposed to our approach,
where – due to using the language embedding technology –

the same language is used for implementing an application
and the semantics of the DSML.

Our approach follows the domain virtual machine pattern
[9], i.e., it is a DSML interpreter realized by a set of domain
classes implementing the domain semantics in their meth-
ods. Kermeta [23] is a language to implement DSML inter-
preters following the domain virtual machine pattern. How-
ever, our domain classes are embedded into a host language
which allows to seamlessly integrate DSML programs and
programmatic semantic adaptations. More importantly, our
approach supports non-invasive, application-specific, and even
execution context specific semantic adaptations.

Steele [28] proposes to build interpreters out of a set of
building blocks called pseudomonads, in reference to Haskell
monads [32]. Achieving a semantic adaptation can be done
by composing interpreters. Comparing to our method, the
DSML programmer has to understand not only the inter-
preter of the DSML but also the composition operator of
pseudomonads.

Ramsey [26] described the implementation of the Lua script-
ing language as an embedded interpreter in Objective Caml.
While Ramsey implements a general-purpose language (Lua)
interpreter, our approach targets domain-specific interpreters
in order to design them as extensible.

The initial method of embedding DSMLs by Hudak [15]
does not consider the issue of semantic adaptations. Simi-
lar to our work, polymorphic embedding [14] enables several
interpretations of a DSML program by employing a similar
architecture for the DSML implementation that separates
the language interface and the domain metamodel. How-
ever, polymorphic embedding does not support a meta-level
architecture allowing DSML programs to change their se-
mantics in a fine-grained and application context-specific
manner during their execution.

Reflection and Meta-Object Protocols.
Meta-interfaces have been implemented for various lan-

guages, e.g., 3-KRS [21], CLOS [17], Smalltalk [10]. Meta-
object protocols (MOPs) provide “interfaces to the language
that give users the ability to incrementally modify the lan-
guage’s behavior and implementation” [17]. MOPs are open
implementations [16] of (object-oriented) general-purpose lan-
guages. Compile-time MOPs have been provided for pop-
ular compiled languages OpenC++ [4] and OpenJava [29].
MOPs have been adopted in dynamic scripting languages,
such as Ruby [27] and Groovy [5]. Using the above MOPs
for extending DSML semantics have not been addressed.

There are no methods for DSML implementation avail-
able, that derive a MOP for the implemented DSML. The
approach proposed in this paper is generic for class-based
languages. Other dynamic languages that come with a MOP
can be used to provide a flexible DSML semantics as pre-
sented in this paper.

xPico [11] allows to extend the syntax and semantics even
at runtime by reflectively manipulating the AST at well-
defined adaptation points. The idea to use reflection and
the targeted flexibility is similar to our approach. Although
xPico allows syntactic variability, the semantic adaptation
of xPico is limited, as explicit adaptation points must be de-
fined to allow extensibility. The problem with the xPico ap-
proach is that it does not provide an adequate meta-interface
and provides only access to the AST but not to domain ab-
stractions. However when implementing a DSML for multi-

ple users, it is impossible to envision every adaptation point
at design-time of the DSML semantics. On the contrary,
our approach permits unanticipated adaptation points, i.e.,
every domain class method is a latent adaptation point.

A domain-specific meta-object protocol for distributed en-
vironment, called diMOP, has been presented in [20]. This
design-time MOP is used to specify behavioral characteris-
tics, such as non-functional concerns, at the design level in
extended UML diagrams. However, the focus of this paper
is the language level and executable meta-objects. The idea
of having a domain-specific meta-object protocol is an inter-
esting one. The diMOP is only a MOP for one domain, while
every DSML implemented following our approach exposes a
domain-specific MOP.

6. SUMMARY AND FUTURE WORK
In this paper, we have presented a method for implement-

ing DSMLs that support semantic adaptations that may be
application-specific and may occur as late as during the ex-
ecution of DSML programs. The proposal leverages meta-
objects [16] in the context of domain-specific modeling lan-
guages. Also, we have elaborated on an instantiation of the
method in the Groovy programming language in the context
of state machines. Although not shown in this paper, our
solution is applicable for DSMLs with more complex sets of
domain concepts (and language constructs), such as work-
flow languages, aspect languages, and others [6, 7].

As usual for dynamic approaches, there is a trade-off be-
tween adaptability and statically checked correctness. Our
approach supports a maximal adaptability and may suffer
from possible correctness issues. For instance, DSML pro-
grammers who override part of the default DSML semantics
might violate contracts and responsibilities that are implicit
in the DSML design. These limitations will be addressed
in future work. For instance, semantic adaptations may re-
quire adaptations in several domain classes and operations
performed in concert. Our future work will also explore ex-
plicit contracts that can be checked at runtime to ensure the
semantic consistency of adaptations.

7. REFERENCES
[1] D. Batory, B. Lofaso, and Y. Smaragdakis. Jts: Tools

for implementing domain-specific languages. In
Conference on Software Reuse, pages 143–53, 1998.

[2] A. Charfi, T. Dinkelaker, and M. Mezini. A Plug-in
Architecture for Self-Adaptive Web Service
Compositions. In Proceedings of the 2009 IEEE
International Conference on Web Services, pages
35–42. IEEE Computer Society, 2009.

[3] F. Chauvel and J.-M. Jézéquel. Code Generation from
UML Models with Semantic Variations Points. In
L. Briand and C. Williams, editors, UML MoDELs,
volume 3713 of LNCS, pages 54–68, Montego Bay,
Jamaica, October 2005. Springer Verlag.

[4] S. Chiba. A metaobject protocol for C++. In
OOPSLA, pages 285–299. ACM Press New York, NY,
USA, 1995.

[5] Codehaus. The Groovy Home Page.
http://groovy.codehaus.org/.

[6] T. Dinkelaker. Versatile language semantics with
reflective embedding. In Proceedings of the 2009
OOPSLA Doctoral Symposium, 2009.

http://groovy.codehaus.org/

[7] T. Dinkelaker, M. Eichberg, and M. Mezini. An
architecture for composing embedded domain-specific
languages. In Proceedings of AOSD, 2010.

[8] T. Ekman and G. Hedin. The jastadd extensible java
compiler. In Proceedings of OOPSLA’2007, 2007.

[9] J. Estublier, G. Vega, and A. D. Ionita. Composing
domain-specific languages for wide-scope software
engineering applications. In Proceedings of
MODELS/UML, 2005.

[10] A. Goldberg and D. Robson. Smalltalk-80: the
language and its implementation. Addison-Wesley,
Boston, MA, USA, 1983.

[11] S. Gonzalez, W. De Meuter, and V. Brussel.
Domain-Specific Language Definition Through
Reflective Extensible Language Kernels. In Workshop
on Reflectively Extensible Programming Languages and
Systems (at GPCE), 2003.

[12] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification Second Edition.
Addison-Wesley, Boston, Mass, 2000.

[13] G. Hedin and E. Magnusson. JastAddŮan
aspect-oriented compiler construction system. Science
of Computer Programming, 47(1):37–58, 2003.

[14] C. Hofer, K. Ostermann, T. Rendel, and A. Moors.
Polymorphic embedding of DSLs. In Generative
Programming and Component Engineering
(GPCE’08), pages 137–148. ACM New York, NY,
USA, 2008.

[15] P. Hudak. Modular domain specific languages and
tools. In P. Devanbu and J. Poulin, editors,
Proceedings: Fifth International Conference on
Software Reuse, pages 134–142. IEEE Computer
Society Press, 1998.

[16] G. Kiczales. Beyond the Black Box: Open
Implementation. IEEE Software, 13(1):8–11, 1996.

[17] G. Kiczales, J. d. Rivières, and D. G. Bobrow. The
Art of the Metaobject Protocol. MIT Press,
Cambridge, MA, 1991.

[18] D. König and A. Glover. Groovy in Action. Manning,
2007.

[19] T. Kosar, P. Mart́ınez López, P. Barrientos, and
M. Mernik. A preliminary study on various
implementation approaches of domain-specific
language. Information and software technology,
50(5):390–405, 2008.

[20] J. Lee, S. Min, and D. Bae. Aspect-Oriented Design
(AOD) Technique for Developing Distributed
Object-Oriented Systems over the Internet. In
International Computer Science Conference. Springer,
1999.

[21] P. Maes. Computational Reflection. PhD thesis, Vrije
Universiteit Brussel, 1987.

[22] M. Mernik and A. Sloane. When and how to develop
domain-specific languages. ACM Computing Surveys
(CSUR), 37(4):316–344, 2005.

[23] P. A. Muller, F. Fleurey, and J. M. Jézéquel. Weaving
executability into object-oriented meta-languages. In
Proceedings of MODELS/UML 2005, 2005.

[24] N. Nystrom, M. Clarkson, and A. Myers. Polyglot: An
extensible compiler framework for java. In Proceedings
of the 12th International Conference on Compiler
Construction, pages 138–152. Springer, 2003.

[25] OMG. UML 2.0 superstructure. Technical report,
Object Management Group, 2004.

[26] N. Ramsey. Ml module mania: A type-safe, separately
compiled, extensible interpreter. Electronic Notes in
Theoretical Computer Science, 148(2):181–209, 2006.

[27] Ruby programming language.
http://www.ruby-lang.org/.

[28] G. L. Steele. Building interpreters by composing
monads. In Proceedings of the Symposium on
Principles of Programming Languages, pages 472–492.
ACM New York, NY, USA, 1994.

[29] M. Tatsubori, S. Chiba, M. Killijian, and K. Itano.
OpenJava: A class-based macro system for Java.
Reflection and Software Engineering, 1826, 2000.

[30] A. van Deursen, P. Klint, and J. Visser.
Domain-specific languages: an annotated bibliography.
ACM SIGPLAN Notices, 35(6):26–36, 2000.

[31] J. van Gurp. Variability in software systems: the key
to software reuse. PhD thesis, Blekinge Institute of
Technology, 2000.

[32] P. Wadler. Comprehending monads. In Proceedings of
the 1990 ACM conference on LISP and functional
programming (LFP’90), pages 61–78, 1990.

[33] J. Åkesson, T. Ekman, and G. Hedin. Development of
a modelica compiler using jastadd. Electronic Notes in
Theoretical Computer Science, 203(2):117 – 131, 2008.
Workshop on Language Descriptions, Tools, and
Applications (LDTA 2007).

http://www.ruby-lang.org/

	Introduction
	Dimensions of Late Semantic Adaptations
	Scope of Variability
	Granularity of Changes
	Relation to DSML Execution

	A New Method for Implementing DSMLs
	Using Groovy to Implement DSMLs
	The Embedding of DSMLs
	How to Support Late Semantic Adaptations in DSMLs
	Scope of Variability
	Granularity of Changes
	Relation to DSML Execution

	Applying the Method
	Possible Semantic Adaptations for the FSM DSML
	Synchronous vs. asynchronous event handling.
	Deterministic vs. random transition selections.

	Scope of Adaptations
	Granularity of Adaptations
	Moment of Adaptations

	Related work
	Summary and Future Work
	References

