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ABSTRACT
Programming-language research produces a significant number of new
programming styles to improve the composability of programs. This
increases re-usability as well as other quality characteristics. But al-
though they offer interesting composition concepts, new program-
ming languages are rarely used because IDE support, which devel-
opers are used to, is missing. Examples of such IDE support are the
visualization of call hierarchies or interactive debugging. While some
languages, e.g., AspectJ, eventually reach a more mature level with
elaborate IDE integration, not all language designers are able to invest
this much effort towards IDE integration. Furthermore, the IDE inte-
gration of AspectJ also has its limitations; when debugging, the devel-
oper is confronted with synthetic code with no exact correspondence
in the source code. As a result, the developer needs to understand the
transformations performed by the compiler. Finally, some informa-
tion invariably gets lost during weaving, e.g., the ability to map code
evaluating pointcut designators to their definition in the source code.

In this paper, we propose to implement generic IDE tools for pro-
gramming languages that provide advanced dispatching mechanisms.
Such languages, including predicate dispatching and pointcut-advice
languages, can be mapped to our execution model, called ALIA. The
same execution model can then drive debugging functionality as well
as static IDE services.

1. INTRODUCTION
In order to improve the modularity of source code, research strives

to define new composition mechanisms, often in terms of new lan-
guages. Many such languages provide composition mechanisms by
allowing to influence the dispatch of, e.g., method calls, like in multi-
ple dispatching [9] or predicate dispatching [14]. But other composi-
tion styles can be mapped to a dispatching-based execution model as
well, as we have shown [5] for pointcut-advice languages [15], Com-
position Filters [12], and a DSL for composing objects following the
Decorator design pattern.

Usually, advanced dispatching mechanisms are provided as an ex-
tension of an existing programming language, the so-called base lan-
guage, and the semantics of the advanced program features are re-
alized by transforming them to the base language’s imperative code.
We have shown [5] that the dispatching mechanisms of all these lan-

.

guages share concepts from several broad categories: selection of
call sites based on syntactic properties, access to the runtime state
in which they are executed, evaluation of functions over the runtime
state to select from alternative meanings, declaration of meaning in
terms of actions on the runtime state, and description of relationships
between applicable actions. Each language uses some extension of
each core concept and the concrete concepts used in different lan-
guages often overlap.

Similarly, the requirements for IDE support of such languages over-
lap. Different kinds of support for the development in the investigated
languages are recurring, but have to be implemented from scratch for
each language. As a result, the IDE support for new languages is typ-
ically limited, as more effort is spent on the design of the language
and the implementation of compilers than on the language’s IDE inte-
gration. In the following, we discuss a few examples of IDE support
from which all investigated languages can benefit.

Among the investigated languages, the aspect-oriented ones sup-
port implicit invocation. It thus is desirable to let the IDE visualize the
places in the code at which other code may be (implicitly) the target
of dispatch. To this end, the IDE support for the AspectJ language, the
AspectJ Development Tools (AJDT), provides different ways of visu-
alizing such relations. However, even for languages with only explicit
invocation, similar IDE support is present. The Eclipse Java Develop-
ment Tools (JDT) allow, e.g., to search for all call sites of a method,
or to show the possible targets of a call site. It should be noted that,
while calls must be explicit in Java, they can be virtual and multiple
implementations may be applicable. The potential targets depend on
the inheritance hierarchy, which may be too complex for the devel-
oper to grasp in its entirety. IDE support is therefore essential. The
same observation holds for predicate-dispatching languages.

All investigated languages can be compiled to pure Java bytecode
and can run on a standard JVM. Therefore, the default debugger of
the IDE can be used to debug programs written in those languages.
What is debugged, however, is the program after the transformation.
Consequently, the developer is facing large amounts of infrastructural
code that has been inserted by the compiler to realize the semantics
and will often end up stepping through code for which no source code
exists, which makes it even harder to understand. Another difficulty is
that the Java debugger assumes that all code of a class was compiled
from a single source file, but with new composition mechanisms this
assumption may no longer hold: one class may be composed of multi-
ple source files. Compilers merge all files into one; thus, the mapping
from target code to the source code is lost and cannot be used by the
debugger anymore.

We have provided an architecture for implementing advanced-dis-
patching languages in a way that they can share the implementation
of overlapping concepts [5]; it is called the Advanced-dispatching
Language-Implementation Architecture (ALIA) and consists of a lan-
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Figure 1: Overview of the application life cycle in ALIA4J-based language implementations.

guage-independent meta-model of advanced dispatching concepts and
any number of execution environments that process models conform-
ing to this single meta-model. For languages extending Java we have
implemented this architecture, called ALIA for Java (ALIA4J), which
furthermore provides a framework factoring out shared components
of such execution environments.

In this position paper, we will discuss how ALIA’s meta-model,
more specifically its implementation in ALIA4J, and the framework
for execution environments can be used to provide a generic infras-
tructure for IDE support of advanced-dispatching languages.

2. THE ALIA ARCHITECTURE FOR JAVA
In ALIA4J, the meta-model stipulated by ALIA is embodied in the

Language-Independent Advanced-dispatching Meta-model (LIAM).
LIAM hereby acts as the form of intermediate representation for ad-
vanced dispatching in programs. The actual intermediate representa-
tion, in turn, is a model conforming this meta-model (the so-called
LIAM model). Code of the program not using advanced dispatching
mechanisms is represented in its conventional Java bytecode form.
The Framework for Implementing Advanced-dispatching Languages (FIAL)
implements common components and work flows required to imple-
ment execution environments based on a JVM for executing LIAM
models. A brief overview, of the approach can be found in [7]1.

Figure 1 shows an overview of the ALIA4J approach. Concretely,
the flow of compiling and executing applications in this approach is
shown. The compiler 1 starts processing the source code; a dedi-
cated importer component 2 adapts the compiler’s output to a model
for the advanced dispatch declarations in the program 3 based on the
refined subclasses 4 of the LIAM meta-entities 5 . Furthermore, the
compiler produces an intermediate representation of those parts of the
program that are expressible in the base language 6 alone.

The nine meta-entities of LIAM capture the core concepts under-
lying the various dispatching mechanisms, but at a finer granularity
than the concrete concepts found in high-level languages; one con-
crete concept often maps to a combination of LIAM’s core concepts.
Figure 2 shows the meta-entities in LIAM, which are implemented
as abstract classes. Attachment, specialization, and predicate are an
exception to this rule, i.e., they are concrete classes, as they provide
logical groupings of entities of the meta-model and cannot be refined.
The meta-entities are discussed in detail in [5, Chapter 3.2]2.

In short, an attachment corresponds to a unit of dispatch descrip-
tion. In terms of aspect-orientation (AO), this is a pointcut-advice

1Some details presented in [7] are outdated, but it may nevertheless
act as an introduction to the basic concepts.
2There, some meta-entities are named differently, but the structure of
the meta-entities is the same. Therefore, the interested reader will be
able to map the discussion to the new names.
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Figure 2: Entities of the Language-Independent Advanced-
dispatching Meta-Model (LIAM) as UML class diagram.

pair, in terms of predicate dispatching, an attachment corresponds to
a predicate method. Action specifies an action to which the dispatch
may lead (e.g., an advice or the predicate-method body). Special-
ization defines static and dynamic properties affecting dispatch: pat-
terns specify syntactic properties of call sites which are affected by
the declared dispatch; predicate and atomic predicate entities model
dynamic properties a dispatch depends on (dynamic pointcut desig-
nators in AO terminology). Context entities model access to values in
the context of a dispatch, like the calling object or argument values.
Finally, the schedule information models constraints between multi-
ple actions applicable at the same generic-function call. This includes
the order of their execution, as well as relations like mutual exclusion.

At runtime, FIAL derives a dispatch model for each dispatch site
in the program from all attachments that have been defined. Thereby,
FIAL solves the constraints specified as schedule information and de-
rives a single dispatch function per call site from the predicates of
all specializations. This function is represented as a binary decision
diagram (BDD) [8], where the inner nodes are the atomic predicates
used in the predicate definitions and the leaf nodes are labeled with
the actions to be executed. For each possible result of dispatch, the
BDD has one leaf node. Figure 3 shows an example of such a dis-
patch model with the atomic predicates x1 and x2 and the actions y1

and y2. For a detailed explanation of this model, we refer the reader
to [18].

The dispatch model is defined in such a way that an execution strat-
egy can immediately be derived from it. The default execution strat-
egy requires that each concrete entity implementation provides a Java
method implementing its semantics. It is possible to override the de-
fault strategy and implement an optimization strategy on a per atomic
predicate basis, in a modular way. These strategies are extensively
discussed in [5].

The approach allows to implement new concrete concepts modu-
larly by refining the abstract class of a meta-entity. We have already
shown how to map the languages AspectJ, JAsCo, Compose*, Cae-
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Figure 3: A dispatch function’s evaluation strategy.

sarJ, and a simple domain-specific language to our meta-model [5].
By now, we have also developed mappings for the languages Mul-
tiJava [10], JPred [16], and ConSpec [4], which are, however, still
unpublished work.

Important for the present paper is the fact that all concrete concepts
participating in a dispatch are expressed in a declarative and fine-
grained model. This model can thus be used to derive information
relevant to the different services of an IDE. Furthermore, the model
stays first-class during the execution of a program and can therefore
easily support dynamic features of an IDE, e.g., debugging, profiling,
or testing.

3. ALIA4J-BASED IDE SUPPORT
So far, we have implemented a limited IDE integration for the

ALIA4J mapping of AspectJ language. However, we aim at making
this support more general and support other languages, too. More-
over, we aim at filling the gaps in our IDE support.

3.1 Cross References for AspectJ
For the AspectJ language, we have implemented a nearly complete

integration with our architecture. All necessary LIAM entities are
implemented and we have developed an automatic importer compo-
nent which allows to execute AspectJ programs on an FIAL-based
execution environment while developing it in the standard AJDT. The
benefit of this integration is that some FIAL-based execution envi-
ronments perform sophisticated dynamic optimizations which make
AspectJ programs execute faster than the product of the standard com-
piler [6].

Because we bypass the weaving phase of the AspectJ compiler in
this approach, pointcuts are not evaluated at compile time anymore.
Thus, the compiler also cannot determine the crosscutting structure
of the aspects which would normally be used by the IDE to show,
e.g., in the “Cross References” view, or which would be used to facil-
itate navigation between advised join point shadows and their advice,
as depicted in Figure 4. To restore the accustomed functionality, we
have developed an extension to the AJDT that provides the crosscut-
ting structure when compiling AspectJ applications for execution on a
FIAL-based execution environment, i.e., without compile-time weav-
ing. This comprises an instantiation of the FIAL framework which is,
however, not integrated in a Java Virtual Machine like a full-fledged
FIAL-based execution environment. Instead of providing FIAL with
dynamic information about generic-function calls, it provides static
approximations of call sites. Our framework then evaluates all pat-
terns in the LIAM models of the AspectJ project and builds the dis-
patch model for each call site. Afterwards, for dispatch models which
are not trivial, i.e., where no advice is attached, the links are estab-
lished in AJDT’s abstract structure model.

To support this work, the LIAM meta-entities are extended to also
store the location in the source code where they are defined. This is
similar to the debug information present in Java bytecode. This de-
bug information facilitates recovery of the file name and line number

Figure 4: Linking of pointcut-advice and advised locations in
AJDT.

whose compilation has lead to a bytecode instruction, respectively in
the case of LIAM to a model entity. The builder uses this informa-
tion to establish links between source locations, as is stipulated by the
AJDT abstract structure model.

In the current version, input is hard-wired to the AspectJ compiler’s
output. But since our architecture already provides a plug-in mech-
anism to provide input in different formats, a straight-forward exten-
sion is to use this mechanism. Then, the same support can be provided
for any language that can be mapped to our approach.

While the above AJDT extension shows the feasibility of building
static tool support based on our ALIA approach, we do not aim to
extend the AJDT in our future research work. Instead, we will re-
implement similar support, including an AJDT-like structure model
and related views, by directly extending the Java Development Tools
(JDT). This is necessary because the AJDT and the structure model
are hard-linked to the AspectJ compiler, a dependency that we would
rather avoid. Furthermore, we have already outlined that there are
commonalities between the cross references view and, e.g., the call
hierarchy of methods explicitly called. Since both concepts, explicit
and implicit calls, are unified in our architecture, we like to provide
IDE support for both in the same way. The developer will benefit
from such unified tools, because he will see all contributors to a call
at the same time.

3.2 Debugging Support
The debugging support we envision will be based on the availabil-

ity of our declarative dispatch model at runtime. For example, this
makes it possible to visualize the dispatch model for a call at a break-
point. The dispatch model is complete in the sense that it specifies on
which runtime values the dispatch depends and which predicates are
evaluated on these values. While the model, naturally, only specifies
the role of values that are used (e.g., “the first argument value”), in a
debugger, also the value can be shown. This is already done by mod-
ern debuggers, e.g., in the “Variables” view of the Eclipse debugger.
In contrast to general-purpose debuggers, our debugger for advanced
dispatch will only show values relevant for the dispatch, and associate
them to their role names.

Another contribution that results from using the ALIA approach
to enable debugging is that dispatch declarations defined in different
languages can be combined. Since all dispatch declarations (pointcut-
advice, multi-methods, etc.) are mapped to the same meta-model,
i.e., to LIAM, the actions resulting from these declarations can be



Figure 5: An idea of the GUI for generic debugging support for
multiple advanced-dispatching languages.

executed alongside. That means that, e.g., calls to multi-methods can
be advised.

Figure 5 illustrates the envisioned visualization in debugger. At the
top of the figure, three editors are shown. The editor at the left-hand
side shows Java code calling the method C.m(A) in line 7; at this line,
a breakpoint is set. At the right-hand side, the top editor shows an
AspectJ pointcut-advice and the bottom editor shows a multi-method
defined in MultiJava. Both dispatch declarations define a dynamic
constraint on the first argument: Only when this is of type B, the
advice is to be executed, respectively, the multi-method applies. In
this case, the multi-method overrides the Java method definition.

The bottom part of Figure 5 shows a possible visualization of the
(simplified) dispatch model for the call at the breakpoint. The dis-
patch function is simple and only contains one atomic predicate, which
tests the type of a context value, in the example that of the first argu-
ment. The bold elements show the path which the evaluation actu-
ally has followed. The bold solid arrow emerging from the predi-
cate indicates that it has been satisfied, therefore, the actions in the
bold box are to be executed as the dispatch’s result, i.e., the actions
Logger.before1 and handleB.m(B). If the predicate was satisfied, the
action C.m(A) would be executed.

In a graphical debugger as proposed here, the user can select and
introspect entities that participate in the dispatch at which the virtual
machine is currently suspended. In the figure, the TypePredicate is
selected. The selection in the editors showing the AspectJ and Mul-
tiJava code highlights the code which has led to this predicate in the
dispatch function. The “Variables” view shows the runtime values on
which the current selection depends, i.e., the first argument value. As
can be seen, this is an instance of B and therefore, the predicate is
satisfied.

As outlined above, the entities in the dispatch model can be linked
to multiple source locations. The result of single atomic predicates in
the dispatch function can be presented, which explains the result of
the dispatch. Potentially, it will be advantageous not to completely
evaluate the dispatch function and let the developer view the result
afterward, but to allow a step-wise evaluation of the dispatch function.
We will investigate both approaches.

3.3 Additional Ideas
The AJDT provides the developer with more detailed information

than just “these advice apply to this join-point shadow”. It already
includes additional information by specifying whether the join-point
shadow is always affected by an advice or only sometimes because
there is a dynamic pointcut designator in the matching pointcut. Also,
when showing the applicable advice, the AJDT orders them according
to their precedence.

Nevertheless, we envision to increase the provided information in
several ways. First, it is interesting to specify not only that an ad-
vice is conditional but also, what the condition is. Next, presenting a
sequential list of advice is too limited because some languages sup-
port more complex relations between advice at a join-point shadow.
AspectJ, e.g., already provides “around” advice which can be nested;
thus, a tree would be more suitable to present this information. Other
languages allow to define more complex relationships between advice
at a shared join-point shadow. Examples are mutual exclusion or con-
ditional execution in Compose*, or overriding in JPred and MultiJava.

The dispatch model, explained in some detail in the previous sub-
section, can also be made available before runtime. A visualization
of the cross references can, thus, take all information in the dispatch
model into account. This includes the exact specification of the condi-
tion under which an action is applicable at a call, dispatch declarations
sharing the call site and relationships (order, execution constraints,
etc.) among them.

Since the implementation of our architecture, i.e., FIAL and LIAM,
is very modular, it is also easily possible to make part of their im-
plementation interactive. A possible use is making pattern matching
interactive in order to debug patterns. The AJDT shows the devel-
oper in which places pointcuts match, but in some cases, developers
of pointcut-advice may wonder why a specific pointcut (respectively
the pattern used in a pointcut) does or does not match. Since the def-
inition of specializations (the equivalent to pointcuts in AspectJ) and
the call sites are available first-class in FIAL, it is possible to perform
the evaluation, e.g., for a specific call site, and show the developer
the different steps in the evaluation. This is similar to the debugging
support for dispatch functions, but can be performed before runtime.

4. RELATED WORK AND FUTURE WORK
Eaddy et al. [13] have identified several requirements for debug-

ging aspect-oriented programs. They support source-level debugging
by deferring the weaving to runtime, as in our approach. It is thus
possible to view the definition of pointcut-advice that have lead to the
execution of a specific statement. In contrast to our approach, the dis-
patch function is not represented in a structured declarative way, but
only by the imperative code resulting from the pointcut-advice defi-
nitions. Thus, the dynamic program state that has lead to executing
or not executing an advice is more difficult to determine for the de-
veloper. Furthermore, the original definition of an aspect (or dispatch
declaration) is not presented. Therefore, constraints among advice
sharing this join-point shadow are not easily visible, and, thus, cannot
be easily debugged.

Pothier et al. [17] discuss a retrospective debugging approach for
aspect-oriented programs. They record a complete execution trace
that can be inspected after the execution. While this is not the kind
of debugging that we will support, we will nevertheless take inspira-
tion from their work in order to present AO-specific visualization of
debugging information.

De Borger at al. [11] define an architecture for implementing de-
buggers for aspect-oriented languages. This architecture is based on a
structurally reflective model of aspect definitions. For each aspect that
is active during the program’s execution, its structure can be queried
by means of this model. It is possible to determine the executions of
advice, which are caused by a pointcut, including executions in the
past and in the future. Their model is meant to be an API used by a
debugger front-end and offers some infrastructure required by debug-
gers, e.g., to enable aspect-specific breakpoints.

Our underlying model is more fine-grained and provides more in-
formation: constraints among aspects like precedence are not avail-
able through the reflective API. Nevertheless, we plan to investigate
whether their work can be used as an interface for our approach. It



may be possible that our back-end, i.e., a FIAL-based execution envi-
ronment, can be used as an implementation of their API. Should we
follow this path, we aim to contribute additional functionality to the
API which can be provided by means of our back-end. Similarly, the
IDE integration of debugging that we envision, may be implementable
with their API as back-end.

The IDE Meta-tooling Platform (IMP) [2] is an Eclipse project aim-
ing at providing meta-implementations of typical IDE tools. Exam-
ples are a re-usable infrastructure for syntax highlighting, refactoring
support, semantic or static analyses, execution and debugging. Their
focus is on providing an infrastructure for the IDE integration and
the graphical user interface, but not on providing an infrastructure for
the runtime part of actual debugger implementations. Nevertheless,
we will consider to integrate our work with this project. Potentially,
the LIAM meta-model can act as re-usable abstract syntax tree for
dispatch declarations in the IMP. We hope to be able to re-use compo-
nents for the more static IDE support like the visualization of implicit
and explicit calls.

There are other Eclipse projects into which we may integrate our
envisioned work. The first option is the Dynamic Languages Toolkit
(DLTK) [1] which is a collection of frameworks to minimize the ef-
fort of developing IDEs for dynamic languages. The second option is
the Textual Modeling Framework (Xtext) [3] which is a framework
for generating full-fledged Eclipse text editors from grammars for
domain-specific languages, including an abstract source code model.

5. CONCLUSION
In the suggested research work, we aim at providing a generic im-

plementation of IDE support, most importantly containing debugging
support, for advanced-dispatching programming languages. We will
build this support on the FIAL framework and the LIAM meta-model
(part of the ALIA architecture for Java), which provide a first-class,
declarative model of all dispatches in a program. We have mapped
the aspect-oriented languages AspectJ, CaesarJ, Compose*, JAsCo,
the predicate-dispatching languages JPred and MultiJava, and other
languages to this model. All mapped languages will thus be able to
directly benefit from the IDE support we aim to provide.

The IDE support will primarily consist of a navigable visualization
of explicit as well as implicit calls (the former are used in predicate
dispatching, the latter in pointcut-advice languages), and of debug-
ging support. Both kinds of IDE integration will be driven by the
declarative, first-class dispatch model available in ALIA. Since ALIA
facilitates the execution of dispatch declarations written in different
languages, all such dispatch declarations can be executed in one pro-
gram run alongside; similarly, the debugging support we envision will
be able to debug all such declarations at the same time. It will fa-
cilitate to jump to the source code defining the dispatch declaration,
and it will to show all execution steps leading to a specific dispatch-
ing result. We will investigate similar support for reasoning about
the evaluation of patterns used in pointcut-advice, respectively for the
composition of actions applicable at the same call site.

Providing such IDE support that will work “out of the box” will
increase the acceptance of new programming languages which offer
sophisticated composition mechanisms by means of dispatch decla-
rations. The envisioned IDE support will make the effects of apply-
ing advanced composition mechanisms to a program more obvious
to developers, which will help them to learn such new mechanisms.
ALIA’s ability to execute programs written in different languages with
different composition primitives and the resulting IDE support, will
give developers the free choice of combining different languages and
benefit from all their features. We would also like to note that many
composition mechanisms which do not obviously map to a dispatch-
ing problem can still be handled by our architecture. For example, we

successfully mapped AspectJ’s inter-type member declarations to our
approach; in fact, the example used in section Section 3.2 uses the
open classes feature of MultiJava, which is equivalent to inter-type
member declarations.
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