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ABSTRACT
Dynamic software product lines (DSPLs) are software prod-
uct lines, which support late variability that is built into
the system to address requirements that change at runtime.
But it is difficult to ensure at runtime that all possible adap-
tations lead to a correct configuration. In this paper, we
propose a novel approach for DSPLs that uses a dynamic
feature model to describe the variability in the DSPLs and
that uses a domain-specific language for declaratively im-
plementing variations and their constraints. The approach
combines several trends in aspect-oriented programming for
DSPLs, namely dynamic aspects, runtime models of aspects,
as well as detection and resolution of aspect interactions.
The advantage is, that reconfigurations must not be speci-
fied for every feature combination, but only for interacting
features. We have validated the approach in an example dy-
namic software product line from industry and preliminarily
evaluated the approach.

Keywords
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1. INTRODUCTION
Large scale information technology infrastructures are the

backbone of many enterprise processes. Yet these systems
are driven to continuous adaptation, due to changing re-
quirements [10]. However, the evolutionary transitions for
crucial enterprise information systems must be smooth and
not hamper current running business processes [18]. Hence,
methods and mechanisms for dynamic adaptation of the
software system are required.

The challenge of building dynamically adaptable software
systems is how to define suitable methods and mechanisms
for the dynamism. An ad-hoc approach is to use exist-
ing variability mechanisms (e.g., if -statements, method dis-
patch) directly in the architecture, and/or the underlying
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implementation. However, lacking appropriate methodolo-
gies for building such software systems, the rising complexity
(i.e., number of configurations, complex re-configuration re-
lationships) can limit the number of dynamic re-configuration
points to a few well-defined ones (e.g., all points at which
variability must be supported must be known at design time,
and the corresponding if-statements and all possible varia-
tions must be provided).

Dynamic software product lines (DSPLs) [11, 13] are an
emerging field that can systemize the configuration space in
dynamically adaptable software system. Thus, DSPLs break
down the complexity of managing dynamic re-configuration
points by modeling them explicitly in a product line ap-
proach as late variability [22]. Central to software product
lines (SPLs) are features, where a feature is a distinct prop-
erty of the software product. The late variability can be
represented through dynamic features, i.e., features that can
be (de-)activated in a running software system.

A research challenge for DSPLs is to find suitable variabil-
ity mechanisms to support dynamic features in the underly-
ing architecture and implementation. The mechanism must
not constrain the range of existing techniques used to build
product lines, i.e., it should peacefully co-exist with model-
driven and generative techniques. Further, the mechanism
should be able to cope with dynamic features that affect sev-
eral modules and require modification of several classes or
components in the product line. It should also detect and
resolve interactions between features, in particular feature
interactions that are not statically detectable but arise for a
set of dynamic contexts of the configuration.

An interesting research question for aspect-oriented pro-
gramming (AOP) [16] is how far dynamic AOP [2, 20, 19, 5,
7] is capable as a variability mechanism for dynamic SPLs.
For example, dynamic aspects [4] have been used to im-
plement business rules. Although dynamic AOP solutions
provide a flexible variability mechanism, they do not pro-
vide appropriate support for declaring, detecting, and re-
solving dynamic interactions. Most dynamic AO solutions
only provide support for defining the precedence of aspects
[2], i.e., defining the execution order of their advice. But
these precedence relations are inappropriate for expressing
exclusions, i.e., one cannot declare that one aspect does not
allow another aspect to be present. Furthermore, dynamic
dependency relations between the features implemented by
aspects cannot declare that one aspect needs another aspect
to work correctly. The works in [20, 5] support static decla-
ration of exclusions and dependencies between aspects, but
do not address dynamic interactions.



In DSPLs the dynamicity in the exclusion of features is of
great interest. The problem with static exclusions and de-
pendencies is that they must be declared permanently (e.g.,
aspect A always excludes aspect B) and are enforced inde-
pendent of the fact that aspects A and B may not actually
conflict because the aspects are never applied at the same
points at runtime. This is too conservative and disallows
meaningful compositions of dynamic features.

For example, a workflow requires an approval step, which
can be automatic manual. Modularizing the variability in
the approval step entails interaction between the automatic
and the manual variants, because the goal of immediate au-
tomated approval is violated by waiting for a manual ap-
proval. The repetitive manual approval following an auto-
mated appoval would be a waste of human resources.

However, using more powerful declaration mechanism, we
can declare that both dynamic features be selected at once
and affect different parts of the DSPL, with the exception of
cases in which conflict occurs. For example, when the auto-
matic approval is only applied to orders that have a certain
state (e.g., exceeds a certain amount), a conflict occurs only
for those particular orders and must be resolved only when
this runtime condition is satisfied. The other orders are only
affected by the manual approval without any conflicts.

In this paper, we propose mechanisms to detect and re-
solve such context-dependent interactions between features
in a DSPL. The contribution of this paper is twofold. On
the one hand, we adopt DSPLs as a systematic framework
in which complex dynamic software systems can be planned
and managed by modeling late variability. On the other
hand, we provide support for detecting and resolving context-
dependent interactions by validating an aspect-oriented (AO)
model at runtime.

First, we extend existing DSPL approaches by a novel no-
tation termed dynamic feature model that allows us to model
late variability. Feature models are a widely used nota-
tion, that models the configuration space of software product
lines, yet they lack explicit support to model late variabil-
ity. Our notation extends feature models to capture dynamic
features, i.e., features that may be (de-)activated at runtime,
and to model their runtime constraints. Thus we provide an
explicit representation of dynamic re-configuration points in
an adaptable software system.

Second, we propose a novel approach for DSPLs on top of
a dynamic AO runtime environment with a meta-aspect pro-
tocol [7] that is used as a dynamic feature manager. We map
dynamic feature models to aspect-oriented models that are
available as first-class entities in running products. DSPLs
are delivered with the AO runtime environment, through
which (de-)activation of dynamic features is enabled, which
updates dynamic feature model representation, takes care
of the composition of dynamic features, as well as it detects
and resolves dynamic feature constraints.

We have validated the approach by evolving a static soft-
ware product-line from industry into a DSPL in a case study.
Furthermore, we have evaluated the performance overhead
of dynamic aspects in the context of SPLs. The results in-
dicate that the approach copes well with performance re-
quirements, also in the presence of the special scalability
requirements of SPLs.

The remainder of this paper is structured as follows. Sec. 2
illustrates the example SPL and motivates late variability.
In Sec. 3, we present dynamic feature models for modeling
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Figure 1: Late variation point for approval step in
the order management business process

late variability and give an overview of the methodology.
In Sec. 4, we describe how dynamic aspects can be used to
realize dynamic SPLs. Sec. 5 presents the case study. Sec. 6
evaluates the approach. Sec. 7 discusses related work. Sec. 8
concludes the paper and outlines future work.

2. LATE VARIABILITY IN AN SPL
Our example SPL is the Sales Scenario, which is a soft-

ware system for the management of business data, including
central storage and user-centric information inquiry. The
main focus of the Sales Scenario is on stock sales processes,
where the core processes are customer order management,
payment, account management, stock management and com-
munication. The main goal of the Sales Scenario is to inte-
grate all processes and corresponding data of an organization
into one system. The system addresses sales processes for
both mid-sized and large enterprises. The business processes
themselves are customizable, often in multiple independent
variations. For example the order management process can
include a quotation management (i.e., placing strategic of-
fers to customers) or sales order processing (i.e., tracking of
individual orders).

The customer needs for these features vary depending on
the business size of the customer, thus making it advanta-
geous for the software provider to implement the system as
a SPL. The products resulting from the SPL might be as
small as a simple way to keep track of executed orders, or
as large as a complete sales management system, in which
everything from the first idea of a sales opportunity to the
delivery and payment of the sold product can be managed.

The processes in the Sales Scenario are modeled using
model-driven techniques. Thus, we can identify variation
in the processes on the model level. For example, Fig. 1
depicts a short version of the order management process,
which consists of at least three steps: “receive” (order is
received from a customer), “pack” (order items are prepared
for delivery), and “ship” (order is sent to the customer). The
lower part of Fig. 1 models an example of late variability in
the order management process. The modeling elements with
solid lines describe the static part of the process. The receive
step is subject to a dynamic variation that is described using
modeling elements with dashed lines.

As an example for late variability, we model an additional
approval step after an order is received. We have identified
two subcategories of approval, namely a manual approval,
which requires human interaction with the system, or an
automated approval, e.g., a check if the order is issued by
credit-worthy customers. To provide flexibility we allow cus-
tomers of the product line to adapt their software system



from one process model to another without the need to re-
deploy the whole system. Therefore, these two variants of
approval processes are modeled as dynamic features.

A conceptual problem arises when multiple dynamic fea-
tures are composed, e.g., when a customer activates both
of the above features at once, as indicated in the last row
of Fig. 1. When composing the features, it is necessary to
take into account their semantics. One solution would be
that the automated approval manages all orders and that
we require human intervention only in cases where the au-
tomation does not approve of an order. However, we cannot
describe such compositions with the current technology.

Existing approaches support a form of linear composition
for features, by controlling their order through precedences
[1, 19, 5]. But, declaring that the automated approval step
precedes the manual approval step is not enough, since we
want to declare that the automated approval must be exe-
cuted and that the manual approval must be skipped. The
above approaches also provide composition strategies to de-
clare and enforce a static exclusion constraint between fea-
tures. For example, the manual approval feature always ex-
cludes the automatic approval feature in all configurations.

The problem is that static precedences and exclusions are
too conservative. If the constraint between features only
occurs in a certain (runtime-) context, such strategies are
inappropriate. A correct strategy must take into account
the application context. For example, a manual approval is
selected only for a certain group of orders, e.g., orders with
a high quantity, while the rest is approved automatically.
Without knowledge of the domain and application seman-
tics, we cannot express such a composition scenario at the
level of feature modeling.

3. MODELING DYNAMIC SPLS
Dynamic feature models are an extension of existing ’static’

feature model notations, such as [6], and provide a special-
ized notation to specify the product lines dynamism and run-
time constraints. The dynamic constraints allow expressing
i) that the activation of one dynamic feature requires that
another dynamic feature be active as well. This constraint
is termed implies in dynamic feature models and allows SPL
designers to model requirements on the reconfiguration logic
of the DSPL. Furthermore, we model ii) that two features
must not be simultaneously active, by constraining them
with excludes. This constraint allows restricting the run-
ning system from activating both features, if an SPL de-
signer deems their combination harmful due to possible in-
teractions. The iii) precedes constraint declares that an in-
teraction of features is allowed and states a resolution strat-
egy, which grants one feature precedence over another. The
precedence is not exclusive, thus all features are active but at
interacting points, the precedence defines an order in which
the features are taken into account.
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Figure 2: Notation of dynamic features

Fig. 2 depicts the visual representation of dynamic feature
models and the possible constraints. Dynamic features are

depicted with dashed border lines. Likewise dynamic con-
straints are modeled using dashed arrows.

We impose some limitations in the usage of our constraints.
First of all, the conjunction of implies and excludes is for-
bidden, as this combination is not satisfiable by the DSPL.
For multiple features with multiple precedes constraints we
disallow cycles, thereby all involved precedence constraints
must form a chain. Furthermore, the combination of pre-
cedes and excludes ii) + iii) is allowed and states that the
feature with the highest precedence is the only one taken
into account at points where these features interact.

Static constraints may also be formulated between dy-
namic and static features. For example, a dynmic feature
requires the presence of a static feature. The static con-
straints must be enforced with the same semantics as having
static constraints between static features.

4. DSPLS USING DYNAMIC AOP
Our approach realizes a DSPL by mapping dynamic fea-

tures and their interactions to an aspect-oriented model at
runtime. The AO model consists of first-class entities, such
as dynamic aspects and their pointcuts-and-advice, primitive
pointcut designators that match join points, and rule base
with declared constraints on aspect interactions. Dynamic
features are mapped to dynamic aspects, which adapt late
variation points in the DSPL. To enforce the modeled con-
straints, feature interactions are mapped to constraints on
dynamic aspects. The aspect model is used as a first-class
runtime representation of the dynamic feature model. The
AO model is validated to ensure consistency when features
are dynamically activated and deactivated at runtime.

To express dynamic features in terms of dynamic aspects,
SPL developers define a DSL. This language, also denoted
as dynamic feature language (DFL), incorporates the neces-
sary abstractions for the specification of dynamic features in
terms of domain concepts. In addition, the DFL provides the
required aspect-oriented machinery to declare constraints on
dynamic features, as well as semantics for the composition of
dynamic features. The DFL enables a safe feature composi-
tion, because dynamic feature interactions are automatically
detected.

As the underlying language technology for implementing
the DFL, we use Popart [7], which is a dynamic aspect-
oriented language that provides generic AO mechanisms and
that is extensible for new domain-specific syntax and se-
mantics. Domain extensions are integrated into Popart to
create a complete SPL-specific aspect language.

The process of defining a DFL consists of the steps: 1) late
variation points are identified and modeled as a domain-
specific join point model (DS-JPM) [8], 2) late VPs are
made available for the DFL using a domain-specific pointcut
language DS-PCL [8] that quantifies over the DS-JPM, 3)
the results are integrated with a generic declarative aspect-
oriented language, that provides commonly used AO con-
cepts (e.g., before/after/around advice). The resulting dy-
namic feature language is thus summarized as: DFL = DS-
JPM + DS-PCL + Generic AO Concepts.

4.1 Modeling Late VPs (DS-JPM)
The first step of the SPL developer is to analyze the design

of the SPL for possible late variation points and model them
in a dynamic DS-JPM. For each late variation point, the
developer defines the context for this VP, i.e., a properties



map that defines identifiers referring to relevant values, e.g.,
the identifier “customerOrder” refers to the business object
in the dynamic context of the running application.

Late VPs can be defined at various levels of abstraction
in the SPL and thus identify different artifacts, e.g., model
elements or source code points. At the model level, late VPs
are modeled as annotations on modeling elements. For ex-
ample, in a UML activity diagram, one activity is annotated
to be dynamically variable. These annotated modeling ele-
ments are treated in a special way by code generators. Late
VPs require a facility for dynamic de-/activation, thus, the
respective source code elements for the model elements are
generated, e.g., classes or methods, and the de-/activation
is provided by generating domain-specific aspects for these
source code elements. At the code level, the late VPs refer
to code elements, such as a class, an attribute, a method,
or an expression in the body of a method, e.g., when an ac-
tivity is implemented in a method, the late VP casts on the
call to this method.

An excerpt of late VPs that we have identified in the Sales
Scenario inside the order management workflow is presented
in the following:

1) Payment type selection: The customer chooses a
specific payment type, e.g., credit card or cash-on-delivery.
This step presents various payment types to the customer.
Variation at this point can restructure the choice of payment
types, e.g., filtering to a more specific list. The context
made available at this late variation point are the choice
of payment types presented to the customer as well as the
customer’s concrete choice.

2) Price calculation: The price of an order or a quota-
tion is calculated as the sum of the prices of the contained
order items. This is a late variation point, that allows to in-
troduce new pricing strategies and override existing strate-
gies, e.g., to define a discount and allowances on the price.
The context is the order for which the price is calculated.
From the domain model this implies the exposure of the in-
dividual items in the order, since they are accessible via the
order.

3) Receive order: The first step in the order manage-
ment is the reception of new orders. In the Sales Scenario
orders enter the workflow with all information on the cus-
tomers and the payment modalities. This step is a late vari-
ation point such that we can insert an approval step before
packing and shipping the order. Such an additional step
then approves whether the customer is trustable before an
unpaid cash-on-delivery order is shipped. The available con-
text is the customer, the order, and the selected payment
method.

From the identified late variation points the SPL devel-
oper builds the DFL for a particular dynamic software prod-
uct line. To allow the dynamic aspects to intercept the late
variation points of the DSPL, the SPL developer declares
an instrumentation 1 of the SPL implementation, that rei-
fies SPL concepts. Using this instrumentation we define a
domain-specific join point model. In this DS-JPM, each late
variation point is represented through a SPL-specific join
point type as a sub-class of JoinPoint and its context is a
properties map. For the above late variation points, the SPL
developer defines join point types: 1) PaymentTypeSelec-

tionJP, 2) PriceCalculationJP, and 3) ReceiveOrderJP.

1In the case-study AspectJ aspects are used to reify runtime
information.

1 class SalesScenarioDFL extends PointcutDSL {
2 ...
3 Pointcut receive order (long quantity ) {
4 return new ReceiveOrderPredicate(quantity );
5 } }
6

7 class ReceiveOrderPredicate extends PrimitivePCD {
8 ReceiveOrderPredicate(long quantity ) {...}
9 ...
10 boolean match(ReceiveOrderJP jp) {
11 long orderOuantity = computeQuantity(jp.context.get(”order ”));
12 if ( orderOuantity < quantity ) return true ;
13 return false ;
14 } }

Figure 3: Excerpt of the Sales Scenario DFL imple-
mentation for selecting an example late VP

The AO instrumentation of the SPL binds context values at
late variation points to instances of these join point types.
The full technical details of the definition of a DS-JPM are
elaborated in [8].

4.2 Quantification over Late Variation Points
(DS-PCL)

To allow the dynamic features to quantify over late vari-
ation points, the SPL developer declares predicates on the
late variations points. In principle, a dynamic feature can
select every one of the defined late variation points. All late
variation points are made available by a set of predicates,
which can be combined using logical expressions (and, or,
not). For each late variation point, a predicate is defined
that selects this point. For the above late variation points,
the following predicates are defined: 1) payment_type, 2)
price_calculation, and 3) receive_order.

Further, the predicates can be parameterized, e.g., to con-
strain late variation points depending on runtime values of
the application context. For example, receive_order(quantity)
defines a parameterized predicate that filters late variation
points, where the quantity of the order is less than a certain
threshold, e.g., receive_order(1000) selects the late vari-
ation points of all orders with a quantity of less than 1000
units. Fig. 3 depicts the implementation of the receive_or-

der(quantity) predicate, which constitutes a domain-specific
keyword in the Sales Scenario DFL. Using the POPART
framework, the receive_order(long) method becomes a
keyword in the aspect runtime that can be used to declare
where a dynamic feature is active. The concrete matching
happens in the ReceiveOrderPredicate, where the match

method of the framework is adopted to match at join points
(ReceiveOrderJP) that have an order in their runtime con-
text, that contains a quantity lower than the threshold. For
every predicate, the domain-specific pointcut language (DS-
PCL) defines a domain-specific keyword that selects the join
points of the corresponding late variation point. Each DS-
PCL keyword creates a primitive pointcut designator as a
sub-class of Pointcut in the AO model used to filter Join-

Point objects. More details about implementing a DS-PCL
are elaborated in [8].

4.3 Generic AO Concepts
To define dynamic features as aspects the following general-

purpose AO concepts are provided by Popart and reused in
the DFL. The aspect keyword defines a new dynamic aspect
module, parameters define its name and initial activation



status (deployed), i.e., active (true) or inactive (false).
Popart allows to define where to insert actions at a late
variation point using before/after advice, which execute
before or after reaching the late variation point. In addi-
tion, around advice replaces the actions of a late variation
point and proceed invokes the replaced actions in an around
advice. To define constraints from the feature model the
following mechanics are used: i) assert validates a boolean
expression when loading the aspect and is used to model
dependencies to static features. ii) declare_dependency,
declare_exclusion, and declare_precedence are used to
declare aspect interaction constraints that are detected and
resolved at runtime by Popart.

4.4 DSPL specific AO language (DFL)
To instantiate the DFL, the SPL developer mixes the ex-

isting generic AO language with the specific parts for the
SPL. Popart take care that all common and specific parts
of the AO syntax are integrated together into a SPL-specific
aspect language

Using the DFL, each dynamic feature is mapped to a dy-
namic aspect. The aspect is declared with a unique name,
that maps to the corresponding feature and the aspect is
either active or not depending on the (default) choice of the
user. For each specific variation at a late variation point,
the aspect defines a pointcut-and-advice. Its pointcut uses
the DS-PCL to quantify over join points (i.e., it intercepts
the execution of a late variation point) and its advice de-
fines how to adapt selected variation points by inserting or
replacing certain actions at the join point (i.e., it adapts a
late variation point). We will discuss concrete examples of
dynamic aspects in the next section.

Each constraint on dynamic features is implemented as
an aspect interaction in one of the aspects. A dynamic con-
straint is defined using one of the declare-keywords. For
implies, an aspect declares declare_dependency between
the two aspects with the corresponding feature names. For
excludes, the aspect uses declare_exclusion; and for prece-
dence, the aspect uses declare_precedence instead. Note
that for symmetric constraints such as excludes it does not
matter which aspect actually declares the interaction. Re-
call that dynamic feature models are an extension to ’static’
feature models. A static constraint on features can also be
defined using the assert keyword.

Using our AO model at runtime for the composition of
features and the detection and resolution of constraints has
several advantages. First, there is no need to consider all
combinations of feature selections. When dynamic features
are selected or deselected at runtime, the DSPL is automat-
ically adapted by Popart as aspects are composed at join
points in the runtime model of the application. Second, the
dynamic AO mechanisms allow the declaration of runtime
context-dependent feature interactions in conjunction with
a continuous enforcement of these constraints by validating
possible aspect interaction as specified in the rule base of
the AO model. Thus the DFL allows the safe specification
of features that interact with each other, because advice are
ordered, conflicting advice are never executed at the same
time, and dependencies are enforced. We will see example
resolutions in the next section.

5. CASE STUDY
To validate our concept, we have implemented the Sales

Scenario as an example dynamic SPL, parts of which were
introduced in Sec. 2. While static variability is modeled and
implemented using existing technologies, the late variability
is modeled and implemented using the technology that is
presented in this paper and that helps to manage late vari-
ability. The late variability technology seamlessly integrates
with the above technologies in the Eclipse-based workbench.
In the remainder of this section, we first summarize the static
part of the Sales Scenario, then we elaborate how the dy-
namic features are implemented using the feature DSL.

For the implementation of the static part of the SPLs, we
used the Eclipse based facilities for developing SPLs, pro-
vided by the feasiPLe research project [9]. The static vari-
ability is modeled and implemented using extension of ex-
isting methodology, adapted by feasiPLe to better support
model-driven and aspect-oriented software development of
SPLs.

To give a short overview of the methodology: 1) we de-
signed domain-specific languages (DSLs) for the different ap-
plication domains (e.g., process, business objects, graphical
view, etc.) as Ecore2 metamodels, and instantiated them
into variant independent models (VIMs). 2) The model el-
ements in these models were then mapped to features us-
ing the FeatureMapper [15], and 3) using this mapping the
VIMs were transformed into variant specific models (VSMs)
using pure::variants3 For each DSL, we also implemented
4) one code generator in Xpand4 , and generated Java and
AspectJ [1] code based on these VSMs using the code gener-
ators. In summary, the Sales Scenario has 27 static features
and six dynamic features. The implementation consists of
4,000 Java hand-written lines of code (LOC), 17.000 LOC
generated Java, 10.000 LOC related to oAW artifacts, 6,000
LOC AspectJ, and 130 LOC Groovy/Popart.

In Fig. 4 the dynamic feature model of the Sales Scenario
is presented, of which we will discuss first the dynamic ap-
proval feature, and then the dynamic pricing strategy fea-
ture. The purpose of the dynamic approval feature is to
validate customer creditability to reduce risk for large quan-
tity orders. An implementation of the dynamic approval
feature from the Sales Scenario is shown in Fig. 5. In lines 1–
8, the class OrderManager (realizing the Customer Order

Mgmnt feature) is shown that is part of the static part of
the SPL. It implements one method for each step in the
order management use case, i.e. receive, pack, and ship.
The execution of the method receive (lines 3–5) constitutes
a late VP as modeled in the previous section. In Fig. 3, the
class ReceiveOrderJP represents executions of the receive

method and is used to declare the receive_order predicate.
This predicate is used in lines 10 and 15 (parameter quan-

tity is optional), to specify where the different approval
steps are inserted.

For the dynamic features, the three aspects in the ex-
ample are deployed to the running system. The Manual-

Approval aspect defines a pointcut that selects the late VP
of the receive step by using the corresponding predicate re-
ceive_order defined in Sec. 4. The advice extends the SPL
at the selected variation point by opening a dialog (line 11)

2http://www.eclipse.org/modeling/emf/
3http://www.pure-systems.com/
4http://www.openarchitectureware.org/
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1 class OrderManager {
2 ...
3 void receive (Order order) {
4 //receive the order from customer ( is a dynamic VP)
5 }
6 void pack(Order order) {...}
7 void send(Order order) {...}
8 }
9 aspect(name:”ManualApproval”, deployed:true) {
10 after ( receive order () ) {
11 boolean trustable = UI.openApprovalDlg(order).isCustomerTrustable ();
12 if (! trustable ) // clarify customers creditibility
13 } }
14 aspect(name:”AutomaticApproval”, deployed: false ) {
15 after ( receive order (100) ) { ... } }
16 aspect(name:”CreditCheck”) {...}
17 aspect(name:”ApprovalInteraction ”, deployed: true) {
18 declare exclusion ”ManualApproval”, ”AutomaticApproval”;
19 declare precedence ”AutomaticApproval”, ”ManualApproval”;
20 declare dependency ”AutomaticApproval”, ”CreditCheck”;
21 }

Figure 5: Dynamic feature: order approval

for the manual approval in a user interface. If the user is not
trustable, a sub-workflow is invoked (line 12) to clarify the
status of the customer, e.g., the customer presents further
credentials, pays the order before shipment, or the process is
aborted. The aspect AutomaticApproval (line 15) is imple-
mented similarly to the manual approval feature, but only
executes at late VPs where the quantity of the received order
is smaller than 100. As an automation, customer creditabil-
ity is checked via the corresponding credit card. To illustrate

the SPL dynamicity, the AutomaticApproval aspect is not
deployed (i.e. inactive) during startup. At a later point,
i.e. when the company exceeds a certain amount of placed
orders, the automated approval is deployed.

The feature interaction between the two approval features
is mapped to an aspect constraint, which is delcared in a sep-
arate aspect (ApprovalInteraction). Line 18 declares the
aspects ManualApproval and AutomaticApproval to be mu-
tually exclusive, i.e., they may not affect variation points at
the same time. The following line declares the precedence
constraint between the two features. We choose to declare
the interaction in a separate aspect, because this has the
advantage that the implementation of the two aspects is in-
dependent from each other. When the AutomaticApproval

aspect is deployed, the interaction at the late VP is detected
and resolved according to the constraints. Because of the dy-
namic exclusion constraint in line 18, a conflict is detected
that is resolved by taking into account the dynamic prece-
dence constraint in line 19. As the AutomaticApproval has a
higher precedence, its advice will be executed and the advice
of ManualApproval are skipped. Because of the dynamic
dependency constraint in line 20, the advice of Automatic-

Approval requires the CreditCheck feature to be deployed.
For the Sales Scenario, we have implemented a flexible

pricing strategy feature using our late variability support,
to introduce new pricing strategies as dynamic features into
a running product line. The static part of our SPL comes
with a simple pricing strategy that calculates the price of an
order by calculating the sum of the price of its order items.
However, in the context of discounts, allowances and taxes,
the actual price of an order depends on various requirements



1 aspect(name:”VATPricing”) {
2 final float VAT FACTOR = 1.19; //Currently the German VAT is 19%
3 around ( pricing ()) {
4 return proceed() ∗ VAT FACTOR;
5 } }
6 aspect(name:”EnterpriseDiscount ”) {
7 assert Class .forName(”EnterpriseCustomer”) != null ;
8 ...
9 }
10 aspect(name:”QuantityDiscount”) {...}
11 aspect(name:”PricingInteraction ”) {
12 declare precedence ”QuantityDiscount”, ”VATPricing”;
13 declare precedence ”EnterpriseDiscount ”, ”VATPricing”;
14 declare exclusion ”EnterpriseDiscount ”, ”QuantityDiscount”;
15 declare precedence ”EnterpriseDiscount ”, ”QuantityDiscount”;
16 }

Figure 6: Dynamic feature: pricing strategy

from the business domain, e.g., there are business rules that
add the value added tax (VAT) to the order price, depending
on the customers country or rules that give various discounts
to certain customers. In the context of discounts, the inter-
action of features is again of high interest. Depending on the
actual context, two discounts are applicable to one order at
the same time, or only one discount is allowed to be applied.

A late VP has been inserted into the price calculation of
orders that exposes the necessary context, such as the order,
its items, and the customer. We use 3 aspects shown in
Fig. 6 for realizing the dynamic pricing features: 1) VATPric-
ing: calculating the VAT, 2) EnterpriseDiscount: giving
a discount to enterprise customers5, and 3) QuantityDis-

count: a special discount is applied when the order contains
a large quantity of items. Note that all aspects advise the
same late variation point through the pricing predicate.

In this scenario the dynamic feature interactions between
the pricing strategies must be handled by appropriate aspect
constraints (Fig. 6), as declared in the PricingInteraction

aspect. The tax calculation is performed after all other cal-
culations have been applied, consequently the VATPrice as-
pect is declared to have the lowest precedence, using the
aspect precedences in lines 12 and 13. The Enterprise-

Discount feature requires that the static feature Enterprise
has been selected for the product. To check the presence,
an assertion is used to check whether the class Enterprise-
Customer, corresponding to the Enterprise feature, is avail-
able in the product. This static assertion is checked during
startup of the application.

The EnterpriseDiscount and the QuantityDiscount ex-
clude each other (line 14), since for these particular discounts
in the product line we choose to disallow double discounts.
Such a situation arises only if an order contains a significant
quantity of items and is ordered by an EnterpriseCustomer.
Because of the exclusion constraint in line 14, the interaction
of QuantityDiscount and EnterpriseDiscount is detected
as a conflict. Because in line 15 the EnterpriseDiscount

is declared to have a higher precedence than Quantity-

Discount, Popart can resolve this conflict by not excluding
the effects of the dynamic feature with a lower precedence,
i.e. QuantityDiscount, in the composition.

5The order business object (BO) refers to the corresponding
customer BO, which is typed as a representative of a com-
pany or a private customer. We use the type to decide if the
discount should be applied.

6. EVALUATION
There are certain limitations in the current implementa-

tion that prevent our technology to be used in production.
1) In a real-world business scenario, new business rules

would need to be defined and loaded to the Sales Scenario
during its lifetime. In the case study, we provide support
only for de-/activation of features via a management con-
sole. For convenient runtime evolution a special manage-
ment console is required, through which new dynamic fea-
ture can be uploaded into a running system. Popart comes
with the necessary support, since it allows to deploy aspect
definitions provided as a String, due to its roots in Groovy.

2) Our approach does detect feature interactions if the in-
teracting aspects affect the same join point, but omits cer-
tain indirect interactions, e.g., two aspect accessing shared
state. Such interactions are also possible using our approach,
i.e. through the contexts available to aspects. Using these
interactions in a structured way can prove advantageous.
For example in the Sales Scenario this allows us to define
a manual approval, that checks in the context of the join
point, that the order was not automatically approved and
only in this case asks the user with a feedback. However,
such interactions are currently not detected by Popart and
are not modeled at the level of the feature model. How to
capture such feature interactions in a structured way at the
modeling level is an interesting research question.

3) When deploying new dynamic features at runtime, the
integrity of internal state of adapted use cases is not ensured
by Popart. Adapting a running use case that has an inter-
nal state is difficult, as for example previously started stack-
frames may be omitted from the aspects execution leading
to erroneous internal state. In our case study, we did not ex-
perience such problems because deploying aspects was only
allowed after all running instances of a business process, e.g.
the order management use case, were completed.

To evaluate our approach w.r.t. performance scalability,
we have determined the relative instrumentation overhead
incurred by the AO runtime. We executed our Sales Sce-
nario case study with and without our AO runtime, i.e., in
Popart and in Java. To measure the bare instrumentation
overhead, we do not apply any dynamic aspects at the de-
clared late VPs. Thus the basic AO instrumentation is in
place and delegates to our matching algorithm, which does
almost nothing, i.e. iterating over an empty list of poten-
tial dynamic aspects. We measured the relative overhead
incurred by the instrumentation for repeating execution of
the variation point and found the approach to scale well with
the number of late VPs. When the VP is executed only once
there is a large overhead of 97%, but when the late VPs is
visited more often, the overhead is reduced to a value as
low as 0.8% (1000 executions). This is due to a dynamic
adaptive optimization applied by the Java virtual machine,
which identifies frequently called methods at runtime and
performs more advanced optimizations such as inlining.

7. RELATED WORK
Most AOP tools only support aspect precedences similar

to AspectJ [1]. Several AOP tools allow expressing aspect
dependencies (such as [19, 7]) but there is little work on
context-dependent interactions [14, 17, 7].

Context-oriented programming [5] supports modularizing
features into layers of functionality that can be activated



and deactivated at runtime. This work supports only static
dependencies between interacting features.

Research on dynamic product-lines [12] [13] is particularly
relevant. In [11], DSPLs are specified as a set of components
that can be exchanged at runtime. The components follows
the design of software reconfiguration patterns and have a
set of state charts that define all valid reconfiguration cases.
In contrast to our approach, components have to implement
patterns and interfaces, features with a crosscutting char-
acter are not modularized, and runtime evolution is disal-
lowed because all possible reconfigurations must be known
and enumerated into the state chart models at design time.

Cetina et al. [3] discuss possible architectures of dynamic
software product-lines and distinguish connected and dis-
connected architectures for DSPLs, depending on whether
the DSPL or the product is responsible for reconfiguration.
They propose to follow a hybrid approach that combines the
best of both, our approach can be used to implement such
a hybrid approach, because every product is delivered with
a runtime model of the DSPL. Our approach complements
their discussion by prosing a concrete realization.

Trinidad et al. [21] propose the realization of DSPLs
through a mapping of features onto components in a com-
ponent model. Their component architecture introduces the
specialized concepts of feature component that can be de-
/activated and feature relationship that can be un-/linked.
However, the approach does not consider crosscutting fea-
tures, it enforces only static constraints on features, and it
does not allow to consider runtime context.

8. CONCLUSION
We have proposed a novel approach for dynamic software

product-lines that uses a dynamic feature model to describe
the variability in the DSPLs. The approach combines several
trends in aspect-oriented programming for DSPLs, namely
dynamic aspects, runtime models of aspects, as well as de-
tection and resolution of aspect interactions. We have imple-
mented and validated the approach and preliminarily eval-
uation results show its scalability.

Although, current support for managing aspect interac-
tions is weak in existing dynamic AOP tools, we strongly
believe that dynamic AOP solutions in general can be used
for dynamic product-lines. The biggest challenges for dy-
namic AOP for DSPLs are a) addressing the limitations
found when building (static) SPLs that are also present in
dynamic AOP, b) improving the support to handle aspect in-
teractions in particular context-dependent interactions, and
c) scalability requirements, such as performance in case of
large DSPLs.

Future work will address the current limitations. In par-
ticular, we would like to provide better means to scope
feature constraints and wildcards in constraint expressions,
e.g., to specify that a constraint must be enforced a global
application scope, for all sub-features of a certain feature,
and for all features that names starts with a certain prefix.
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