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ABSTRACT
We show how package templates, a mechanism for code mod-
ularization, can be extended with features for dynamic load-
ing. We pose the question of whether or not this is may a
useful mechanism with respect to software composition and
dynamic configuration of software.

Categories and Subject Descriptors
D.3 [Software]: Programming Languages; D.3.3 [Progra-
mming Languages]: Language Constructs and Features—
Classes and objects; D.3.3 [Programming Languages]:
Language Constructs and Features—Modules, packages

General Terms
Languages, Design
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1. INTRODUCTION
There are several challenges when working with a large soft-
ware system, including modularization, separation of con-
cerns and reuse. These challenges are large enough in them-
selves when writing, testing and maintaining a large system.
However, even more challenges arise when there are many
different variations of a system, when the environment chan-
ges over time and when new requirements and extensions
may arrive after the initial system has started running and
should not be taken down.

Given these challenges, it seems beneficial to have similar
support for such dynamic features as one has for the static
build of large systems. One mechanism that is useful in this
respect is the use of interfaces and abstract classes in writing
the system and the possibility of loading different implemen-
tations into a running system based on configurations and
runtime events. These implementations may be written and

separately compiled after the system they are loaded into
has been started.

Although a set of such classes may be written, compiled and
loaded together, they are still considered as separate entities
and not checked as one coherent entity upon loading. There
is no assurance that the individual classes belong to the same
version of the extension. In this work, we are looking at a
way to dynamically load an entity that represents a group of
classes in a package or template. We believe it to be useful
if one is allowed to take a group of statically checked classes,
that are compiled and tested together, and adapt them in a
coordinated fashion to an existing system.

A recent paper [15] describes a new language mechanism
called PT (short for Package Templates), which is meant to
be a useful tool for software composition. The mechanism
is intended for object oriented languages in order to support
better code modularization, where statically type-checked
templates can be written independently and subsequently
be instantiated in programs with such flexibility that classes
may be merged, methods renamed and new classes added.
Templates may contain hierarchies of classes (single inheri-
tance) and these hierarchies are preserved when a template
is used. Also, different instantiations of the same templates
are independent of each other, creating unique types.

The basic PT mechanism allows flexibility in package reuse,
program composition and support for readability and reusabil-
ity in large systems. The way that multiple classes may be
affected by instantiating a template gives the language an
AOP-like quality. More AOP-specific extensions to PT have
also been studied in [3].

In this work, we look at a possible extension to the basic
package template mechanism that supports dynamic load-
ing of package templates. We ask to what extent this will
be a useful tool for dynamic configuration of software sys-
tems. Furthermore, we discuss some of the properties of this
mechanism.

We introduce an extension to PT where templates are pa-
rameterized by templates. A template with template param-
eters must be instantiated with actual templates that “ex-
tend” the formal parameters’ bounds. In standard PT, all
instantiations of templates are done at compile-time. How-
ever, in this work we look at extending this concept so that
templates may be loaded dynamically into a running sys-



tem, not unlike how classes may be loaded dynamically in
languages like Java. We discuss how this can be achieved
with template extensions and with parameterized templates.

Being able to load classes dynamically into a system is use-
ful since it allows extensions to be written after the system
has started running. It also allows one to configure and re-
configure a running systems and for a system to configure
itself based on discovery of its environment.

Dynamically loading classes in a controlled type-checked
way has advantages over other dynamic linking mechanisms.
A compiler and loader will together have checked that the
loaded class can be used in a type safe way. Doing this at the
levels of templates, each containing several related classes,
extends the reach of this checking.

The mechanism proposed here for dynamically loading tem-
plates in PT preserves the relation between the classes in the
template and thereby supports family polymorphism [9]. It
has the advantage of the flexible adaption and name change
mechanisms of PT while still being dynamic. Since new
types are created when a template is loaded, different ver-
sions of the same software package can safely be used simul-
taneously in the same runtime without name clashes. Thus,
PT extended this way becomes more a mechanism of dy-
namic composition than a static mechanism of reuse and
extension.

We will first present an overview of the basic package tem-
plate mechanism. Then we will present templates that ex-
tend other templates and template parameterized templates.
After that, we will present dynamic loading before a discus-
sion and a survey of related work.

2. OVERVIEW OF THE PACKAGE TEMP-
LATE MECHANISM

We here give a brief and general overview of the package
template mechanism as it is described in [15]. The mech-
anism is not in itself tied to any particular object-oriented
language, but the examples will be presented in a Java-like
syntax, and the forthcoming examples will be based on Java.

A package template looks much like a regular Java package,
but the classes are always written in one file and a syntax is
used where curly braces enclose the contents of the template,
e.g. as follows:

template T {
class A { ... }
class B extends A { ... }

}

Valid contents of a template (with a few exceptions) are also
valid as plain Java programs. As such, templates may also
be type checked independently of their potential usage(s).

In PT, a template is instantiated at compile time with an
inst statement like below. This has some significant differ-
ences from Java’s import. Most notably, an instantiation
will create a local copy of the template classes, potentially
with specified modifications, within the package where the
inst statement occurs.

package P {
inst T with A => C, B => D;
class C adds { ... }
class D adds { ... } // D extends C, see text

}

In this example, a unique instance of the contents of the
package template T will be created and imported into the
package P. In its simplest form, the inst statement just
names the template to be instantiated, e.g. inst T, without
any other clauses. In the example above the template classes
A and B are also renamed to C and D, respectively, and ex-
pansions are made to these classes. Expansions are written
in adds-clauses, and may add variables and methods, and
also override virtual or implement abstract methods from
the template class.

An important property of PT is that everything in the in-
stantiated template that was typed with classes from this
template (A and B) is re-typed to the corresponding expan-
sions (C and D) at the time of instantiation (PT rules guar-
antee that this is type-safe). Any sub/super-type relations
within the template is preserved in the package where it is
instantiated. Therefore, implicitly D extends C since B ex-
tends A.

Another important property is that classes from different,
possibly unrelated, templates may also be merged to form
one new class, upon instantiation. Consider the simple ex-
ample below.

template T {
class A { int i; A m1(A a) { ... } }

}
template U {
class B { int j; B m2(B b) { ... } }

}

Consider now the following usage of these templates:

inst T with A => MergeAB;
inst U with B => MergeAB;

class MergeAB adds {
int k;
MergeAB m2(MergeAB ab) { return ab.m1(this); }

}

These instantiations result in a class MergeAB, that contains
the integer variables i, j and k, and the methods m1 and
m2.1 Note that both m1 and m2 now have signatures of the
form MergeAB → MergeAB.

Summing up, some of the useful properties of PT are: It
supports writing reusable templates of interdependent, co-
operating classes which may be statically type checked with-
out any information about their usage. Upon instantiation,
a template class may be customized, and merged with other
template classes. References within a template to a tem-
plate class will be re-typed according to the instantiation.
After all the instantiations, a PT program will have a set of
regular classes with single inheritance, like an ordinary Java
program.

1The handling of potential name clashes resulting from a
merge is beyond the scope of this article, but PT has rules
and the rename mechanism discussed to deal with this



3. TEMPLATE EXTENSIONS AND TEMP-
LATE PARAMETERS

In this section we propose an extension to PT where tem-
plates may have bounded template parameters. Dynamic
loading of templates will be presented in the next section.

To be able to enforce a bound on template parameters, we
also introduce the concept of a template extending another,
and thus also of sub-templates. A skeleton of a parameter-
ized template may look as follows.

template W <template S extends U, template T extends V>
{ ... }

S and T are template parameters and U and V are statically
known templates that serve as parameter bounds for the
respective parameters.

When a parameterized template is instantiated, one must
provide an actual template for each parameter, which must
be an extension of the bound of the formal parameter.

Below is a template called Ext. This template could be part
of a framework and programmers would be supposed to write
extensions to it in order for their code to use the function-
ality of the framework. Other templates in the framework
(like Use below) may have parameters bounded by the tem-
plate and may hence be instantiated with a programmer’s
sub-templates of Ext as parameters. The template Ext and
a sub-template ExtOne may look as follows.

template Ext {
class A { void m1(B b) { ... } }
class B { void m2(A a) { ... } }

}

template ExtOne extends Ext {
class A adds { ... }
class B adds {

void m2(A a) { ... } // redefines m2
void m3(B b) { ... } // new method m3

}
class C { ... } // new class C

}

There may be an open ended number of extensions to a
template, written separately and without knowledge of each
other. The extensions may override method implementa-
tions and add methods and properties to classes, and they
may also add new classes and instantiate other templates.
Extension templates can only extend one template, and there
is an implicit instantiation (inst) of the extended template
within the extension. For now, we will not consider the pos-
sibility of allowing name changes in extension templates.

Below, the template Use is defined with a template parame-
ter E bounded by Ext. The template parameter can be used
in an inst statement in Use, but the actual instantiation is
postponed until an actual parameter is provided.

Within Use, it is known from the bound Ext and the inst

statement that the template will have at least the classes A

and B from Ext, and they may be used in Use in the same
way as classes from a regular inst statement.

Thus, through the use of adds-clauses (such as A and B be-
low), the parameterized template may add fields and meth-
ods to the classes defined in the parameter bounds, as well

as override methods from these classes. Furthermore, it may
instantiate other templates using a normal inst statement,
and add its own classes (such as C in the example below).

template Use<template E extends Ext> {
inst E;
class A adds { ... }
class B adds {
void m2(A a) { ... } // redefines m2
void m3(B b) { ... } // new method m3

}
class C { // new class C
void foo(B b) {
new A().m1(b);

}
}

}

In a program, the template Use can be instantiated with Ex-

tOne as its actual parameter, as shown in the example below.
In the package2 Program, the contents of the parameterized
template and of the actual parameter are statically known,
and make up the available classes (and interfaces) accessible
from the instance of Use<ExtOne>. For these classes, addi-
tions may be supplied in the normal PT manner, as shown
below for A, B, C and D. Other templates may be instantiated
as well, and merging may be performed as for normal PT
instantiations.

package Program {
inst Use<ExtOne> with Use.C=>C, ExtOne.C=>D;
rename ExtOne.B.m3=>m4;
class A adds { ... }
class B adds { ... }
class C adds { ... }
class D adds { ... }
class E { ... }

}

Both the actual parameter (here ExtOne) and the parame-
terized template (here Use) may have a class that overrides a
method in a class defined in the template bound Ext (like m2

above). In that case, the general rule is that changes from
the parameterized template (Use) override changes from the
extending template (ExtOne). This rule fits into a program-
ming pattern where it is the programmer of the parameter-
ized template who is in charge and wants to use the method
in the parameterized template regardless of the extension to
the base template. However, we envision that there might be
a need for users to change this precedence, but we explicitly
leave that topic open for future work.

A similar issue is the question of what should happen when
the extension (actual parameter) and the parameterized tem-
plate both have defined new classes with the same name (like
C above). In such situations, these new classes are considered
to be separate classes, and must be renamed in the package
Program in the regular PT fashion to avoid ambiguity (as in
the example above). The same goes for methods within an
existing class (like m3 above). A regular package may also
add classes (like E).

Below is an example that illustrates some of the different sit-
uations that might occur with regards to method overrides.

2Like templates, packages are written within curly brackets
in PT.



template U {
class A { void m(){ ... } }
class B extends A { void m(){ ... } }

}
template V extends U {

class A adds { void m(){ ... } }
class B { void m(){ ... } } // extends A implicitly

}
template X <template UU extends U> {

class A adds { void m(){ ... } }
class B { void m(){ ... } } // extends A implicitly

}
package P {

inst X<V>;
}

Package P will have classes A and B, both with a method m.
The methods will be the ones from template X, since they
override the others. As with regular single inheritance a call
to super in B will invoke the method defined in A. If, on the
other hand, A in X did not define an override of m, a call to
super.m in X.B.m would call the implementation in V.A.

However, if one wants to reuse the methods that are overrid-
den by the template mechanism as opposed to by ordinary
class inheritance, the keyword tsuper may be used, and a
call to tsuper in A in template X will call the method defined
in A in the template that is given as the actual parameter (in
P this is V). A call to tsuper in A in template V will invoke
the one in A in template U. Combining super and tsuper

yields a useful and flexible mechanism for reuse.

A package can be used as a regular Java package in other
compilation units and its classes are regular classes. A reg-
ular Java class may, for example, refer to (and import) the
class P.A. We will see later that regular classes can also have
template parameters, and these work in a different way.

We have not worked out rules for visibility or access restric-
tion at the package level yet. Hence, there is no mention of
public or private classes or methods.

There are obviously many other questions around templates
with template parameters that are not fully answered in the
text above, but to keep this exposition fairly short, we will
not pursue all of these questions here.

4. DYNAMIC INSTANTIATIONS
We saw in Section 2 how to instantiate templates, and how
to merge classes from different templates by using the compile-
time inst construct. In section 3 we saw how templates can
have template parameters and how to write sub-templates.
In this section we introduce dynamic instantiation and adap-
tion of templates. We believe this is very useful, as which
features (in the form of templates) should be used is of-
ten not known until after the execution has started. For
simplicity and to keep this short we limit our detailed dis-
cussion here to instantiating templates dynamically without
any name changes or merges.

The approach we use is based on the hierarchies of templates
formed through the extends-relation, and on using this some-
what like the hierarchies of subclasses in traditional object-
oriented programming. Thus, we can type e.g. a variable
with a template based type, and it can thereby refer to in-
stances of that template, or to instances of a sub-template.

However, we shall also use template types in a way that is
somewhat unusual, by saying that each template instance
has a type of it own which includes both the template of
which it is an instance, and the identity of the instance.
Thus, two instances of the same template have different
types. This is done to make it easier to handle the fact that
the “same” local class in different instances of a template
are indeed different classes. To form a consistent model, we
also say that the full type of an instance is a subtype of the
template it is an instance of.

In the following discussion, we will use as an example the
three templates below. Templates U1 and U2 can be written
after a program referring to U has started running. They
can be separately compiled and neither of U1 and U2 need
any knowledge of the other (nor does U need any knowledge
of its descendants, obviously).

template U { class A {...} class B {...} }
template U1 extends U {
class A adds {...} class B adds {...} }

template U2 extends U {
class A adds {...} class B adds {...} }

In this context, U can often be seen as a sort of “template
interface”, providing mostly abstract classes (in a template
sense), and U1 and U2 can then be different implementations
of this interface. At runtime, a program referring to U may
load one of the templates U1 or U2 (or further sub-templates
of these) and create one or more instances of it. Such in-
stances can be kept track of by template-typed variables and
can be passed around by assignments etc. according to nor-
mal object-oriented polymorphism rules, e.g as the following
code.

Instance<instance ? of U> u = /* A dynamically
generated instance of U, U1 or U2 */;

Instance<instance ? of U1> u1 = /* A dynamically
generated instance of U1 */;

u = u1;

Here, Instance<T> is a class much like the class Class in
Java. It is parameterized by an instance type T and has
the signature class Instance <instance T>. It represents
a template instance (and not a template) in the same way
that Class represents a class. The reason that we use a class
that represents the instance and not the template is that
every instance generation results in the creation of a new
instance type and new types for all the classes in the instan-
tiated template. The concrete mechanism for performing
a dynamic load and instantiation will be explained shortly,
but the result is an object of the class Instance<T>. The
special syntax <instance ? of U> tells the compiler that
the exact instance is not known statically, but that it is
a sub-template of U. The parameter T of Instance will be
bound to the type of the instance. As is shown in the last
line above, template instance references may be assigned to
a template variable having a more general type. Also, an
obvious form of casting can be used for the opposite case.

In the program, a method can have template parameters
bounded by U in the following way:

<instance T of U> void method(){
T.A a = new T.A();
a.doStuff();

}



Within such a parameterized method, elements can be typed
with classes from the template using the template type as
a prefix, like T.A above. Code like this makes it possible to
use classes and invoke methods in dynamically instantiated
templates in a type-safe way. Type safety depends on the
fact that, in the scope, T is bound to an instance and T (a
type parameter) does not change like object variables.

We are considering whether a syntax like the following should
be allowed:

Instance<instance ? of U> u = /* A dynamically
generated instance of U1 or U2 */;

...
method<u.TYPE>();

Here, the formal parameter T in the method is bound to
the current type of u (which is identical with the instance
identity), and will remain so throughout the body of the
method. This will fail if u is a null value.

A class can be written with the same kind of template pa-
rameter. This can look as follows:

class P <instance T of U> {
public T.A a;
public P(){

...
a = new T.A();
...

}
}

This class can be statically and separately checked in the
same way that a generic class can be type checked, with the
difference being the dot-named classes, like T.A. T will be the
same type in this scope and T will be an instance of U or of a
subtype of U. Thus, the class T.A can be seen as a type just
like any type and it has all the properties of A in U. Note
that if A has a method void m(B b) it can be invoked with
m(new T.B()) here. T.A and T.B will, since T is the same,
be from the same instance and at runtime the actual type
of B will match up with the method signature.

The class P can then be used e.g. as follows:

Instance<instance ? of U> u = /* Instance of U or of a
sub-template */;

P<?> pu = new P<u.TYPE>();

... // Maybe another assignment to u

P<?> pu1 = new P<u.TYPE>();

pu = pu1; // OK
pu.a = pu1.a; // COMPILE TIME ERROR !

Here, P<?> is a type where ? is similar to ? in Java generics
in that pu can point to any object of P. Similarly, u can
point to an instance class for any instance of U or instance
of a sub-template of U. Since it is not known statically in
this scope if pu and pu1 point to an object created with the
same template instance (because of the question mark), the
last assignment is not legal.

Objects of the classes of a template instance may be passed
around like the template instance itself. This can be illus-
trated by the following two methods:

<instance T of U> void method_1() {
T.A a1 = new T.A();
T.B a2 = new T.B();
method_2<T>(a1, a2); // <T> may be omitted as it

} // can be inferred

<instance Z extends U> void method_2(Z.A a1, Z.B b) {
...; a1.m(b); ...;

}

When method_1 is invoked, T is bound to the type of some
template instance u. The clause T.A is bound to the type
of A for that particular instance. The second method takes
two formal parameters that are of types called Z.A and Z.B

where Z is a the type of the template instance (a sub-type
of U). The invocation of this method in the first method can
be type checked since both the actual parameters are typed
with class A from the same template which is also a sub-
template of U. Inside the second method, the methods (for
example m) defined in template U can be called.

In a scope, there is often only one known template that
is being used and it would be nice not to have to write
the instance type parameter T all the time. Therefore, we
propose the shorthand notation shown below. Within the
with-block, class names can be written without the type
prefix.

<instance T of U> void method(){
...
with(T) do {
...; .A a = new .A(); ...;

}
...;

}

Other times, one may want to work with two (or more) dif-
ferent instances of a template (or more likely, two instances
of different sub-templates) at the same time. Below we as-
sumes that A in Ext has a field b of type B and that B has a
field x of type int.

<instance T of Ext, instance U of ExtOne>
U.A[] method(T.A tas[]) {

U.A uas[] = new U.A[tas.length];
for (int i = 0; i<tas.length; i++){
uas[i] = new U.A();
uas[i].b = new U.B();
uas[i].b.x = tas.[i].b.x; // A and B from different

} // instances are never
return uas; // mixed up

}

Dynamically generated instances of templates are produced
by a special loader, with a method instantiate that has a
template parameter, and a normal String parameter. The
first parameter should be a statically known template, and
the second should be a filename (or net-address, etc.) where
a sub-template of the template parameter can be found. The
loader will check that this is the case, and maybe also com-
pile the template if necessary. Thus, a dynamic instantiation
may look as below. The exact details of the loader and its
implementation are not worked out, but at runtime it can
be checked that it will only return an instance of the given
template or a sub-template.

Instance<instance ? of U> u =
TLoader.instantiate<U>("-file-");

Just as metods and classes in regular classes can be param-
eterized with regular template instances and used with any



instance of any sub-template, they can also be parameter-
ized with a parameterized template. The example below is a
class that uses the template Use from earlier as a parameter
bound.

class StartOff<instance T of Use>{
run(){ ...

new T.C().foo(new T.B());
... }

}

An object can be created of this class using any instance
of Use instantiated with any sub-template of Ext. All the
classes known in Ext can be used within this class, prefixed
by T. Below is an example of instantiating an instance of
Use with ExtOne and using StartOff.

Instance<instance ? of Use> u =
TLoader.instantiate<Use>("-Use<ExtOne>-");

StartOff<?> s = new StartOff<u.TYPE>();
s.run();

Note that the use of the name C in StartOff refers to the
one originating in Ext and that the one from ExtOne is not
visible in StartOff.

All these examples of regular classes and methods parame-
terized by templates are mainly there to be starting points
for the code within the templates. The interesting code will
probably be inside templates Ext and Use and classes like
StartOff will usually just set this off.

There are more details about dynamic instantiations of pack-
age templates that have not been discussed here and open
questions obviously still exist, but we nevertheless believe
that the mechanism should be useful as a starting point for
developing a language mechanism for dynamically config-
ured and composed systems.

5. DISCUSSION AND FURTHER WORK
The aim of this work is to develop tools that allow parts of
larger software systems to be written as independent pieces
and that can be merged in a flexible way. This should pro-
vide flexibility in both organization of a system and reuse of
components. To be truly flexible, merging and composition
of independently written parts of software should even be
allowed at runtime. However, one would like to do this with
some sort of static checking to avoid some of the often oc-
curring errors with uncoupled code. Also, there is value in
the ability to run different versions of a library or framework
in the same runtime without having to deal with conflicting
types. We try to solve this with an extension of the package
template (PT) mechanism.

PT and the extensions proposed here should provide some of
the apparatus not only for merging and composing unrelated
templates of cooperating classes, but also for doing so in a
running system.

One feature of the PT approach is that the classes within the
templates form a whole and that the relations and inheri-
tance between the classes are preserved during instantiation.

New types are created whenever a template is instantiated.
Each instance is kept separate, and in addition to allow-
ing flexibility in merging and renaming, this can be used to

make sure that objects created from different template in-
stances have their own type. This enables a form of family
polymorphism [9].

The dynamic loading and composition proposed is not as
dynamic as some other systems. Requiring that the loaded
template be a sub-template of some bound, the program can
be type checked and if the loading itself does not fail, the
system will not cause type errors during execution.

Loading single classes, as is usual in Java, means that one
can only depend on a single interface with named methods
that have parameters that are of statically known and un-
changeable types. Loading a complete template not only
allows one to view several classes as a whole, but in PT the
types of the parameters of methods and variables in the tem-
plate itself are adapted to new types. This is a useful new
feature of package templates and dynamic package templates
in particular – which does this composition at runtime.

PT is more flexible in renaming, etc, than is discussed here.
There is also more flexibility in using template parameters
than what has been discussed. There is work going on look-
ing at merging and other type safe mechanisms for creating
instances from multiple dynamically loaded templates and
on abstract methods in templates.

We have not discussed how this proposal would work to-
gether with the aspect oriented extensions discussed in [3].
A consistent combination of the two extensions should be
worked out. For an even more dynamic approach, there
is also a study of a similar mechanism for the dynamically
typed language Groovy [2].

We are also looking at doing dynamic updates to running
code, that is updating already loaded template instance, by
for example redirecting calls to new methods. Allowing this
in some restricted way, could create even more useful aspect
oriented features in the language.

The most important future work is to settle the open ques-
tions concerning the rules of the language, prove its type
safety and building a compiler.

6. RELATED WORK
The authors of the trait mechanism [22] approach the prob-
lem of composition from the angle that the primary unit
to be composed is the class. A trait is as such a construct
that encloses a stateless3 collection of provided and required
methods. Traits may subsequently be used to compose new
traits or as part of a class definition. The composition of
traits is then said to be flattened. This entails that (1)
the trait ordering in each composition is irrelevant, and (2)
that a class composed from traits is semantically equal to
a class in which all the methods are defined directly in the
class. When used to compose a class, all requirements must
be satisfied by the final composition. Traits were originally
developed for the dynamic language Squeak, and supports
method aliasing and exclusion upon composition. A stati-
cally typed version also exists [20]. Still, neither the static

3Traits were originally defined to be stateless, although a
more recent paper [5] has shown how a stateful variant may
be designed and formalized.



nor the dynamic version have explicit support for runtime
selection of which features that should be composed.

Mixins [6] are similar in scope to traits, in that they target
the reuse of small units of code. Mixins also define provided
and required functionality, and the main difference between
them and traits is arguably the method of composition. Mix-
ins traditionally rely on inheritance, by defining a subclass
with as-of-yet undefined parent, and thereby requiring that
mixins are linearly composed.

Functionality similar to that of traits and mixins can quite
easily be mimicked with PT. For instance, to create a reusable
collection of methods (with or without accompanying state),
one might simply define a template with a single class, con-
sisting of the methods that are subject to reuse. This class
may then be merged with other classes where the functional-
ity is needed. When it comes to specifying required methods,
PT provides no such concept out-of-the-box, but a solution
might be to define abstract and/or virtual methods in the
template class. As is the case with traits, merge/composition
order is not significant in PT.

Perhaps the biggest conceptual difference between mixins/traits
and PT comes in form of intended scope, in the sense that
PT is targeted towards reusing and specializing larger chunks
of code as one coherent unit. In that regard, the former two
can be seen as a special case of what can be accomplished
with PT, admittedly with a slightly more involved syntax
and some ’glue code’.

Aspect-oriented programming (AOP) [14] involves several
concepts related to PT. For instance, intertype declarations
in AspectJ [7] may (statically) add new members to existing
classes, and may as such be used to compose previously un-
related features. An example of this is exemplified through
the Observer design pattern [10] in [11]. However, this im-
plementation, and on a higher level the general approach em-
ployed to composition, is arguably less than optimal, given
that it suffers from the fact that the aspect itself entan-
gles several conceptual roles within a single aspect, and that
this aspect also exists as a unit at runtime, lacking a clear
mapping to objects from the problem domain. The Caesar
language [1, 19] supports both aspect-oriented programming
constructs and code reuse and specialization through the use
of virtual classes. It also supports wrappers for defining ad-
ditional behavior for a class, and dynamic deployment of
aspects at runtime (through use of the deploy keyword).
Dynamically deployed aspects are in effect from all calls
propagating down the call stack with respect to the lexi-
cal scope of a deploy construct. Expanding on the notion
of dynamic deployment, Tanter [24] describes a mechanism
for controlling the scope of dynamically deployed aspects (in-
cluding propagation down the call stack and to new objects).
Note, however, that these aspects may affect behavior only,
and not class structure or hierarchy, as opposed to dynamic
instantiations in PT.

Context-oriented programming (COP) [8] provides a way to
activate and deactivate layers of a class definition at run-
time. Layer activation can be nested, and propagate down
the call stack (for the current thread).

Like PT, Mixin layers [23] is a mechanism for writing an ad-
dition with affect accross multiple entities like classes. Mixin
layers can be composed by instantiating a layer with another
as its parameter and thus mixin layers are both reusable and
interchangeable. They are also nested. However, there does
not seem to be a way to build hierarchies withing a mixin
layer.

BETA [18, 17], gbeta [9] and J& [21] (pronounced ”jet”) are
systems that in many ways are similar to each other and
in many respects can achieve similar end results to those of
PT. A common property of all of them (except PT, that is)
is that they utilize virtual classes (as introduced by BETA)
to enable specialization and adaption of hierarchies of re-
lated classes. gbeta and J& support multiple inheritance,
and this may to a certain extent be used to ”merge” (in the
PT sense of the word) independent classes. Neither BETA,
gbeta nor J& support concepts similar to runtime template
instantiations.

As we now introduce dynamicity and more free-standing
template instances, the mechanism we present will become
more similar to a solution with virtual classes and family
polymorphism, as e.g. in gbeta [9]. However, the rules and
restrictions used to keep the system consistent will be dif-
ferent in our version.

In a subject-oriented [13] programming (SOP) system, dif-
ferent subjects may have differing views of the (shared) ob-
jects of an application. There is no global concept of a class;
each subject defines ’partial classes’ that model that sub-
ject’s world view. What is called a merge in SOP, is some-
what different from a merge in PT. In SOP, a merge is an
example of a composition strategy (and there may be many
of them), that tells the system how to compose separate
subjects with overlapping methods and/or state. Like with
mixins and traits, there seems to be a difference in intended
scope when comparing SOP with PT; SOP targets a broader
scope, with entire (possibly distributed) systems (that may
even be written in different languages) being composed. One
could, however, picture an extended PT-like mechanism as
a basis for an implementation of SOP.

Our approach to typing classes and methods with instance
types to keep different instances of a template apart at run-
time is based on a clever idea for keeping different implemen-
tations of a single API apart at runtime using Java generics
and tying the classes of an implementation together using a
type parameter. This idea is found in [12].

Ada originally (in 1983, [16]) had no mechanisms supporting
object-orientation, but it had a mechanism called generic
packages with some of the same aims as PT, in that packages
can contain type definitions and that you get a new set of
these each time the generic package is instantiated. Generic
packages also have type parameters.

In Ada 95 [4] a slightly untraditional mechanism for object-
orientation was introduced, and it was further elaborated
in Ada 2005. Thus, the potential for PT-like mechanisms
should be there, but as far as the authors understand it,
there is nothing similar to virtual classes (at compile-time or
at runtime) in the language, and the mechanims for adapt-



ing a package to its use during instantiation are not very
advanced.

7. CONCLUSION
We have proposed an extension to the package template
mechanism that will allow dynamic loading and instantia-
tions of templates. We have discussed some of the properties
of the proposed language. It is in some crucial ways different
from other mechanisms that try to solve similar challenges.
The practical consequences of these differences need to be
worked out.

Further studies need to be done to find out if the language is
really useful for dynamic software composition, and details
of the language need to be worked out based on a study of
what makes most sense in a practical language.

Although our initial work on finding a translation of the
mechanism to Java generics suggests that the language is
type safe, a proof of this needs to be worked out and a
compiler must be built.
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