
Aspect-Based Variability Model for Cross-Organizational
Features in Service Networks

Stefan Walraven, Bert Lagaisse, Eddy Truyen & Wouter Joosen
DistriNet, Dept. of Computer Science

K.U.Leuven, Belgium
{firstname.lastname}@cs.kuleuven.be

ABSTRACT
Different clients have different needs, therefore adaptability
and variability are crucial properties for service compositions
to fit those varying requirements. This is hard to achieve
in a cross-organizational context where services are imple-
mented and deployed by different organizations (e.g. com-
panies, administrative domains, . . . ): a feature, for example
security, cannot be condensed into a single module that is
applicable to all the different services. This paper proposes
an aspect-based variability model for representing cross-or-
ganizational features in service networks such as systems of
systems or service supply chains. We argue that cross-or-
ganizational features should be managed in a multi-layered
architecture, distinguishing between policy and mechanism.
Such a multi-layered architecture is completely lacking in
AOSD currently. Based on this tenet, we first describe a
technology-independent feature ontology that is well-defined
for a domain or a specific service network and map it to an
aspect-based feature implementation.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—Distributed applications; D.2.11 [Software
Engineering]: Software Architectures—Service-oriented ar-
chitecture (SOA); D.2.13 [Software Engineering]: Reus-
able Software

General Terms
Design, Documentation, Management

Keywords
AOSD, Variability modelling, Service engineering, Feature-
oriented

1. INTRODUCTION
Recent trends in service engineering aim to combine the ben-
efits of feature-based and service-based approaches [5, 14, 1,
19]. This combination increases the reusability of services

and gives service consumers the opportunity to select differ-
ent variants of a service. In addition, a service provider can
provide fine-grained customization capabilities for a service,
without having to create new services for each customiza-
tion.

A feature is a distinctive mark, quality, or characteristic of
a software system or systems in a domain [12]. Features
define both common facets of the domain as well as differ-
ences between related systems in the domain. They make
each system in a domain different from others. Features
are also used to define the domain in terms of the manda-
tory, optional, or alternative characteristics of these related
systems. Aspect-oriented software development (AOSD) [9]
often has been put forward as a possible solution to enable
modularization and composition of features [20, 17, 15].

However, services are mostly used in a service composi-
tion consisting of services from different organizations. In
such a cross-organizational context, a feature cannot be con-
densed into a single feature module any more. The reason is
that service implementations are black boxes, implemented
and deployed by different organizations, and only the in-
terface descriptions are available [1]. But this doesn’t ex-
clude the need to share semantically compatible features
between those different services. A typical example of a
cross-organizational crosscutting feature is security. When
implementing an access control concern in an application,
for instance, security actions need to be performed for every
interaction between application components. However in a
cross-organizational application, it is difficult to defend that
a single module, for instance an aspect, should encapsulate
the implementation of the internal security mechanisms of
the organization involved as well as the global security policy
governing how security must be addressed in the overall in-
teraction between organizations. The latter security policy
belongs to a level of abstraction above the internal security
mechanism.

Therefore this paper proposes an aspect-based variability
model for representing cross-organizational features in ser-
vice networks such as systems of systems or service supply
chains. We argue that cross-organizational features should
be managed in a multi-layered architecture. Such a multi-
layered architecture is completely lacking in AOSD currently.

The remainder of this paper is structured as follows. In
section 2, we further illustrate and motivate the need for a



variability model for cross-organizational features in AOSD.
Section 3 elaborates the overall approach and presents the
application of the approach to an example. We discuss re-
lated work in section 4 and conclude in section 5.

2. MOTIVATION & ILLUSTRATION
In this section we further motivate and illustrate the impor-
tance of an aspect-based variability model for cross-organi-
zational features in service networks.

We present an example in the e-finance domain (see Fig. 1).
A bank offers a stock trading service to inspect, buy and
store stock quotes. To be able to provide this service, it
cooperates with the stock market, which in turn cooperates
with a settlement company. So the stock trading service is a
composition of the services provided by these three compa-
nies. Each participant can take up two roles in a composi-
tion: service consumer (client) and service provider (server).
For example the bank company is a server for the bank cus-
tomers, but consumes the QuotesOrderService of the stock
market.

QuotesPortalService

Bank Company

QuotesOrderService

Stock Quotes Market

SettlementService

Settlement Company

Bank Customers

Order
Registering

Order
Processing

Transaction
Preparation

Figure 1: Illustration of the stock trading service
composition.

During a typical session, a client inspects stock quote data,
inspects the stored stock quotes in his custody account and
potentially buys or sells some stocks. Clients can issue a
stock order by using the web service portal facility of their
bank. The bank service acquires the client’s order and for-
wards it to the stock market. Processing the order request
in the stock market consists of three sequential functional
steps. Firstly, the client order is registered in the stock mar-
ket by the OrderRegistration unit and then forwarded to
the OrderProcessing unit. Secondly, at regular time in-
tervals, the OrderProcessing unit searches for matches be-
tween buying and selling offers. If two orders match, they
are forwarded to the TransactionPreparation unit, which
delegates the actual trade of goods to the settlement com-
pany.

Since different clients have different needs, this service com-
position can be customized with respect to agreed features
such as prioritized processing, billing, stepwise feedback, log-
ging, non-repudiation, transaction support, secure commu-
nication, authentication, authorization and secure server-
side storage. Choosing different features results in differ-
ents variants. If selected, the stepwise feedback feature, for
instance, informs the client about the progress made in pro-
cessing its requests, at the level of the individual services as
well as the different sequential units within a service. Several
alternatives are available for the stepwise feedback feature,

such as feedback by email or by mobile text messages. Sim-
ilarly, a client can select prioritized processing. By having
this feature injected, the client’s requests are prioritized over
other requests. However, the prioritizing feature requires the
billing feature: prioritizing requests comes at an expense.

Figure 2 presents the stock trading service composition in-
cluding the prioritized processing feature. We see that the
stepwise feedback feature affects both the QuotesPortalSer-
vice, to retrieve customer account information, and the
QuotesOrderService, to perform the prioritizing. A more
trivial case is the secure communication feature: encryp-
tion and decryption operations should be performed at both
sides of the connection. This clearly illustrates that a single
feature, often consisting of a client and server functionality
part, can affect multiple services in a service composition.

Prioritized
Processing

Acquisition

Order
Registering

Order
Processing

Transaction
Preparation

process prepareregister

Settlement

process settle
up

QuotesPortalService SettlementService

QuotesOrderServer

perform
prioritizing

retrieve
customer
information

Figure 2: Services affected by the stepwise feedback
feature.

However, each company in a cross-organizational service
network has its own IT administration and trust domain,
and will not allow external parties to add or update fea-
ture implementations. The services provided by the different
partners are black boxes, loosely-coupled and independently
maintained by the company’s own administrators. This
black-box scenario hinders the feature modularization and
composition in a cross-organizational context [1]. There-
fore a feature cannot be condensed into a single module
any more. Cross-organizational features need to be split up
in client-side and server-side aspects, independently imple-
mented with possibly different AO-technologies. However, a
uniform high-level representation of those features is crucial
to be able to share them in a particular application domain
or service network.

3. APPROACH
In this section we present our approach to achieve a multi-
layered architecture for the uniform representation of cross-
organizational features in AOSD. A multi-layered architec-
ture, distinguishing between policy and mechanism, is a
core tenet of the body of research on cross-organizational
coordination architectures. We shortly review the state-
of-the-art in this field. Subsequently, based on this tenet,
we propose that aspect-based variability is first described
at the level of a technology-independent feature ontology
that is well-defined for a domain or a specific service net-
work. Each organization implements this feature ontology
independently using an AOP technology of its choice. The
mapping between the independent feature ontology and the
aspect-based implementation is then specified as part of the
second layer of the model. Finally, we show how this feature



ontology is used for cross-organizational service customiza-
tion.

3.1 Cross-organizational Coordination Archi-
tectures

Our approach is inspired by the design principles of cross-
organizational design. In the field of cross-organizational
coordination architectures, a layered system architecture is
a core principle of the reference model [31]. This reference
model distinguishes between (i) the type of agreements that
are established, (ii) the language for describing the agree-
ments, and (iii) the middleware for establishing and execut-
ing the agreements.

The language for describing how the interactions between
two or more independent services are to be done is further
refined into a conceptual and a computational model [31]:

1. A conceptual model provides the modeling concepts
to describe the regulations at a sufficient high-level of
abstraction that is independent from the organizations
internal processes and data.

2. A computational model offers behavioral concepts that
are mappable to implementable actions in the under-
lying software system that can be enforced upon con-
tracted services.

The conceptual model of the language should be as inde-
pendent as possible from the computational model to enable
that different organizations can implement the same agree-
ment differently depending on their choice of implementa-
tion platform, while adhering to the terms of the agreement.

When multiple independent organizations interact with each
other, they have to integrate their business processes in order
to be able to operate, gain added-value and survive in a mar-
ket. To enable this, a certain agreement must be complied
by all participating organizations in the business relation-
ship. We think that a common feature ontology can be part
of this agreement. Therefore, it is plausible to assume that
services in a service network can share a common feature
ontology.

Feature i

dependsOn conflictsWith

Service 
Consumer 

Role 

 Service
 Provider
 Role

Conceptual Model

Aspect X.i Aspect Y.i

Mapping to 
aspect-based implementation

Computational Model

Figure 3: Aspect-based variability model.

3.2 High-level Feature Ontology
The conceptual model in our approach for specifying cross-
organizational features consists of a feature ontology. Sim-
ilarly to the conceptual model of the cross-organizational
coordination architectures, this feature ontology should be
high-level and independent from the aspect-based implemen-
tation to enable organizations in service networks to imple-
ment cross-organizational features using an AOP technol-
ogy of their choice (see Fig. 3). In order to be successful,
the feature ontology must have a clear scope on which par-
ticular application domain or area it applies, for example,
a specific market such as financial services or an individual
(long-running) business relationship between multiple orga-
nizations.

The specification of such a common feature ontology is di-
vided into a base level and one or more application-specific
levels. The base ontology is a framework and vocabulary for
specifying application-specific ontologies. An application-
specific ontology contains a catalog of features that can be
used within a certain cross-organizational service network.
Application-specific ontologies are hierarchically structured:
the application-specific ontology of a specific service compo-
sition imports and extends the ontology of the application
domain.

A feature ontology can be seen as a high-level, technology-
independent agreement between the parties involved (typi-
cally a service consumer and service provider). This agree-
ment prescribes the intended behavior of the feature and
clearly sets out the roles that different parties involved have
to play, as depicted in Fig. 3. These roles are described by a
name (e.g. Service Consumer) and a set of responsibilities.
These responsibilities specify constraints on behavior (the
specification of an algorithm to be used) and interfaces (mes-
sage types and operations that are required or provided).
Further, composition rules can be specified that prescribe
which features depend on other features and which features
can’t be executed during the same request due to feature
interference.

Listing 1: Example of high-level features.

feature P r i o r i t i z e d P r o c e s s i n g {
dependsOn : B i l l i n g ;
role ServiceConsumer {

r e s p o n s i b i l i t y retr ieveCustomerAccount {
prov ides : CustomerAccount ;

}
}
role Serv i c eProv ide r {

r e s p o n s i b i l i t y p e r f o r m P r i o r i t i z i n g {
r e q u i r e s : CustomerAccount ;
prov ides : AccountableItem ;

}
}
}

For example, the PrioritizedProcessing feature from Fig. 2
needs two roles: a service consumer who retrieves customer
account information, and a service provider, responsible for
performing the prioritizing. The service provider role re-
quires a CustomerAccount attribute, which will be provided
by the service consumer role. After the prioritizing, the ser-



vice provider role will provide a AccountableItem attribute
that will be used by the Billing feature. The feature de-
scription is presented in Listing 1. It also defines a com-
position rule that prescribes that PrioritizedProcessing

requires the Billing feature.

3.3 Mapping to Aspect-based Implementation
The mapping between the high-level feature ontology and
the aspect-based implementations is specified on the level
of the service platform, hiding the implementation details
for external parties. The use of AOSD [9] enables a clean
separation of concerns, in which the core functionality of a
service is separated from any feature behavior. Therefore
they are implemented separately from each other as com-
posite entities containing a set of aspect-components, pro-
viding the behavior of the features (so called advice). This
advising behavior can be dynamically composed on all the
components of a service – at client-side and at server-side.

By capturing the semantics of the features in a high-level
feature ontology, the different features can be implemented
independently by each of the service providers using their
favorite service platform and AO-composition technology.
Hence, the different services in the network may have their
own optimized aspect-based implementations of the different
features, and the most appropriate feature implementation
in each service may depend on environmental circumstances.
This decentralized feature management allows a variety of
service platforms using different AO-composition technolo-
gies to be interconnected. In addition, the implementation of
the different features and the software composition strategy
are open for adaptation by each of the local administrators.
However, the feature implementations have to satisfy certain
constraints, enforced by the feature ontology.

Each feature implementation mapping within a specific orga-
nization is described by means of a declarative specification
that specifies: (i) the feature and role that is implemented,
(ii) the aspect-component that implements the particular
role, and (iii) optionally an AO-composition for weaving the
aspect-component into the internal processes and data of the
organization (see Listing 2).

Listing 2: Example of a feature implementation
mapping.

featureImplementationMapping PPImpl {
implements : P r i o r i t i z e d P r o c e s s i n g ;
r o l e : ServiceConsumer ;
ao−component : PPAOComponent ;
ao−compos it ion {

. . .
}
}

3.4 Using the Feature Ontology for Cross-Or-
ganizational Service Customization

The Web Services Description Language (WSDL) is an XML-
based language that provides a model for describing web
services. The web service is defined by an interface, describ-
ing the operations that can be performed and the message
types that are required/provided by these operations. The

Feature i

dependsOn conflictsWith

Service 
Consumer 

Role 

 Service
 Provider
 Role

Conceptual Model

Aspect X.i Aspect Y.i

Mapping to
aspect-based implementation

Computational Model

Service
Provider Y

WSDL
- interface
- message types
- ports

features

Service
Consumer X

Service binding

Figure 4: Using the Variability Model for Web Ser-
vices.

WSDL also defines services as collections of network end-
points, or ports. A port is nothing more than the address or
connection point to the web service (typically a http URL).
To be able to use our feature ontology, the WSDL should be
extended with the set of available features (see Fig. 4).

The variability model is accessible to the clients of the ser-
vice application and allows them to select a desired set of
features. Configuration of features across the service net-
work happens through instantiation of service bindings. A
service binding is a declarative specification, specifying the
web service location, the selected port and which features
are desired (see Listing 3).

Listing 3: Example of a service binding.

servicebinding {
URI : http : //www. s t o c k t r a d i n g e x a m p l e . be ;
port : StockTradingServiceSoapEndpoint ;
f e a t u r e s : P r i o r i t i z e d P r o c e s s i n g , B i l l i n g ;
}

4. RELATED WORK
We first discuss the work in the context of cross-organiza-
tional service provisioning. Next we discuss the related re-
search in the domain of service composition.

Cross-organizational coordination architectures. A multi-
layered architecture, distinguishing between policy and mech-
anism, is a core principle of the body of research on cross-or-
ganizational coordination architectures. Firstly, agreements
must be represented digitally by means of a language that
offers the necessary concepts for describing and enforcing
agreements. Second, coordination middleware must be de-
veloped in order to establish agreements dynamically, and
to enforce the agreements or detect violations against it.

The current state-of-the-art on cross-organizational coordi-
nation architectures in the general area of SOA consists
of policy-based and contract-based frameworks. Contract
frameworks (such as BCL [21], [11], [26], GlueQoS [32], T-
BPEL [29] and SLAng [28, 27]) focus mostly on negotia-
tion, enactment and monitoring, while policy-based archi-
tectures (e.g. Ponder [7] and LGI [22]) focus exclusively
on enforcement. These coordination architectures estab-
lish agreements dynamically between two or more organi-
zations, but fail to support the coordination of system-wide
customizations of service compositions. Our approach deals
with this by providing an aspect-based variability model for



cross-organizational features, managed in a multi-layered ar-
chitecture.

Service composition. Previous research focussed already on
automated composition of web services into composite web
services [10, 6, 13]. For this purpose, matchmaking algo-
rithms search for matching web services based on their in-
put/output, the interaction protocol and functional behav-
ior, using a forward or backward chaining algorithm and a
discovery service. The matchmaking process can be either
centralized (i.e. planning a complete composition at once), or
decentralized, allowing each web service in the composition
to decide individually which web services to select in pro-
viding the required services for processing the request. This
functional matchmaking process is originally based upon
WSDL information in the UDDI directory to select the ap-
propriate services. In more recent work, the matchmaking
process is based upon QoS properties of the different web
services [32, 33, 34, 16, 4, 8]. Here, non-functional prop-
erties such as security, reliability and performance are used
by the matchmaking algorithm to select the most appropri-
ate service. For example, in [33], Zheng et al. propose a
quality-driven approach to select component services dur-
ing the execution of a composite service. For this purpose,
they define a web service quality model based upon five non-
functional properties and a global quality-driven selection
algorithm formulating these properties as a linear optimiza-
tion problem. In this approach, every service is assumed
to have one particular QoS profile, described in the quality
model. [18] presents an heuristic algorithm for composing
services to achieve global QoS requirements in dynamic ser-
vice environments.

A common denominator in this research domain is the us-
age of ontologies [3] to store semantic information about
web services to automate the matchmaking of services in
a web service composition based upon functional and non-
functional properties [25, 16, 30]. In our approach, we use
ontologies and semantic information to describe features as
first class entities rather than describing web services with
their properties. In this way, the information about the fea-
tures is web service independent. Thanks to this ontology,
automated reasoning can be done about the customization
of the orchestration on a per-request basis, without consid-
ering the actual web service composition.

The GlueQoS middleware-based approach of Wohlstadter
et al. [32] manages dynamically changing QoS requirements
of web services by delaying QoS commitments of the ser-
vices. Each service describes its QoS preferences, and a
middleware-based resolution mechanism searches for a sat-
isfiable set of QoS features to inter-operate for services that
encounter each other for the first time. Similar to our ap-
proach, GlueQoS uses a fixed ontology for classifying fea-
tures and describing their interactions and possible interfer-
ence. However, their selection of features is fully decentral-
ized and on a per-collaboration basis (optimally suited for a
highly dynamic web service composition), but lacking sup-
port for client-specific customization and consistent process-
ing throughout cross-organizational service compositions, as
our approach does.

Finally, our approach does not pretend to replace existing

WS-standards such as WS-Coordination [24], WS-Policy [2]
and WS-Security [23], but we intend to offer a complemen-
tary approach for consistent customization of features in or-
chestrations. For example, in our approach we use a per-
request tagging solution to achieve coordination between the
client and the different web services. In case more complex
coordination schemes are needed (e.g. if coordination mes-
sages don’t follow the message flow), our approach can be
combined with WS-Coordination. This coordination speci-
fication was originally defined for coordinating transaction
protocols, but is extensible for all kinds of coordination pro-
tocols in a web service environment.

5. CONCLUSION AND FUTURE WORK
In this paper, we proposed an aspect-based variability model
for representing cross-organizational features in service net-
works. Our approach consists of a multi-layered architec-
ture, mapping a technology-independent feature ontology
onto an aspect-based implementation.

The approach supports maintaining the compatibility of fea-
ture implementations across a service network of indepen-
dent organizations. The common feature ontology can also
be leveraged to support client-specific customization of cross-
organizational features across such service networks. As only
limited tests have been performed, further validation and
evaluation of our approach are necessary.

6. REFERENCES
[1] Apel, S., Kaestner, C., and Lengauer, C.

Research challenges in the tension between features
and services. In SDSOA ’08: Proceedings of the 2nd
international workshop on Systems development in
SOA environments (New York, NY, USA, 2008),
ACM, pp. 53–58.

[2] BEA Systems, IBM, Microsoft Corporation,
SAP AG, Sonic Software, and VeriSign. Web
Services Policy Framework (WS-Policy). http:
//download.boulder.ibm.com/ibmdl/pub/software/

dw/specs/ws-polfram/ws-policy-2006-03-01.pdf,
March 2006.

[3] Berners-Lee, T., Hendler, J., and Lassila, O.
The Semantic Web. Scientific American 284, 5 (2001),
34–43.

[4] Bilgin, A. S. A DAML-based repository for
qos-aware semantic web service selection. In IEEE
International Conference on Web Services (ICWS
2004) (2004), IEEE Computer Society, pp. 368–375.

[5] Cohen, S., and Krut, R., Eds. Proceedings of the
First Workshop on Service-Oriented Architectures and
Software Product Lines (May 2008), Carnegie Mellon
University - Software Engineering Institute.

[6] Constantinescu, I., Faltings, B., and Binder, W.
Large scale, type-compatible service composition. In
IEEE International Conference on Web Services
(ICWS 2004) (2004), pp. 506–513.

[7] Damianou, N., Dulay, N., Lupu, E., and Sloman,
M. The ponder policy specification language. In
Policies for Distributed Systems and Networks (2001),
Springer, pp. 18–38.

[8] Felfernig, A., Friedrich, G., Jannach, D., and
Zanker, M. Semantic configuration web services in

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-polfram/ws-policy-2006-03-01.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-polfram/ws-policy-2006-03-01.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-polfram/ws-policy-2006-03-01.pdf


the cawicoms project. In ISWC ’02: First
International Semantic Web Conference on The
Semantic Web (2002), Springer, pp. 192–205.

[9] Filman, R. E., Elrad, T., Clarke, S., and Akşit,
M. Aspect-Oriented Software Development.
Addison-Wesley, Boston, 2004.

[10] Foster, H., Uchitel, S., Magee, J., and Kramer,
J. Compatibility Verification for Web Service
Choreography. In IEEE International Conference on
Web Services (ICWS 2004) (2004), IEEE,
pp. 738–741.

[11] Hoffner, Y., Field, S., Grefen, P., and Ludwig,
H. Contract-driven creation and operation of virtual
enterprises. Computer Networks 37, 2 (2001), 111–136.
Electronic Business Systems.

[12] Kang, K. C., Cohen, S. G., Hess, J. A., Novak,
W. E., and Peterson, A. S. Feature-oriented
domain analysis (FODA) feasibility study. Tech.
Rep. 21, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, 1990.

[13] Lassila, O., and Dixit, S. Interleaving discovery and
composition for simple workflows. In Semantic Web
Services, 2004 AAAI Spring Symposium Series (2004).

[14] Lee, J., Muthig, D., and Naab, M. An Approach
for Developing Service Oriented Product Lines. In
SPLC ’08: 12th International Software Product Line
Conference (Sept. 2008), pp. 275–284.

[15] Lee, K., Kang, K. C., Kim, M., and Park, S.
Combining feature-oriented analysis and
aspect-oriented programming for product line asset
development. In Software Product Line Conference,
2006 10th International (0-0 2006), pp. 10–112.

[16] Lee, Y., Patel, C., Chun, S. A., and Geller, J.
Towards intelligent Web services for automating
medical service composition. In IEEE International
Conference on Web Services (ICWS 2004) (2004),
pp. 384–394.

[17] Loughran, N., and Rashid, A. Framed Aspects:
Supporting Variability and Configurability for AOP.
In Software Reuse: Methods, Techniques and Tools
(2004), Springer, pp. 127–140.

[18] Mabrouk, N. B., Beauche, S., Kuznetsova, E.,
Georgantas, N., and Issarny, V. QoS-aware
service composition in dynamic service oriented
environments. In Middleware ’09: Proceedings of the
10th ACM/IFIP/USENIX International Conference
on Middleware (New York, NY, USA, 2009),
Springer-Verlag New York, Inc., pp. 123–142.

[19] Medeiros, F. M., de Almeida, E. S., and
de Lemos Meira, S. R. Towards an Approach for
Service-Oriented Product Line Architectures. In
Proceedings of the Third Workshop on
Service-Oriented Architectures and Software Product
Lines (SOAPL) (2009), S. Cohen and R. Krut, Eds.,
pp. 151–164.

[20] Mezini, M., and Ostermann, K. Variability
management with feature-oriented programming and
aspects. In SIGSOFT ’04/FSE-12: Proceedings of the
12th ACM SIGSOFT twelfth international symposium
on Foundations of software engineering (New York,
NY, USA, 2004), ACM, pp. 127–136.

[21] Milosevic, Z., Linington, P. F., Gibson, S.,

Kulkarni, S., and Cole, J. Inter-Organisational
Collaborations Supported by E-Contracts. In Building
the E-Service Society (2004), Springer, pp. 413–429.

[22] Minsky, N. H., and Ungureanu, V. Law-governed
interaction: a coordination and control mechanism for
heterogeneous distributed systems. ACM Trans.
Softw. Eng. Methodol. 9, 3 (2000), 273–305.

[23] OASIS Web Services Security (WSS) TC. Web
Services Security (WS-Security).
http://www.oasis-open.org/committees/tc_home.

php?wg_abbrev=wss, February 2006.

[24] OASIS Web Services Transaction (WS-TX) TC.
Web Services Coordination (WS-Coordination).
http://docs.oasis-open.org/ws-tx/

wstx-wscoor-1.2-spec-os.pdf, February 2009.

[25] Paolucci, M., Kawamura, T., Payne, T. R., and
Sycara, K. Semantic matching of web services
capabilities. In ISWC ’02: First International
Semantic Web Conference on The Semantic Web
(2002), Springer, pp. 333–347.

[26] Shrivastava, S. Tapas final report. Tech. rep.,
Technical Report Project deliverable D20, 2005.

[27] Skene, J., and Emmerich, W. Engineering Runtime
Requirements-Monitoring Systems Using MDA
Technologies. In Trustworthy Global Computing
(TGC) (2005), vol. 3705, Springer, pp. 319–333.

[28] Skene, J., Lamanna, D. D., and Emmerich, W.
Precise Service Level Agreements. In ICSE ’04:
Proceedings of the 26th International Conference on
Software Engineering (Washington, DC, USA, 2004),
IEEE Computer Society, pp. 179–188.

[29] Tai, S., Mikalsen, T., Wohlstadter, E., Desai,
N., and Rouvellou, I. Transaction policies for
service-oriented computing. Data & Knowledge
Engineering 51, 1 (2004), 59–79.

[30] Trastour, D., Bartolini, C., and
Gonzalez-castillo, J. A Semantic Web Approach
to Service Description for Matchmaking of Services. In
In Proceedings of the International Semantic Web
Working Symposium (SWWS) (2001).

[31] Truyen, E., and Joosen, W. A reference model for
cross-organizational coordination architectures. In
International Conference on Enterprise Distributed
Object Computing Workshops (2008), IEEE,
pp. 252–263.

[32] Wohlstadter, E., Tai, S., Mikalsen, T.,
Rouvellou, I., and Devanbu, P. GlueQoS:
Middleware to Sweeten Quality-of-Service Policy
Interactions. In ICSE ’04: Proceedings of the 26th
International Conference on Software Engineering
(Washington, DC, USA, 2004), IEEE Computer
Society, pp. 189–199.

[33] Zeng, L., Benatallah, B., Dumas, M.,
Kalagnanam, J., and Sheng, Q. Z. Quality driven
web services composition. In WWW ’03: Proceedings
of the 12th international conference on World Wide
Web (New York, NY, USA, 2003), ACM, pp. 411–421.

[34] Zeng, L., Benatallah, B., Ngu, A. H. H., Dumas,
M., Kalagnanam, J., and Chang, H. QoS-aware
middleware for Web services composition. IEEE
Transactions on Software Engineering 30 (2004),
311–327.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-os.pdf

	Introduction
	Motivation & Illustration
	Approach
	Cross-organizational Coordination Architectures
	High-level Feature Ontology
	Mapping to Aspect-based Implementation
	Using the Feature Ontology for Cross-Organizational Service Customization

	Related work
	Conclusion and future work
	References

