
Konduit VQB: a Visual Query Builder for SPARQL
on the Social Semantic Desktop

Oszkár Ambrus
oszkar.ambrus@deri.org

Knud Möller
knud.moeller@deri.org

Siegfried Handschuh
siegfried.handschuh@deri.org

Digital Enterprise Research Institute (DERI)
National University of Ireland, Galway (NUIG)

ABSTRACT
With the adoption of Nepomuk as an organic part of KDE
the semantic desktop became a reality to a great number of
users and is employed by a growing number of applications.
Thus, the amount of semantic data is constantly growing on
the desktop. Therefore users need a way to access this data
outside of the limiting use cases of the applications employ-
ing Nepomuk-KDE.

We aim to assist users in building queries and running them
to make use of RDF data that would otherwise be partially
or completely hidden. In this paper, as an initial iteration of
our efforts, we present four approaches to building SPARQL
queries visually, based on two different categorizations: sche-
ma-based vs. instance-based and SELECT vs. CONSTRUCT
queries. We present the used interfaces, visual languages and
query generation methods associated to each of approaches
as well as the autocompletion techniques for the instance-
based query builders.

Author Keywords
Visual Query Builder, SPARQL, Nepomuk

INTRODUCTION
The Social Semantic Desktop [4] is a paradigm transpos-
ing Semantic Web concepts unto the desktop. Ontologies
thus conceptualize information and semantic data is stored
in RDF. It loosens the borders between applications and pro-
vides a unified environment. The Nepomuk project [6] out-
lines the requirements and functionalities of the Social Se-
mantic Desktop and defines an architecture specification that
fulfills these requirements. Nepomuk-KDE1 is a reference
implementation of Nepomuk. It provides a platform to cre-
ate and handle all kinds of metadata. It uses RDF stores for
the metadata persistence and provides a middleware for ap-
plications to build upon, allowing them to store and access
the semantic data on the desktop (or, alternatively, the Web).
1http://nepomuk.kde.org/

Workshop on Visual Interfaces to the Social and Semantic Web
(VISSW2010), IUI2010, Feb 7, 2010, Hong Kong, China. Copyright is
held by the author/owner(s).

Konduit [10] is a tool for building visual workflows for RDF
data within Nepomuk-KDE, allowing for a flexible access to
the local RDF data as well as mashing up with web-based
data. It features a visual programming environment and al-
lows for various manipulations (merging, filtering, mashing
up, creating visual workflows, etc.) as well as executing dif-
ferent actions (executing scripts, automatizing emails, etc.)
using the queried RDF data. A query builder is used to gen-
erate SPARQL queries for querying components which act
as data sources in the RDF workflows, producing data that is
made use of further in the workflow.

We want to provide a way for users to build these queries
in an intuitive way, with having no or little knowledge about
the querying language (i.e., SPARQL [11]). Although this
does not mean a complete abstraction from the underlying
details, we aim to assist users with limited technical knowl-
edge as well as those who know SPARQL and RDF (with
an emphasis on the latter, though) and provide an interface
that suits the needs of both. We try to provide a tool with
the necessary features similar tools provide, that also sup-
ports RDF, provides search assistance on a whole repository
(as opposed to a single ontology) and is also integrated into
Nepomuk-KDE (within Konduit and beyond) allowing for
local data-driven querying as well as sharing queries online.

We explore several approaches due to the structured nature
of RDF data and the difficulty of searching and querying
it in an intuitive and transparent manner. We present, as a
first attempt in our research on visual query builders, four
interfaces aiming to achieve the above goal, with different
approaches to query building and varying degrees of com-
plexity. The first two of them are schema-based, allowing
for building queries using restrictions based on the ontology
structure. The second two use a triple construction-based
approach; the user constructs the restricting triples of the
SPARQL query assisted by suggestions using both schema
and instance information from the underlying repository.

RELATED WORK
There are a number of tools that aim to assist users in build-
ing queries for semantic data. Many of them provide novel
and intuitive approaches and demonstrate useful features,
such as NITELIGHT [12] or RDF-GL [7] aiming to repre-
sent SPARQL constructs through graphical metaphors. Mash-
QL [8], GRQL [1] and GLOO [5] propose queries as trees
starting from a given class and restricting it incrementally

1

http://nepomuk.kde.org/

on the branches. SPARQLViz [2] provides a click-through
wizard for composing queries and SEWASIE [3] features a
limited ontology-based query formulation.

Nevertheless, several of the tools only support querying based
on a single ontology, some of them do not support RDF and
SPARQL. Some of them require extensive manual editing
of the queries, or do not feature clear relationships between
query parts. Moreover, excepting SPARQLViz, all query
builders are web-based (or only usable within their own sys-
tem), not allowing for the integration of desktop data.

Our two schema-based interfaces are mostly built on the in-
tuition of MashQL and GRQL, in exposing schema struc-
tures and possible restrictions branching from an initial class.
The instance-based query builders resemble SPARQLViz in
providing forms for the user to complete, but feature a single,
less confusing and simple interface, with clear connections
between the query parts.

RUNNING EXAMPLE
Suppose we are searching for a contact from the local repos-
itory whose name contains the letter ‘K’ and has written a
publication on the semantic desktop.

QUERY BUILDING
The interface of the query builder application features a cen-
tral part for the visual query builder and previewers for the
query and its results, as well as menu actions and a status bar.
The central query builder has four incarnations as presented
in the following sections, employing different approaches to
building SPARQL queries.

The most common searching interface, a search box for sim-
ple keyword searches to retrieve semantic information is high-
ly ambiguous and needs extensive research, so abstracting
completely from the structure of semantic data is not yet our
intention. Also, we can’t yet provide a fully-featured ma-
ture semantic querying application, as we aim to explore the
most appropriate ways to do it and research the possibilities
and limitations in accomplishing this task.

The two schema-based approaches use schema information
from the ontologies in the Nepomuk system, allowing users
to compose tree-based queries in restricting the properties of
the resulting objects. This allows users to explore the local
schema structures. These approaches feature a simplification
of SPARQL, in allowing only to restrict the initial selection
descending in a tree-like fashion.

The instance-based approaches are based on constructing
triples without necessarily knowing RDF or SPARQL (sim-
ilarly to the Wikipedia Visual Query Builder2. They use
schema information as well as instance information in sug-
gesting users possibilities in completing the subjects, predi-
cates and objects of the constraining triples of the SPARQL
query. This autocompletion allows for users to explore the
data stored on the local RDF repository. The instance-based
query builders also allow for the construction of triples that
2http://dl-learner.org/Projects/dbpedia

Figure 1. Schema-based SELECT query builder.

don’t exist in the repository, adding properties that have not
been defined or converting an instance from one ontology to
another, e.g., transforming ?v foaf:name ‘‘Smith’’
to ?v nco:fullName ‘‘Smith’’.

SCHEMA-BASED SELECT QUERIES
The schema-based SELECT query builder (Figure 1) is the
most user-friendly approach to building SPARQL queries,
aimed at users having the least knowledge of semantic tech-
nologies. We have devised a simplification of the SPARQL
language, which allows for this particular kind of builder.
It allows for selecting a class (which will be the type of
the queried variable) and restricting it in a tree-like manner
through its properties.

Queries are built using schema information from Nepomuk.
The possible classes and predicates to be chosen are queried
and presented to the user.

We start from the assumption that users most often want
to find certain information belonging to an entity of certain
classification and/or having a number of known restricting
characteristics. For example, one would want to search for a
contact person (entity) with a given name (restricting char-
acteristic), similarly to doing a free text search.

The interface therefore provides a way to build queries as
trees, starting with the type of entity the user inquires for
and progressing with restrictions on the branches of the tree.

The Visual Language
The visual language covers a subset of SPARQL. Listing 1
provides a formal description of the queries built through the
visual facilities of the interface. Note that the missing termi-
nal definitions ClassName and Predicate are IRI refer-
ences, LiteralV alue is a string literal and V ariableName
is a SPARQL variable (such as ?v or $x). Relation denotes

2

http://dl-learner.org/Projects/dbpedia

a relation such as contains, equals, etc.

Query : : = O u t p u t s C o n d i t i o n s
O u t p u t s : : = RootNode | L i t e r a l N o d e
C o n d i t i o n s : : = G r a p h P a t t e r n
G r a p h P a t t e r n : : = QueryTree+
QueryTree : : = RootNode TreeNumber
RootNode : : = ClassName VariableName R e s t r i c t i o n s
R e s t r i c t i o n s : : = QueryNode∗
QueryNode : : = C l a s s R e s t r i c t i o n | L i t e r a l R e s t r i c t i o n
C l a s s R e s t r i c t i o n : : = P r e d i c a t e RootNode
L i t e r a l R e s t r i c t i o n : : = P r e d i c a t e R e l a t i o n L i t e r a l N o d e
L i t e r a l N o d e : : = VariableName L i t e r a l V a l u e

Listing 1. EBNF description of the visual language (non-terminals)

Query Generation
Queries are generated based on the visual description ac-
cording to the defined language. The SELECT part of the
queries will be a set of variables extracted from the com-
ponents (class combo boxes or literal text boxes) selected
as Outputs. It is made up of the variable names in the
RootNodes and LiteralNodes, for class combo boxes or
literal text boxes, respectively. This happens in a transpar-
ent way, as variables are extracted automatically from the
selected components.

The WHERE clause is a set of RDF triples generated from
the query tree structures present in the query form. We have
the following three cases: (1) For the root RootNode the
generated triple is VariableName a ClassName and
for every restriction a triple is generated starting with Vari-
ableName and continuing as presented in the following
points (e.g. ?v41 a foaf:Person generated for the root
node in Figure 1). (2) A ClassRestriction completes the
parent’s triple with Predicate VariableName (where
VariableName is the variable of the RootNode belong-
ing to the new restriction) (e.g. ?v41 foaf:
publications ?v77 generated for the publication
restriction in Figure 1). (3) A LiteralNode completes the
triple with Predicate VariableName adding a regu-
lar expression filter string according to the chosen Relation
and LiteralV alue (e.g. FILTER regex(?v59, ’K’,
’i’) generated for the first restriction shown in Figure 1).

User Interface
The query builder form (Figure 1) allows for adding several
query trees (staring from different classes), and restricting
them by their properties. If a property has a literal range, the
user can enter a value and restrict it on a relation, such as
equals or contains. If its range is not a literal, they can
add restrictions.

Outputs are selected by right clicking on a combo box repre-
senting a class or a value. The corresponding variable will be
added to the output, and the combo box will be highlighted.

SCHEMA-BASED CONSTRUCT QUERIES
The approach to building schema-based CONSTRUCT que-
ries is very similar to the one shown in the previous section.
The difference lies in the way in which the outputs are se-
lected.

Figure 2. Schema-based CONSTRUCT query builder.

Visual Language Extension
The visual language is extended, as the output part of the
queries is built using graph patterns constructed from triples.

O u t p u t s : : = G r a p h P a t t e r n
G r a p h P a t t e r n : : = T r i p l e +
T r i p l e : : = S u b j e c t P r e d i c a t e O b j e c t
S u b j e c t : : = Var iableName
P r e d i c a t e : : = Pred ica t eName | VariableName | ClassName
O b j e c t : : = Pred ica t eName | VariableName | ClassName

| L i t e r a l V a l u e

Listing 2. EBNF description of the output part (non-terminals)

Query Generation Extension
The way outputs are generated has been changed for this
query builder: in this case outputs are triples and consist of
the triples described in the graph pattern.

User Interface Extension
The user interface is extended with a component for compos-
ing output triples, as shown in Figure 2. It lists all variables
for the subject field, all variables, predicates and classes for
the predicate field and all variables, predicates, classes and
literal values for the object field. Users can select desired
triples and add them to the output list.

INSTANCE-BASED SELECT QUERIES
Building queries with the instance-based SELECT builder
relies on schema and instance information from the underly-
ing RDF repository.

The Visual Language
Variable, class and predicate names are IRIs describing the
corresponding entities, as described for the previous builders,
where the meaning of Relation is also explained. Instance
IRIs are taken from the repository as autocompletion pop-
ups based on user input. The LiteralV alue represents valid

3

SPARQL literals, such as strings or integers (e.g. "Exam-
ple"). See Listing 3 for the formal EBNF description.

Query : : = O u t p u t s C o n d i t i o n s
O u t p u t s : : = VariableName+
C o n d i t i o n s : : = G r a p h P a t t e r n
G r a p h P a t t e r n : : = T r i p l e +
T r i p l e : : = S u b j e c t P r e d i c a t e O b j e c t
S u b j e c t : : = Var iableName | ClassName | I n s t a n c e I R I
P r e d i c a t e : : = Var iableName | Pred ica t eName
O b j e c t : : = Var iableName | ClassName | I n s t a n c e I R I

| L i t e r a l | F i l t e r E x p r e s s i o n
L i t e r a l : : = L i t e r a l V a l u e {DataType}?
F i l t e r E x p r e s s i o n : : = R e l a t i o n L i t e r a l V a l u e

Listing 3. Visual language of the instance-based SELECT query
builder

Query Generation
Queries are constructed by enumerating the variable names
for the SELECT part and taking the list of triples for the
WHERE part. Filter expressions are built by adding a regu-
lar expression filter string according to the chosen relation.

Autocompletion
The interface features an incremental autocompletion for the
WHERE part based on user input described in [9], because
of the infeasibility of listing all the instances. Whenever the
user types something into any of the text boxes, the sys-
tem pops up all the possible options of RDF entity names,
classes, properties or instance identifiers and values. This
helps the user in exploring the underlying data set.

Autocompletion is achieved by running an incremental query
every time the user enters text. The system queries for all en-
tity names (classes, predicates) as well as all instance iden-
tifiers or values that contain the user input and match the
graph pattern constructed so far (for the final query to have
results). The user is then presented with the list of possible
options, this list incrementally growing as more matches are
found from the RDF repository.

User Interface
The user interface features a component for building con-
ditional (WHERE) triples, as shown in Figure 3. The text
fields provide autocompletion popups for user input, based
on what the repository contains, against the triples that have
already been added to the output list. The user can select a
filter option using the desired relation or can specify the type
of the object, the latter defining the way it will be formatted
and/or suffixed in the output.

Outputs are selected from an output list that is populated
with all the variables occurring in the conditional triples.

INSTANCE-BASED CONSTRUCT QUERIES
Visual Language Extension
The visual language is extended with triple patterns for the
output part as well. They are identical to the GraphPattern
nonterminal defined for instance-based SELECT queries.
There is one exception, namely the lack of FilterExpres-
sions, since such expressions do not exist in the output part
of SPARQL queries for obvious reasons.

Figure 3. Instance-based SELECT query builder. Resulting query is
identical to the one shown in Fig. 1.

Figure 4. Instance-based CONSTRUCT query builder — output part.

Query Generation Extension
The query generation is extended by taking the triples from
the Output graph pattern and enclosing them in the CON-
STRUCT part of the query.

Autocompletion Extension
This interface also supports autocompletion for the output
part of the query, similarly to its sibling interface. There is a
slight modification, however, since the output triplesv́alues
do not need to satisfy any conditions, only being present in
forming the output triples. Thus, it is not required to comply
with the rest of the graph pattern, so all existing entities are
suggested to the user, that match the given input.

User Interface Extension
The user interface is extended with an output construction
part, shown in Fig. 4, having an almost identical structure to
the triple building component for the conditional (WHERE)
part, excluding the filtering option.

DISCUSSION
The schema-based SELECT query builder allows for sim-
ple querying and restricting the desired properties with user-
defined input. The advantage is that it is simple, intuitive
and satisfies the large number of occasions when the user
wants to search for something based on certain properties.
Selecting the outputs is also straightforward and clear. The
disadvantage is that it is limiting and inflexible, only allow-
ing querying as trees, thus being unsuitable for some cases a

4

proficient user would meet.

The schema-based CONSTRUCT query builder allows to
construct triples, this being required in many cases (in Kon-
duit, all data are RDF triples). The advantages/disadvantages
are similar to its sibling approach, adding the complication
of selecting the correct variables and classes for the output
triples, but adding the flexibility of formatting the output.

For the instance-based SELECT query builder we have the
advantages of conditioning the results in a flexible, data-
driven manner (with autocompletion based on the data in
the repository), using user-defined variables and types, and
reusing variables. The disadvantage is that it features a direct
correspondence of the underlying RDF structure, making it
more complicated than the schema-based interfaces.

The instance-based CONSTRUCT query builder is the most
flexible, triple-based query assistant, making it possible to
compose advanced queries, with the obvious disadvantage
of being the least accessible to naı̈ve users.

CONCLUSIONS
We have presented four techniques to assist users in build-
ing SPARQL queries to retrieve information from the ever-
growing collection of semantic data. Aimed at beginners
and proficient users as well, the interfaces feature a range of
approaches that ease the composition of queries. The query
builders are based on the local (or possibly, remote) reposi-
tory, facilitating the discovery of the RDF store.

The first two approaches relied solely on schema informa-
tion, helping the users to query for instances of existing classes
and restricting them with the available properties. One of
these is intended for writing SELECT queries by selecting
a set of outputs, the other one is for CONSTRUCT queries
presenting the used variables, predicates and classes in three
lists for selecting the subject, predicate and object.

The other two approaches use instance information as well
in providing autocompletion popups based on user input to
suggest possible options, taking into consideration the triples
previously added. The SELECT query builder simply al-
lows for selecting the variables used in the query for output,
and the CONSTRUCT query builder allows for composing
triples from the variables used and all existing entities in the
repository.

We plan to perform a usability evaluation in determining the
most appropriate tool from the ones presented for building
SPARQL queries within Konduit and Nepomuk-KDE. We
will present it to users with no RDF/SPARQL background
as well as users with deep knowledge in semantic technolo-
gies to decide on the future direction in what approach and
features best suits a SPARQL query builder aimed at a fairly
wide variety of users.

Acknowledgments
The work presented in this paper has been funded (in part) by Science Foun-
dation Ireland under Grant No. SFI/08/CE/I1380 (Lı́on-2) and (in part) by

the European project NEPOMUK No. FP6-027705.

REFERENCES
1. N. Athanasis, V. Christophides, and D. Kotzinos.

Generating on the fly queries for the semantic web: The
ICS-FORTH graphical RQL interface (GRQL). Lecture
notes in computer science, pages 486–501, 2004.

2. J. Borsje, H. Embregts, and S. F. Frasincar. Graphical
query composition and natural language processing in
an rdf visualization interface, 2006.

3. T. Catarci, P. Dongilli, T. Di Mascio, E. Franconi,
G. Santucci, and S. Tessaris. An ontology based visual
tool for query formulation support. In ECAI,
volume 16, page 308, 2004.

4. S. Decker and M. R. Frank. The networked semantic
desktop. In WWW Workshop on Application Design,
Development and Implementation Issues in the
Semantic Web, 2004.

5. A. Fadhil and V. Haarslev. Gloo: A graphical query
language for owl ontologies. In B. C. Grau, P. Hitzler,
C. Shankey, and E. Wallace, editors, OWLED, volume
216 of CEUR Workshop Proceedings. CEUR-WS.org,
2006.

6. T. Groza, S. Handschuh, K. Möller, G. Grimnes,
L. Sauermann, E. Minack, C. Mesnage, M. Jazayeri,
G. Reif, and R. Gudjónsdóttir. The NEPOMUK project
— on the way to the social semantic desktop. In
T. Pellegrini and S. Schaffert, editors, Proceedings of
I-Semantics’ 07, pages pp. 201–211. JUCS, 2007.

7. F. Hogenboom, V. Milea, F. Frasincar, and U. Kaymak.
RDF-GL: A SPARQL-Based Graphical Query
Language for RDF.

8. M. Jarrar and M. D. Dikaiakos. Mashql: a
query-by-diagram topping sparql. In ONISW ’08:
Proceeding of the 2nd international workshop on
Ontologies and nformation systems for the semantic
web, pages 89–96, New York, NY, USA, 2008. ACM.

9. K. Möller. Lifecycle Support for Data on the Semantic
Web. PhD thesis, National University of Ireland,
Galway, 2009.

10. K. Möller, S. Handschuh, S. Trug, L. Josan, and
S. Decker. Demo: Visual programming for the semantic
desktop with Konduit. In 5th European Semantic Web
Conference (ESWC2008), Tenerife, Spain, volume 5021
of LNCS, pages 849–553. Springer, June 2008.

11. E. Prud’hommeaux and A. Seaborne. SPARQL query
language for RDF. Recommendation, W3C, January
2008. http:
//www.w3.org/TR/rdf-sparql-query/.

12. P. R. Smart and Russell. A visual approach to semantic
query design using a web-based graphical query
designer. In EKAW ’08: Proceedings of the 16th
international conference on Knowledge Engineering,
pages 275–291, Berlin, Heidelberg, 2008.
Springer-Verlag.

5

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

	Introduction
	Related Work
	Running Example
	Query Building
	Schema-based SELECT Queries
	The Visual Language
	Query Generation
	User Interface

	Schema-based CONSTRUCT Queries
	Visual Language Extension
	Query Generation Extension
	User Interface Extension

	Instance-based SELECT Queries
	The Visual Language
	Query Generation
	Autocompletion
	User Interface

	Instance-based CONSTRUCT Queries
	Visual Language Extension
	Query Generation Extension
	Autocompletion Extension
	User Interface Extension

	Discussion
	Conclusions
	REFERENCES

