
Performance of Open Source Projects1

Michael Weiss

Carleton University, Ottawa, Canada
weiss@sce.carleton.ca

 1 Introduction
The patterns in this paper describe open source development practices from
a performance perspective. In product development, performance is
measured in terms of the time it takes to develop a software product, the
resulting quality of the software, and the cost of development. These
dimensions are in tension with one another. Since improving performance
has side effects, we also need to include the impact on other dimensions
than performance (eg risk, trust) in our discussion of the practices.

The audience for these patterns are developers and project managers, who
are thinking about adopting an open source development approach. The
practices documented in the patterns are derived both from the literature on
open source development, and from the author's experience as contributor
to several open source projects. The author also had the opportunity to
observe a large open source project.

 2 Patterns
An open source project must start with a Credible Promise (3), otherwise it
will fail to attract developers. To encourage other developers to build on it, a
project needs to offer sufficient functionality or equivalent.2 For the open
source project to grow fast, it is necessary to build up momentum quickly.
Rather than waiting for a polished release with full functionality, the owners
of the project should aim to deliver a stream of Frequent Releases (5). This
allows them to learn from users how the code is used; advanced users will
discover and fix problems for you, resulting in higher code quality.

In order to achieve a critical mass of functionality early in the life of a
project, the project should Build On the Shoulders of Others (7) by integrating
components developed by others. Reusing components with proven
functionality also allows a project to reach a higher level of quality earlier.

To keep others – users and developers of components – engaged in your
project you need to maintain an Open Dialog (9). Development of the system
needs to be carried out in the open. At the same time, not all developers
participating in a project may pursue the same goals. Developers need to be
able to explore different ways of evolving the system in parallel. Hence,
Parallel Development (11) provides a mechanism for coordinating between
stable and experimental releases of the same project.

1 Copyright is retained by author. Permission is granted to Hillside Europe for including in the CEUR
archive of conference proceedings and for the Hillside Europe website.

2 For some projects the biggest attraction for other developers is not the functionality (all that exists
may be a specification), but the reputation of the project founders (Fogel, 2006).

A5-1

mailto:weiss@sce.carleton.ca

A map of the patterns showing their relationships is shown in Figure 1.
Links between patterns X and Y should be interpreted as “after pattern X
you may also use pattern Y”. Patterns with a star (*) are planned patterns.
Thumbnails of these patterns can be found in Appendix A.

A5-2

Figure 1: Patterns for the performance of open source development

 2.1 Credible Promise

What both projects did have was a handful of enthusiasts and a plausible
promise. The promise was partly technical (this code will be wonderful
with a little effort) and sociological (if you join our gang, you'll have as
much fun as we're having). So what's necessary for a bazaar to develop is
that it be credible that the full-blown bazaar will exist! (Raymond, 1998)

Context You are starting an open source project. So far you have been
working on the project by yourself. You want other developers to
join and leverage their contributions to grow the project.

Problem How do you mobilize developers to contribute to your project?

In economics this problem is known as penguin problem. Hungry
penguins are gathered on a floe of ice. However, none of them
wants to dive first for fear of being eaten by a predator. No penguin
moves until every penguin moves.

Forces If your project does not provide a core of the intended functionality,
developers will not have enough incentives to join your project.

Developing an initial core of functionality takes time.

You don't want to be too far ahead in your implementation, but
leave developers with unresolved challenges.

When developers join they need to make an investment in your
project, something they lose if your project fails.

Sometimes you already have code from a closed source product
that you want to open up. Opening up means that you need to
release control. Otherwise, why would external developers work
for you for free, if they didn't share ownership with you.

Therefore,

Solution Build a critical mass of functionality early in your project that
demonstrates that the project is doable and has merit.

An exception to this rule is that projects without running code can
attract developers when their creators have a high reputation.

Consequences A critical mass of functionality is valuable for other developers.

Time spent on developing the initial core to attract developers early
on in the project is often offset by faster growth later. However,
there is also a risk: you may not succeed in growing a critical mass
of functionality, and the extra time and effort spent on architecting
the project for a community of developers will be “sunk”.

A5-3

When you focus on your core functionality, other developers will
find it challenging to contribute additional features.

One risk is that developers who join your project may benefit more
from the project than you gain from their contributions.

Opening up a closed source project can extend its life. However,
other developers can now also influence its direction.

Examples Fetchmail and Linux are the two examples Raymond refers to.

BigBlueButton is an open source web conferencing system whose
functionality was sufficient for teaching our online courses, but did
not yet have the bells and whistles of competing commercial
products (eg recording and playback or desktop sharing).

Subversion initially had no running code. Its credibility came from
its founders, the main developers of the CVS versioning system.

Related
patterns

When starting an open source project you want to move fast. Rather
than waiting for a polished release with full functionality aim for
Frequent Releases (5). This allows you to learn from users how they
use your code; advanced users will also discover and even fix
problems for you, resulting in higher code quality.

To simplify the bootstrap process required to produce a critical
mass of functionality Build On the Shoulders of Others (7). Reusing
components with proven functionality also allows a project to reach
a higher level of quality earlier (ie improve quality and time).

Engaging others in your project requires an Open Dialog (9).

Seeding (Homsky & Raveh, 2007) an online community with content
ensures that people will find it worthwhile visiting.

Benefits and risks of developing a product with other companies
are described in In Bed with the Enemy (Weiss, 2007).

Sources Literature (Lerner & Tirole, 2002; Fogel, 2006; Haefliger et al., 2008)
and the author's observation.

A5-4

 2.2 Frequent Releases

Frequent release cycles are both a curse and a blessing. Software
developers are creating fixes and patches all the time. The downside is the
developer doesn't want to do upgrades all the time. (Klawans, 2007)

Context You need to provide a working system early.

Problem How do you move an open source project along quickly?

Forces At the start of a project requirements are often unclear. What the
user says they want may not be what they really need.

Defects can be detected early when releases are frequent. Each
release provides an opportunity for feedback.

Upgrading to a new release can be disruptive to some users.

The larger a change between two versions of a project, the more
challenging the new code is to integrate.

Releases may be incomplete in terms of functionality or unstable.
Users have different risk comfort levels for upgrades.

When developers share their changes infrequently, they may
duplicate each others' efforts by solving the same problem.

It takes time away from other tasks to keep up with changes.

Therefore,

Solution Release code in small, quick increments.

Don't hold off a release until the functionality is complete, but make
changes to the code available as soon as the code is complete, ie
when it compiles and executes. Each incremental release also brings
the system closer to functional completeness.

Consequences Releasing a system in frequent increments protects you against
overdesign. Each release is an opportunity to receive feedback from
users that helps you shape the direction of the project.

The quality of the project increases when defects are removed early.
Higher quality means that you spend less time fixing bugs.

User expectations need to be carefully managed. Releases need to
be labelled as stable or development releases.

Frequent releases allow continuous integration. Each integration
step is small, allowing problems to be quickly localized.

Developers can reuse intermediate releases, which can significantly
shorten development time for individual features.

As changes are shared earlier, developers can lever partial solutions

A5-5

by other developers, making them more efficient.

Integrating frequent releases can be difficult and time consuming.
You may want to skip some incremental changes.

Examples Linux, Apache, and Mozilla all have frequent releases.

While BigBlueButton initially did not create releases frequently
enough so as to maximize development velocity, automated builds
are now created after each successful commit (that passes tests).

Related
patterns

Working with external developers, who may pursue different goals
while they share an interest in your project, requires a mechanism
for coordinating between stable and the experimental releases made
by different developers, as described in Parallel Development (11).

Incremental Integration (Harrrison & Coplien, 2006) ensures that
subsystems work well together. It encourages developers to check
regularly for incompatibilities with other subsystems.

The technical implications of frequent releases (out of scope for us)
are described in Continuous Integration (Elssamadisy, 2007).

Sources Literature (Lui & Chan, 2008; Fogel, 2006; Harrison & Coplien, 2006;
Goldman & Gabriel, 2005), and the author's observation.

A5-6

 2.3 Build On the Shoulders of Others

We used open source extensively in the creation of the Nokia 770. We
favored components that were developed by active communities and
already used by many. [...] We created the product in shorter time and
with fewer resources, compared to other products utilizing proprietary
software. In essence, open source offers time and cost savings in a form of
readily available components and subsystems, available developers, and
effective development model. (Jaaski, 2006)

Context You need to build a critical mass of functionality.

You need to provide a working system early.

Problem How do you grow a critical mass of functionality quickly?

Forces The faster you can deliver the core functionality, the more and the
sooner you will be able to attract other developers.

Reuse allows to leverage the code and experience of others, but it
takes time to select and to understand external code.

Not invented here (NIH) prevents us from looking outside.
Personal pride can be in the way of reuse.

Code that you reuse is not streamlined to your project goals.

You only own the intellectual property (IP) on code that you write
yourself, or that you paid somebody external to develop.

Maintaining your own code is hard enough. Maintaining external
code of potentially variable quality can be much harder.

Not all pieces of your system are equally valuable. Building all
pieces yourself means that you will need to spend time on building
functionality that you would rather spend elsewhere.

Therefore,

Solution Integrate assets from other open source projects.

Your development time is reduced by leveraging the functionality
provided by existing code and building on existing designs. Your
main task becomes one of writing “glue” code that links these code
assets. Much of your leverage will come from building on code

A5-7

developed by others in the form of libraries, components, or tools.
However, there are other opportunities for reuse: APIs (a new
implementation of an existing API), exchange formats (writing to
and reading from existing formats), services (invoking code that is
hosted elsewhere), requirements (cloning another design), and test
suites (compliance with an existing specification).

Consequences You shorten the time to deliver a critical mass of functionality,
which provides an incentive for others to join your project.

By reusing proven code, you can also produce code of higher
quality, sooner. However, this introduces a new problem: your
project now becomes dependent on other projects you don't control.
Whenever one of the projects you depend on changes, you need to
incorporate them back into your project, otherwise you will not be
able to benefit from bug fixes made to those projects.

Your ability to reuse depends on how well you have adopted a
culture of reuse. Reusing existing open source components is not
necessarily “second nature” to your developers. It may help to
make reuse part of refactoring by putting a process in place that
ensures that quick initial solutions are replaced by existing
components for longer-term stability of the project.

You inherit “baggage” from existing assets that you don't need, and
which may lead to duplication and to maintenance problems.

Also, as you reuse code created by others, you need to ensure that
you comply with the licenses associated with this code.

You need to maintain a stack of software artefacts developed by
others. But this also creates opportunities for third parties who take
on the task of managing the stack (companies like RedHat).

Reuse allows you to focus on the parts you like to work on, or
which add most value by incorporating existing components for the
parts that are necessary, but less interesting or valuable to you.

Examples The initial version of BigBlueButton was built in a few months by
combining many existing pieces of functionality, including Red5, an
open source version of the Flash Media Server; Asterisk, an open
source PBX; OpenOffice to convert PowerPoint slides to PDF; and
Apache ActiveMQ, an open source message broker. The actual code
of the initial version was only around 10K lines of code.

Many projects (both small and large) build on the Eclipse platform
by developing their application as an Eclipse plugin. There are
more than a 1000 plugins listed on the Eclipse Plugin Central site.
The code common to the plugins is provided by Eclipse.

OpenOffice is both an example of requirements cloning and reuse
of exchange formats. OpenOffice implements most of the feature set
of Microsoft Office, and can read and write Word documents.

Related
patterns

Leveraging existing code to speed up development is suggested by
Prototype a First-Pass Design (Foote & Opdyke, 1994).

There are different ways of achieving license compliance. Patterns
have been documented for licensing, but not for compliance.

Sources Literature on reuse in open source (Haefliger et al., 2008), software
cloning (Lui & Chan, 2008), and the author's observation.

A5-8

2.4 Open Dialog

The open-source approach is new to Autodesk, especially publicly
discussing new features. It has taken considerable effort to get used to this,
but we have taken it to heart, and all new features for MapGuide Open
Source are debated in the public mailing list before we start development.”
(B. Dechant, MapGuide technical architect), quoted in Birch (2007)

Context You want users and other developers to contribute to your project.

Problem How do you engage others in your project?

Forces You need to listen to your users; the dialog must be two-way.

You don't want to appear weak by sharing your ongoing decision
process, including the wrong turns and mistakes.

It is difficult to guess what users really want. If you ask them, they
are often unable to articulate their needs.

Users and external developers need to feel valued.

You can't build everything yourself.

Other users and developers must benefit from participating.

Therefore,

Solution Conduct the project in the open, maintaining a two-way dialog
with project participants (users and external developers).

Give users and external developers access to your source code.
Artefacts to share include the code, installation instructions and
binaries (as applicable), and test plans. Allow outsiders to
participate in your project decisions by discussing project plans on
a wiki or a project mailing list. Create opportunities for others to
participate by allowing them to fix bugs and add features.

Consequences Users will provide you with valuable feedback. This allows you to
learn from your users and improve the “fit” with their needs.3

Making your decision process transparent builds trust between you
and other project participants.

When you share your decisions with your users, they can tell you
that what you propose to do is not what they want.

Openness encourages reciprocal behavior. Sharing with others will

3 Quality depends as much on building the right system (meeting explicitly stated requirements) and
building the system right (meeting the unstated requirements as well, ie fit).

A5-9

cause them to contribute back to your project.

You will be able to achieve more by enlisting outside contributions.

The result of open participation is greater value than what any
individual contributor could have achieved on their own.

Examples The contributors to the BigBlueButton project are developers at the
company co-founded by the original developer, students, faculty of
the university (who are also lead users of the system), and members
of other businesses who are developing complementary products.
Code, project plans, as well as bugs and feature requests are shared
by hosting the project on Google Code. Currently, any registered
contributor can contribute equally to the project.

MapGuide open source project by Autodesk quoted above.

Hosting sites such as SourceForge or Google Code provide a set of
tools for publicly sharing the output of an open source project.

Related
patterns

Maintaining an open dialog requires a supporting Infrastructure
(13) of tools such as wikis, mailing lists, bug trackers, or
repositories.

As a project grows, tasks such as moderating a mailing list require
dedicated resources. The answer is to create New Roles (13).

Canned hosting sites like Google Code provide you with a technical
Infrastructure to maintain an open dialog. These sites typically
include code repositories, wikis, mailing lists, and bug tracking
tools. They also maintain developer profiles and project statistics.

Engage Customer (Harrison & Coplien, 2006) ensures that there is a
continual exchanges between developers and customers.

Gatekeeper and Firewall (Harrison & Coplien, 2006) deal with the
issues of translating and filtering external interactions.

Sources Literature on open participation in open source projects (Goldman
& Gabriel, 2005) and the author's observation.

A5-10

 2.4 Parallel Development

The current production versions are Python 2.6.2 and Python 3.0.1. You
should start here if you want to learn Python or if you want the most
stable versions. Note that both Python 2.6 and 3.0 are considered stable
production releases, but if you don't know which version to use, start with
Python 2.6 since more existing third party software is compatible with
Python 2 than Python 3 right now. (Python Software Foundation, 2009)

Context You need to manage the expectations of your users.

Problem How do you balance the need of users for stability with the need
to explore new directions for your project?

Forces While developing the current release of your system, you also need
a way of working on new features for future releases.

External developers may pursue different goals from you when
they participate. You need to give them a mechanism for pursuing
their interests, while benefiting from their contributions.

Therefore,

Solution Maintain separate release streams, those with the official stable
releases, and others for experimental development.

There can be multiple levels of stability (such as nightly builds,
weekly releases, and scheduled milestones).

Consequences This solution addresses the needs of your internal development
(feature roadmap), as well as those of external developers. The
stable versions of your project can be used for ship products, and
experimental versions allow you to explore future products. As you
overlap maintenance and new feature development, you also
shorten the time to introducing those new features.

However, developers need to allocate time to coordinate between
the different versions, which they cannot use to write new code. For
example, when a bug is fixed in the stable version, it needs to be
applied to all the experimental versions as well.

Examples The BigBlueButton project has separate streams for the production
version, which is used to teach online classes and therefore requires
the behavior of the system to be stable, and streams for new feature
development that will eventually be rolled into the stable stream.

The Eclipse project has a yearly release train. Projects to be
contained in the release train need to meet a set of well-defined

A5-11

requirements (such as signed-off milestones).

The Python project currently has two stable releases (see quote).

Related
patterns

In a large project managing the different releases requires dedicated
release managers, and example of New Roles.

Named Stable Releases (Harrison & Coplien, 2006) provide a handle
for communicating changes to developers.

There are many patterns such as Berczuk (2003) about the technical
aspects of configuration management (out of scope for us).

Sources Literature on parallel development in open source (Fogel, 2006;
Muffatto, 2006; Davies, 2009), and the author's observation.

A5-12

 3 Conclusion
In this paper we presented a first set of patterns on open source
development that will form the core of a larger pattern language. In this set
we focused on open source practices that improve the performance of a
project, that is, how adopting these practices helps reduce the time, improve
the quality, and reduce the cost of an open source project.

There are several parallels between open source and agile development
practices as noted by Lui & Chan (2008) and Goldman & Gabriel (2005). This
paper does not claim that practices like Frequent Releases (5) and Parallel
Development (11) are unique to open source development, but it emphasizes
their key position in the open source paradigm. Other practices related to
making development transparent and creating a credible promise are more
germane to open source development. However, every practice described
has aspects unique to the context of open source development.

Future papers will document patterns for other perspectives on open source
development. Overall, the author envisions the collection of patterns to
contain patterns on the strategic use of open source (why adopt an open
source approach), open source product development (of which these
patterns are a part), technical architecture (how are open source systems
structured to encourage contributions), licensing aspects (impact of license
choices), and governance of open source projects (organization).

Acknowledgements
I thank Cecilia Haskins for shepherding this paper. I especially thank her for
her deep insights into patterns and her patience with a slow author.

In formatting these patterns I owe a tremendous amount to the format Allan
Kelly has used in his papers, which I tried to emulate.

Appendix A – Planned patterns
Here are short forms of the patterns not described in this paper.

Infrastructure How do you share project decisions effectively? Lever
coordination tools that can be accessed by all project
participants. These include mailing lists, messaging, code
repositories, bug tracking tools, and wikis.

New Roles When a project gets too large, how do you coordinate
contributions? Define formal roles for contributors (such
as issue manager) and the interaction between them.

Appendix B – Contributions of the patterns
This table summarizes how the patterns described in this paper affect the
different dimensions of performance (time, cost, and quality). These
relationships could provide the basis for testable hypotheses for a future
study, which may empirically establish the impact of the patterns.

A5-13

Minimize
Time

Minimize
Cost

Maximize
Quality

Credible Promise +

Frequent Releases – (–) +

Build on the Shoulders of Others – (+) +

Open Dialog (–) +

Parallel Development – (–) +

References
I tried to limit the number of references, but the ones below are needed to
give proper attribution. Key references are highlighted with a (*).

Baldwin, C., and Clark, K. (2006), Architecture of participation: does code
architecture mitigate free riding in the open source development model?,
Management Science, 52(7), 1116-1127.

Berczuk, S. (2003), Software Configuration Management Patterns: Effective
Teamwork, Practical Integration, Addison Wesley.

BigBlueButton (2009), http://code.google.com/p/bigbluebutton.

Birch, J. (2007), MapGuide Open Source: Project Insights and Practical
Applications, August, Geoplace.com

Davies, T. (2007), On branching and frequent releases,
http://twmdesign.co.uk/theblog/?p=37

Elssamadisy, A. (2007), Patterns of Agile Practice Adoption, InfoQ.

* Fogel, K. (2006), Producing Open Source Software: How to Run a
Successful Free Software Project, O'Reilly.

Foote, B., & Opdyke, W. (1994), Lifecycle and refactoring patterns that
support evolution and reuse, PloP, and in Coplien, J., & Schmidt, D. (1995),
Pattern Languages of Program Design 1, Addison Wesley,
http://www.laputan.org/lifecycle/lifecycle.html.

* Goldman, R., & Gabriel, R. (2005), Innovation Happens Elsewhere: Open
Source as Business Strategy, Morgan Kaufmann.

* Haefliger, S., von Krogh, G., & Spaeth, S. (2008), Code reuse in open source
software, Management Science, 54(1): 180-193.

* Harrison, N., & Coplien, J. (2006), Organizational Patterns of Agile
Software Development, Addison Wesley.

Jaaski, A. (2006), Building consumer products with open source, Linux
Devices, Dec, http://www.linuxdevices.com/articles/AT7621761066.html.

Johnson, R. (2007), Is it a tomcat, or the elephant in the room, Spring Source
blog, posted on Dec 24, 2007, http://blog.springsource.com/2007/12/24/is-
it-a-tomcat-or-the-elephant-in-the-room.

Lerner, J., & Tirole, J. (2002), Some simple economics of open source, Journal
of Industrial Economics, 50(2): 197–234.

A5-14

http://blog.springsource.com/2007/12/24/is-it-a-tomcat-or-the-elephant-in-the-room
http://blog.springsource.com/2007/12/24/is-it-a-tomcat-or-the-elephant-in-the-room
http://www.linuxdevices.com/articles/AT7621761066.html
http://twmdesign.co.uk/theblog/?p=37
http://code.google.com/p/bigbluebutton

* Lui, K.M., & Chan, K., Software Development Rhythms: Harnessing Agile
Practices for Synergy, Wiley.

Milinkovich, M. (2008), A practitioner's guide to ecosystem development,
Open Source Business Review, October, www.osbr.ca.

* Muffatto, M. (2006), Open Source: A Multidisciplinary Approach, Imperial
College Press.

Raymond, E. (1998), interviewed by F. Cavalier from Mib Software.

Homsky, O., & Raveh, A. (2007), Pattern language for online communities,
EuroPLoP.

Weiss, M. (2007), In bed with the enemy, EuroPLoP.

Photo credits
Penguins on an ice flow, by T. Ellis and shared under a CC-BY-NC license,
http://www.flickr.com/photos/tim_ellis/26360944

Human pyramid, by somerandomsequence, shared under a CC-BY-SA
license, http://www.flickr.com/photos/somerandomsequence/3898247588

Synchronize, by sammiji, need to obtain rights or replace,
http://www.flickr.com/photos/sammiji/3417689614

Open door, by D. Seagers and shared under a CC-BY-NC-SA license, http://
www.flickr.com/photos/seagers/1805045379

II, by Lori B. and shared under a CC-BY license,
http://www.flickr.com/photos/13025462@N08/2905698081

A5-15

http://www.flickr.com/photos/13025462@N08/2905698081
http://www.flickr.com/photos/9186045@N02/2194731677/
http://www.flickr.com/photos/9186045@N02/2194731677/
http://www.flickr.com/photos/sammiji/3417689614
http://www.flickr.com/photos/somerandomsequence/3898247588
http://www.flickr.com/photos/tim_ellis/26360944/sizes/l/

	 1 	Introduction
	 2 	Patterns
	 2.1 Credible Promise
	 2.2 Frequent Releases
	 2.3 Build On the Shoulders of Others
	2.4	Open Dialog
	 2.4 Parallel Development

	 3 	Conclusion

