
Towards Formalized Adaptation Patterns for
Adaptive Interactive Systems

Matthias Bezold

1 University of Ulm, Institute for Information Technology, Ulm, Germany
2 Elektrobit Automotive Software, Erlangen, Germany

matthias.bezold@uni-ulm.de

Abstract. A design pattern provides a general and proven solution for
a recurring problem. Design patterns are an established approach in the
domain of software engineering. Collections of such patterns also exist
for graphical interfaces and adaptive hypertext. However, a collection
of patterns for adaptive interactive systems does not exist. This paper
presents such a collection to provide structured knowledge about apply-
ing adaptations to interactive systems. In addition, a formalization of
these patterns using semantic technologies is presented as well as the
application of these formalizations in an adaptation framework.

1 Introduction

Adaptive interactive systems describe user interfaces that change based on the
user-system interaction to better reflect the requirements of an individual user.
Adaptation has been recognized as a means for improving the usability of user
interfaces and studied accordingly [13]. For instance, one possible adaptation
highlights frequently used values in a list or another one emphasizes interface
elements that might be of increased interest to the user. However, there is no
structured work so far that lists and categorizes different kinds of adaptations
for adaptive interactive systems. At the same time, tool support and frameworks
facilitate a wide-spread use of adaptations in interactive systems.

This paper proposes an approach for adapting multimodal interactive sys-
tems, such as automotive dashboard systems, personal navigation devices, or
home entertainment systems, which can also be speech-enabled. Two contri-
butions are presented. First, an adaptation architecture employs an abstract
definition of adaptation patterns to define adaptations for interactive systems.
These definitions can be reused between different systems, but at the same time
adjusted to the requirements of specific systems. The approach is based on a se-
mantic description of the interactive system and the adaptations are integrated
into a model-based development process. Second, we describe a set of adapta-
tion patterns for interactive adaptive systems. These patterns define successful
adaptations that have been used in different systems.

This paper is organized as follows. After a review of related work in Sec-
tion 2, the application of formalized adaptation patterns in the development of

B4 – 1



interactive systems in demonstrated in Section 3. Section 4 introduces a set of
adaptation patterns that can be used with the presented framework. After an
overview of a prototype implementation and a use case in Section 5, Section 6
concludes this paper.

2 Related Work

This section introduces the concept of patterns, reviews patterns from related
work, e.g. interface patterns, and presents approaches for the formalization of
design patterns. Design patterns are an established method in software engineer-
ing that collects solutions for recurring problems. A design pattern consists of a
proven solution and a discussion of a problem it solves. Moreover, the context
of the pattern further refines the circumstances under which this pattern is ap-
plicable. One problem can be addressed by different patterns and the context
determines which pattern is used best.

The most well-known use of design patterns are the software design patterns
by Gamma el al. [7]. These patterns are widely adopted and taught in classes.
Similarly, Buschmann et al. [4] present a set of patterns for software architecture,
which deal with a more high-level view on software design.

Originally, patterns only existed in textual, narrative form. However, research
on the formalization of patterns aims to increase their utility. A formalized
description is a representation using a well-defined structure and vocabulary,
thus providing a standardized and machine-processable representation. Differ-
ent levels of formalization exist for patterns. The first level is to write down the
narrative pattern descriptions in a formalized pattern format, which enforces
special markings to label the different sections (e.g. motivation or solution) of
a pattern description. This ensures consistency and allows referencing between
different pattern collections by providing a machine-readable structure in which
the patterns are filled in. The Pattern Language Markup Language (PLML) [6]
follows this approach and provides an XML document type definition (DTD) for
specifying patterns. PLML is however a very high-level definition that aims at
describing pattern collections in a uniform way and the semantics of the patterns
are not formalized.

A more formal notation of patterns can serve as a basis for intelligent tool
support, for instance by providing support when refactoring existing projects to
patterns (e.g. Zannier and Maurer [20]). Other approaches even formalize the
semantics of the adaptation patterns. Mikkonen [16] presents an approach for
formalizing patterns based on a custom notation for defining objects formally,
with the focus being on the temporal behavior of design patterns. Hallstrom
and Soundarajan [9] present an approach that enables validation and reasoning
with patterns. Another example is the work by Henninger [11], who proposes a
meta-model for software patterns based on an Web Ontology Language (OWL)
infrastructure for applying the patterns in the software development process.
This model conceptually builds on PLML, but extends it considerably by in-
cluding a more formalized representation of the patterns using description logic

B4 – 2



to add further semantic knowledge about the patterns. Henninger presents inter-
face patterns as an example of this approach. Our approach provides tool sup-
port for adaptation patterns and includes a semantic description of parts of the
patterns, but does not fully formalize the precondition for patterns. Therefore,
our approach is located between simple tool support and fully formal pattern
systems.

Whereas design patterns are mostly used in the domain of software engineer-
ing, patterns were also applied by different researchers to the domain of user
interface design. For instance, van Welie and van der Veer [19] and Borchers [3]
have compiled extensive pattern collections of reusable interface design knowl-
edge, which can be used by designers and system developers in creating graphical
interfaces. Tidwell [18] presents an extensive structured catalog of interface de-
sign patterns, which covers a wide range of topics, such as the general structure
of a graphical application, form input, and aesthetics. However, these patterns
do not cover adaptive user interfaces.

A basic set of abstract adaptation patterns, which are descriptions of proven
adaptations, was presented for adaptive hypertext systems by Danculovic et al.
[5], introducing Link Personalization, Content Personalization, Structure Person-
alization, and Remote Personalization, which all are very general. These patterns
were extended by Koch and Rossi [14] by adding more detailed patterns such as
Adaptive Anchor Selection or Adaptive Sorting of Anchors. However, the adap-
tation of hypertext is focused on content and the linking of different documents
rather than the user interface, as required for adaptive (graphical) interfaces.
Moreover, more information can be extracted from the user-system interaction
of an interactive system, since the observation by an interactive system is richer
than tracking the list of visited pages in hypertext systems. Therefore, adaptive
interactive systems have their own adaptation patterns and defining such pat-
terns can aid developers in deciding under which circumstances to apply which
adaptations to improve an interactive system.

3 Formalization and Execution of Adaptation Patterns

This section describes how a description logic-based, semantic definition of adap-
tation patterns is used to enable adaptivity in interactive systems. In order to
apply these patterns to an interactive system, we introduce a semantic model of
the interactive system.

Whereas the domain of the design patterns by Gamma et al. [7] is source code,
the domain of these adaptation patterns are interactive systems. Therefore, the
abstract description of interactive systems used in this work corresponds to an
abstract description of source code that is required by tool support for design
patterns. For this purpose, the interactive system is described by a semantic
layer. This layer is based on an ontology defined in the Web Ontology Language
(OWL) [17] format and consists of a number of classes and individuals of these
classes. For instance, each graphical element or speech output prompt in the
interactive system is represented by an instance of a “button” or “prompt” class

B4 – 3



and further described by a set of properties, such as color and size in case of the
button. The semantic layer is derived automatically from a description of the in-
teractive system, but annotation contributes further information. The advantage
of this approach is that all parts of the interactive system, e.g. the interactive
system, information about the user, and a description of the adaptations, are
represented using the same formalism. In addition, OWL allows for an automatic
inference of additional information (cf. Horrocks et al. [12]).

An adaptation pattern is a description of a common problem of interactive
systems and a solution of this problem that is based on adapting the interac-
tive system to the behavior of a user. The formalized definition of adaptation
patterns in this work consists of two parts: a declarative description that can be
reused between different systems and a functional description of the adaptations
that defines how an adaptation is performed in a certain system. The formal-
ization facilitates an inclusion in the tool chain, thus enabling a tool-supported
development of adaptive interfaces.

3.1 Declarative Description of Adaptation Patterns

The declarative description of patterns consists of three parts: a trigger of the
pattern, a selection that determines which part of the interface the adaptation
should be applied to, and the name of an abstract adaptation. The declarative
description is called adaptation selector in the adaptation framework, because
it selects an interface element and an adaptation. Adaptation selectors can be
reused between different systems, since they only rely on abstracted information
in the semantic layer to define the declarative part of the adaptation. For in-
stance, graphical elements are addressed as “graphical button” or “list”, which
can support a variety of different implementation and flavors of actual inter-
face elements. The declarative description of an adaptation pattern consists of
a number of adaptation selectors.

The adaptation trigger is connected to the user modeling component [2],
which observes the user and derives information from the user-system interface.
For instance, the user modeling component can predict future user actions (e.g.
opening a certain sub-menu) or the user’s favorite values (e.g. favorite names in
an address book). When the user modeling component provides new information,
the respective adaptation selectors, which are triggered by this information, are
activated.

Interface elements are selected by an adaptation executor through a query
that returns all elements from the semantic layer that match the given query.
For instance, if the user modeling predicts that a certain action called “A” will
be performed next by the user, the selection could load all elements from the
semantic layer that trigger action “A”. A simplified version of SPARQL 3 is used
for the notation for the queries.

3 SPARQL Protocol and RDF Query Language: http://www.w3.org/TR/rdf-sparql-
query/

B4 – 4



Adaptation selector “ButtonEmphasisSelector”
Trigger: Prediction of user action “A” by

the user modeling component
Element: Select a graphical button that

trigger the predcted action “A”
(in an OWL-based notation)

Adaptation: ButtonEmphasis

Fig. 1. An adaptation selector selects all graphical buttons that trigger an action that
was predicted. In addition, an abstract adaptation (“Component Emphasis”) is chosen
for the selected elements.

Finally, an abstract adaptation is recommended for the selected elements.
For example, the selected button that triggers action “A” could be emphasised
to draw the user’s attention to it by enabling the “ButtonEmphasis” adaptation,
which is an instance of the “Component Emphasis” pattern (to be introduced
in Section 4).

Fig. 1 shows an adaptation selector that was used as an example throughout
this section: Based on a prediction of a user action “A” by the user modeling
component, the adaptation selector picks all graphical buttons from the seman-
tic layer that trigger action “A” and recommends the “Component Emphasis”
adaptation for these elements.

3.2 Functional Description of Adaptation Patterns

In order to enable the interactive system to apply an abstract adaptation rec-
ommended by an adaptation selector, a functional description of the pattern is
required, i.e., instructions on how to execute this pattern on a specific inter-
face element. Adaptation executors can be system-specific and therefore not be
reused between different systems in every case. The reason is that the execution
of adaptations depends on the specific implementation of the interface element.
However, default implementations have been defined that can be used on a wide
range of elements by changing only basic properties (such as the position or the
size).

The functional definition of patterns specifies the effects of an adaptations
by defining which properties of the individuals are changed. Fig.2 shows an
adaptation executor of the “Component Emphasis” pattern that changes the
color or the size of a graphical button, which are represented by properties of
the corresponding individual. One adaptation pattern is not represented by a
single adaptation executor, but by a set of adaptation executors for different
interface elements, since the same adaptation manifests itself very differently for
different elements. For instance, the Emphasis pattern has a different functional
description for a graphical button than it has for a graphical list.

B4 – 5



x = x – 5
y = y – 5
width = width + 10
height = height + 10
textColor = color.yellow

Adaptation executor “ButtonEmphasisExecutor”
Adaptation: ButtonEmphasis
Interface element: Graphical button
Property changes:

Fig. 2. Example of an adaptation executor, which perform the Emphasis adaptation
on a button.

3.3 Application of the Adaptation Patterns in an Interactive
System

The previous section discusses how adaptations are defined, but not how the
adaptive system decides whether to execute a suggested adaptation. This section
introduces two approaches for defining which adaptations to execute: selection
by the system designer and an automatic procedure in which the adaptation
component decides automatically which adaptations to execute.

Specification by the System Designer An integration of formalized adap-
tation patterns into the model-based development process thus facilitates the
development of adaptive interactive systems. At design time, the formalized
adaptation patterns provide tool support to the designer of the adaptive system.
For this purpose, the system designer can decide when the individual adapta-
tions should be executed by enabling or disabling adaptations for certain parts
of the system.

Adaptations can be enabled on three levels: globally, for an interface con-
text, or for an individual element. First, if an adaptation is enabled globally,
it is executed whenever it is recommended by an adaptation selector. Second,
adaptations can be enabled for interface contexts. An interface context is for ex-
ample a graphical screen or a speech component, which is a set of speech output
prompts and speech input grammars that are enabled together. When an adap-
tation is enabled for an interface context, it is executed in the respective context,
but not in others where the adaptation was not enabled. Third, adaptations can
be enabled on a per-element basis.

In addition, conditions can be added these definitions. For instance, an adap-
tation should only be executed when the user is a beginner, based on information
stored in the user model or the semantic layer. Therefore, the system designer
can decide in a very flexible way which adaptations should be executed, without
the need of defining the adaptations manually.

Automatic Execution by the Adaptation Component In addition to the
developer deciding about which adaptation to apply, an adaptation component

B4 – 6



can decide automatically at runtime about the execution of adaptations. This
decision is based on the semantic representation of both the interactive system
and the adaptations. The overall procedure is similar to the specification of
adaptations, but decisions taken at design time are instead performed by the
adaptation component at runtime.

The adaptation component can automatically decide about the level of adap-
tivity, based on the proficiency of the user in general or with respect to individual
parts of the system. For example, adaptive help can be used for parts of the sys-
tem that the user has not used extensively, while no adaptations are used in
parts that the user knows well.

4 Adaptation Patterns

This section presents a set of adaptation patterns for interactive systems. These
adaptation patterns change the user interface of the system, but do not directly
depend on the application logic. Certain adaptations are outside of the scope
of this paper, because they do not address general problems, but specific algo-
rithms, such as for instance an adaptation of the route generation algorithm of a
navigation device by the Adaptive Route Adviser [15]. Instead, this paper deals
with general adaptations for user interfaces of interactive systems. Since multi-
modal adaptive systems are the subject of the adaptations, their applicability
to speech-based interfaces is also considered.

The patterns presented in this section are more general in their nature than
patterns in other pattern collections, which make them applicable to a broad
range of interface components. Unobtrusiveness is a main principle of these adap-
tations to comply with usability principles such as consistency and learnability.
Adaptations that reconstruct the whole interface thus interfere with such usabil-
ity principles.

Adaptations are executed based on an observation of the user-system inter-
action. This observation of user behavior, called user modeling, creates a repre-
sentation of the user that serves as a basis for decisions about adaptations. For
this purpose, a user modeling component observes the user (e.g. from log data)
and constructs a model using different algorithms, such as the ones presented
by Zukerman and Albrecht [21], thus providing information about user actions
and preferences. The user modeling phase, which is therefore a crucial part of
adaptive interfaces, is not explicitly part of these pattern descriptions. However,
the “Adaptation Trigger” section of the patterns describes which observations
of the user modeling component trigger the respective adaptation.

Adaptation selectors and a set of generic adaptation executors, as introduced
in Section 3, were defined for the patterns presented in this section. In order to
make an adaptation fit into a specific system seamlessly, custom adaptation
executors can be defined in addition to the existing ones.

B4 – 7



4.1 Component Emphasis

Intent Guide the user by emphasizing certain elements of the interface. Limit
the changes to the part of the interface that requires emphasis. In doing so,
enable users to reuse their acquired knowledge of the interactive system and
avoid distracting the user through fundamental changes of the interface.

Motivation During the interaction with an interactive system, a user has a goal
and is looking for interface elements that can help in fulfilling it. For instance,
the user might look for a graphical button triggering an action. The system
provides support by guiding the user to the respective interface elements.

Forces

– The user follows a certain goal when using the system and might spent
considerable time looking for interface elements that facilitate reaching this
goal.

– Performing major changes to the system can confuse the user and distract
from the current task. Subtle guidance instead supports the user.

– Emphasizing wrong elements can impede the user, therefore a sufficiently
good user modeling prediction is crucial for this adaptation.

– The adaptive emphasis should be conceived in a way that the user does not
confuse it with a regular selection in the user interface.

Solution Make the adaptive system change properties of interface elements in
a way that they draw the user’s attention. Use assumptions of a user modeling
component, such as a prediction of the most likely next action or an action the
user has not used yet. Help the user reach the current goal by emphasizing inter-
face elements that are related to the respective assumption of the user modeling
component.

Adaptation Trigger The following observations of the user modeling compo-
nent trigger the Component Emphasis adaptation:

– Prediction of the next user action.
– Actions that the user has not used yet, but which others have used.

Related Patterns The “List Item Emphasis” pattern emphasizes elements in a
list and is therefore related to this pattern, which emphasizes arbitrary elements
related to triggering actions.

The “Prominent ’done’ button” pattern [18] statically emphasizes a button
that finishes a task associated with a graphical view, but the emphasis is not
performed based on the current user’s behavior.

B4 – 8



1 - Before adaptation:

2 - After adaptation:

Fig. 3. Emphasis of a button in an interactive TV system. The “Start search” button
is emphasized compared to the non-emphasized “Rec. list” button. The reasoning is to
provide non-intrusive and subtle hints, in this case by increasing the size of the button
and changing the text color.

Example Consider an electronic program guide, where the user specifies filter
criteria, such as channel or time, to filter the list of TV shows. After a number
of criteria was selected, the user has to press a “Show results” button to see
all shows that match the selected criteria. Increasing the size of the button and
changing colors (see Fig. 3) emphasizes the button, thus supporting the user in
finishing the current task.

The Emphasis pattern is also applicable to voice interfaces. If a user enters
a state where the system reads the possible utterances, saying a phrase as the
first or the last one draws a user’s attention to this phrase.

4.2 List Element Selection

Intent Support the user in selecting similar-looking elements from a list, for
instance by highlighting frequently used entries from the list.

Motivation When selecting elements from a list, users often select some ele-
ments frequently and others not at all. The selection process can be improved
by emphasizing frequently selected elements from the list.

Forces

– Selecting frequently used items in a list should take less time for the user
than selecting others.

– If a list is longer than one screen, highlight the interesting items also in the
scrollbar to enable the user to quickly scroll to the interesting elements.

– Emphasized list elements should be highlighted in a way that the user does
not confuse them with elements the cursor is placed on.

– Emphasizing wrong elements can impede the user, therefore a sufficiently
good user modeling prediction is crucial for this adaptation.

B4 – 9



Positions of
emphasized

list elements
in scrollbar

Current 
selection

Emphasized
list element in
current page

Fig. 4. Three elements are emphasized in a selection list by the List Item Emphasis
pattern. The emphasized elements are supposed to be selected more frequently by the
user than others.

Solution Emphasize these elements in the list that have been selected more
often before than others. In doing so, let the user more quickly see these elements
which are of increased interest. For instance, change the text or background color
of these elements or add markers to differentiate interesting elements from others.

Adaptation Trigger The following observations of the user modeling compo-
nent trigger the List Item Emphasis adaptation:

– List entries that have been selected more often than others either by the
current user or by other users.

– Elements in a list that the user has not yet selected, but which should be
interesting based on the user’s previous behvior.

Related Patterns The “Element Emphasis” adaptation pattern also empha-
sizes interface elements, but these elements are not necessarily similar, as are
list elements, and are mostly used for navigating within the system.

The “Annotated scrollbar” pattern [18] recommends adding information to
the scrollbar, which is also proposed by this pattern to mark the position of
recommended elements in the list. Moreover, the “Adaptive Anchor Annotation”
[14] pattern describes how to annotate links in a hypertext system, and this
pattern can be considered as a sub-set of the anchor annotation pattern by
annotating emphasis.

Example Selecting elements from a list is a very common action when inter-
acting with interactive systems. For instance, selecting a name from the address
book is one of the fundamental functions of interactive systems that support
phone calls, such as mobile phones or automotive dashboard systems. Since users
call a small number of people from their phone book frequently, the selection
of these names from the address book can be quickened by highlighting these

B4 – 10



names. An example of such a system is given in Fig. 4, which shows an address
book that emphasizes the three most frequently selected elements.

Different visualizations of the “List Item Emphasis” pattern are possible and
have been examined by research projects. One example are fisheye menus [1]
that assign a different font size to different elements; this kind of visualization
can be employed for adaptations as well.

4.3 Alternative Elements

Intent Provide a set of configurations for different interface components or
screens and select the appropriate configuration to better support the require-
ments of an individual user.

Motivation Since the demands as well as the skills of users of interactive sys-
tems vary, different system configurations can better reflect the needs of an
individual user. Instead of providing one configuration that tries to consider
all possible users, the adaptation selects the version which is best suited for
the needs of the current user. A user modeling component provides informa-
tion about the proficiency of the user, which it derives for instance from the
interaction speed and the number of user errors.

Forces

– Different configurations of interface components or graphical screens better
reflect the needs of individual users.

– Automatically generated alternatives can break with existing usability prin-
ciples.

– Additional time has to be spent developing the different alternatives, but
the user can benefit from an improved user-system interaction.

Solution Provide different versions of a certain part or component of the inter-
active system to the adaptation component, for instance of a graphical screen,
a speech output prompt, or a property (e.g. font size). Support users by select-
ing the appropriate alternative for the respective entity. Use information from
the user modeling component at runtime to derive the most suitable configura-
tion for the current user. By providing a set of alternatives to the adaptation
component, which were created by the system designer, it is ensured that the
interactive system adheres to design principles.

Adaptation Trigger The following observations of the user modeling compo-
nent trigger the Alternative Elements adaptation:

– Preferences or properties of the user, such as the knowledge level or experi-
ence of the user.

B4 – 11



Related Patterns The “Alternative views” pattern [18] lets the user decide
among alternative views, for instance of a web page. However, the most appro-
priate view is not selected automatically.

Example The Alternative Elements pattern can be employed at different levels.
For instance, when a user has to enter different values in an input screen, such
as selecting the destination in a navigation device or selecting criteria in an
interactive TV program guide, a simple version of the screen is provided to
novice users and a more powerful version to advanced users. On a lower level, a
larger font size improves the readability for visually impaired users.

On the other hand, a speech interface can provide different levels of speech
output prompts. Novice users receive extended prompts when they enter a new
part of the system. These prompts explain the most important functions to them.
Intermediate users only require shorter prompts, which list the commands, but
do not necessarily explain them. Finally, expert users, who could be annoyed
by long and repetitive speech output, only hear a short prompt explaining the
current state of the system and receive more explanation on request. A system
that employ this kind of adaptation is for example presented by Hassel and
Hagen [10].

4.4 Adaptive Help Presentation

Intent Present adaptive help for the current situation of the user.

Motivation Help in interactive system is often static or only considers the
currently active screen, but different people are likely to have different problems
in different contexts. Providing help to the user is more valuable if it covers the
current task of the user. By not only taking into account the current context,
i.e., the graphical screen or speech state, but also the user’s interaction history,
help is more specific and can thus support a user more precisely in the current
task.

Forces

– Help tailored to the current task of the user is more valuable than static
help.

– Static help can be too advanced for beginners and at the same time too
superficial for expert users.

– Providing help can be assistive for beginners, but annoying for expert users.

Solution Provide specific help for the current situation of the user. Observe the
user-system interaction to determine the situation and the context of the user.
Present the help either on a separate area of the screen, or use an icon (or an
acoustical “earcon”) to indicate the availability of help. Give the user an option

B4 – 12



1- Before adaptation: 2 - After adaptation:

Fig. 5. Adaptive help supports the user by showing a text message that fits the current
situation of the user. If a user is sufficiently proficient in working with the system, help
messages are no longer shown.

to open this help once it is available. But ensure at the same time that the user is
not distracted by the provided help. Therefore, avoid messages that fully engage
the user’s attention, as for instance modal help messages. Provide an acoustic
signal instead of a graphical hint for speech interfaces or visually impaired users.

Adaptation Trigger The following observations of the user modeling compo-
nent trigger the Adaptive Help Presentation adaptation:

– Prediction of the next user action.

– Detection of user problems.

– Preferences or properties of the user, such as the knowledge level or experi-
ence of the user.

Related Patterns The “Multi-level help” pattern [18] suggests using different
help techniques. Adaptive help is one kind of help that provides information
adjusted to the current situation of the user.

Example In an interactive TV system, the user can browse the TV program in
an electronic program guide and for this purpose specify different filter criteria,
such as channel or time. Help is presented to the user by fading in a yellow
message box on the top of the screen. When the user enters the selection screen
for the first time, the help explains how to select filter criteria. After some criteria
were selected, the help text on the screen tells the user to open the result screen
next. Fig. 5 gives an example of the adaptive help feature in a digital TV system.

4.5 Shortcut Area

Intent Present shortcuts for executing actions or selecting values to the user on
a separate part of the interface. In doing so, accelerate the execution of frequent
actions or sequences of actions and selection of the user’s favorite values.

B4 – 13



Motivation Users often select the same values repeatedly, for instance when
selecting elements from a list, such as a list of fonts, or by executing the same
actions over and over again. The interaction is simplified by presenting these
items to the user as shortcuts. By employing a special area for the shortcuts,
the decision whether to use shortcuts is left to the user.

Forces

– Finding frequently used elements and executing actions repeatedly can be
very time-consuming for the user. Shortcuts can therefore simplify the user-
system interaction.

– Shortcuts that automatically pop up on top of the interface interfere with
the user interface and distract the user. A separate area that is always visible
instead allows the user to decide whether or not to use shortcuts and limits
the distraction of the user.

Solution Employ a separate area of the screen – called shortcut area – to
present shortcuts to the user, thus avoiding a distraction of the user. Make this
list either part of one interface element (e.g. of a list) or make it a separate part
of the whole screen for presenting global shortcuts. In doing so, enable the user
to find frequently used elements more quickly by selecting them from a distinct
area of the screen. Use the output of a user modeling component to create the
list of shortcuts.

Adaptation Trigger The following observations of the user modeling compo-
nent trigger the Shortcut Area adaptation:

– Prediction of the next user action or a sequence of user actions.
– Prediction of a user preference, such as a TV channel.

Related Patterns The “Streamlined repetition” pattern [18] suggests consider-
ing repeated operations when creating an interface. The Shortcut Area provides
a solution for this recommendation. The “Action panel” pattern [18] presents a
list of available actions to the user, which is similar to an Shortcut Area that
contains user actions. If the Shortcut Area presents a sequence instead of single
items, the adaptation is similar to the “Autocomplete” pattern [18], since the
adaptation anticipates user behavior.

Example In a selection list, a separate area on the top of the list presents the
most frequently selected entries of the list to the user. By selecting them, the
user does not have to scroll through the whole list. One example of such a list is
the font selection list in Microsoft Word (2000 and later), which shows the most
recently used fonts in a separate area on the top of the list.

B4 – 14



Regular 
interface

Adaptation area
with shortcuts

Fig. 6. A separate adaptation area presents a list of buttons based on a prediction of
the user’s next actions. These actions are executed by pressing the respective buttons.

A different application of the Shortcut Area pattern is to provide navigation
shortcuts. A user modeling component recognizes user actions and predicts a se-
quence of possible next actions, with each action being represented by a button
in an adaptation area. If the user presses one of these buttons, the action associ-
ated with the button and all actions before the pressed button are executed, thus
reducing the number of required interactions. An example of an interface that
provides navigation shortcuts to the user is shown in Fig. 6: In addition to the
regular interface (shown on top), the interactive system presents a list of likely
next actions to the user on the bottom of the screen. If the user presses one
of these buttons, the interactive system automatically executes the respective
actions.

5 Implementation and Sample Use Case

This section gives an overview of an implementation of the adaptation approach
presented in Section 3, which includes a definition of the adaptation patterns
introduced in Section 4. In addition, a sample use case further illustrates the use
of this approach.

5.1 Implementation

In order to investigate the approach presented in this paper, an adaptation frame-
work was developed within a model-based development environment called EB
GUIDE Studio [8]. The tool comprises a simulation component that executes
a specified application. A semantic layer was added that uses an OWL-based
ontology to describe the system, but also the user-system interaction. The se-
mantic layer is implemented using the Jena framework4 and is available both at
design time and at runtime.

The framework comprises an adaptation component, which works as dis-
cussed in Section 3. Moreover, it includes a set of adaptation selectors for the

4 Jena Semantic Web Framework: http://jena.sourceforge.net/

B4 – 15



adaptations presented in Sect. 4. Since these selectors are defined on the abstract
level of the semantic layer, they can be reused between different interactive sys-
tems. In addition, the framework includes a set of default adaptation executors
that only change properties common to all graphical elements. In doing so, these
can also be used for different systems, but a better integration into the specific
style of a certain system can be achieved by defining custom executors for a
specific system.

The prototype implementation includes a user modeling component that
models user behavior from low-level events, such as key presses by the user
and system reactions to these inputs. Based on these low-level events, informa-
tion such as the most likely next interaction step or a user preference, such as
a favorite TV channel or font, are computed and forwarded to the adaptation
component and makes these user modeling events available as triggers.

To show the feasibility of this approach, adaptations were implemented in two
different interactive systems. First, an adaptive version of a interactive TV proto-
type application was created. Among the implemented adaptations are Adaptive
Help Presentation, which guides novice user through the system, and Compo-
nent Emphasis, which emphasizes buttons the user is most likely to use next.
The latter adaptation is discussed in detail as a use case in Section 5.2. Second,
an adaptive version of a system resembling an automotive dashboard system
was created. It includes the Alternative Elements adaptation, which in this sys-
tem selects between a beginner and an expert version of a route guidance entry
screen, and the List Item Emphasis adaptation, which highlights frequently se-
lected names in an address book.

5.2 Sample Use Case

This section presents a use case of applying an adaptation pattern to an in-
teractive system. In addition to the application of the adaptation pattern, the
preparation of the user modeling component is also discussed. As an example,
the Component Emphasis adaptation is applied to a TV system, which includes
an electronic program guide (EPG). After selecting a set of filter values, such
as channel, time, or genre, the user can open the results screen by pressing a
button labeled “Show Results”. Since novice users could not be aware that the
“Show Results” button has to be pressed, emphasizing it can help the user in
browsing the EPG.

The user modeling component has to be set up in a way that it observes
the user’s behavior and predicts user actions. In this framework, an algorithm
based on Markov chains is used for action prediction and an adaptation trigger
is emitted when such a prediction was made.

Most of the semantic layer is generated automatically from the model-based
description in the development tool. However, some manual annotation was still
required. In this case, the information that the “Show Results” button triggers
the “OpenResultList” action is annotated to the button and loaded into the
semantic layer.

B4 – 16



Finally, a custom adaptation executor could be defined for this interactive
system. The behavior of the default generic adaptation executor, which simply
increases the size of the interface element, might not fit in well with the design
of the system, and therefore, a custom adaptation executor, which increases the
size through an animation and make the background color slightly lighter, was
defined.

The execution of the adaptation then works as follows. First, the user model-
ing component emits an event that a user action was predicted and thus triggers
“ButtonEmphasisSelector” selector, which is part of the framework and selects a
button that triggers the predicted user action. This selector then recommends the
abstract “Component Emphasis” adaptation for execution and the adaptation
component tries to find an appropriate executor. Two executors are available:
the default executor, which is part of the framework, and the custom executor
defined for this system. In this case, the adaptation component gives priority to
the custom executor and executes the custom adaptation executor accordingly.

6 Conclusion

In this paper, we presented a definition of adaptation patterns that can be in-
tegrated into the model-based development process. A set of general adaptation
patterns for adaptive interactive system was defined. A sample implementation
of the presented framework was presented to show the feasibility of this ap-
proach. The adaptation patterns defined in this paper were integrated into the
framework and the adaptations were applied to two sample systems. A detailed
use case further illustrated the approach.

Acknowledgements

The author is indebted to Paul Adamczyk, the shepherd of this paper for Euro-
PLoP 2009, for his time, comments, and observations, which allowed the paper
to evolve during the shepherding process. Many thanks also for the insightful
and encouraging comments from the discussion group at EuroPLoP 2009.

Copyright retained by author. Permission granted to Hillside Europe for in-
clusion in the CEUR archive of conference proceedings and for Hillside Europe
website.

References

1. B. Bederson. Fisheye Menus. In ACM Conference on User Interface Software and
Technology (UIST), pages 217–226. ACM Press, Suracuse, NJ, USA.

2. M. Bezold. User Modeling from Basic Events in Interactive Systems for Intelli-
gent Environments. In International Conference on Intelligent Environments (IE),
pages 319–326, 2009.

3. J. Borchers. A Pattern Approach to Interaction Design. Wiley, Chichester, UK,
2001.

B4 – 17



4. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
oriented Software Architecture. Wiley, Chichester, UK, 1996.

5. J. Danculovic, G. Rossi, D. Schwabe, and L. Miaton. Patterns for Personalized
Web Applications. In European Conference on Pattern Languages of Programs
(EuroPLoP) 2001, pages 423–436, 2001.

6. S. Fincher, J. Finlay, S. Greene, L. Jones, P. Matchen, J. Thomas, and P. J. Molina.
Perspectives on HCI patterns: Concepts and Tools. In Extended Abstracts on
Human Factors in Computing Systems (CHI), pages 1044–1045. ACM, 2003.

7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Upper Saddle River, NJ,
USA, 1995.

8. S. Goronzy, R. Mochales, and N. Beringer. Developing Speech Dialogs for Mul-
timodal HMIs Using Finite State Machines. In 9th International Conference on
Spoken Language Processing (Interspeech), CD-ROM, 2006.

9. J. O. Hallstrom and N. Soundarajan. Formalizing Design Patterns: A Compre-
hensive Contract for Composite. In Proceedings of the 7th FSE Workshop on the
Specification and Verification of Component-Based Systems, pages 77–82, 2008.

10. L. Hassel and E. Hagen. Adaptation of an automotive dialogue system to users
expertise and evaluation of the system. Computers and the Humanities, 40(1):67–
85, 2006.

11. S. Henninger and P. Ashokkumar. An Ontology-Based Metamodel for Software
Patterns. In K. Zhang, G. Spanoudakis, and G. Visaggio, editors, Conference
on Software Engineering & Knowledge Engineering (SEKE) 2006, pages 327–330,
2006.

12. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. Technical
report, World Wide Web Consortium, May 2004.

13. A. Jameson. Human-computer Interaction Handbook, chapter Adaptive Interfaces
and Agents, pages 305–330. Erlbaum, Mahwah, NJ, USA, first edition, 2003.

14. N. Koch and G. Rossi. Patterns for Adaptive Web Applications. In European
Conference on Pattern Languages of Programs (EuroPLoP) 2002, pages 179–194.
Universitätsverlag Konstanz, 2002.

15. P. Langley. User Modeling in Adaptive Interfaces. In Conference on User Modeling
(UM) 1999, pages 357–370. Springer-Verlag, New York, NY, USA, 1999.

16. T. Mikkonen. Formalizing Design Patterns. In Proceedings of the 20th international
conference on Software engineering (ICSE), pages 115–124, Washington, DC, USA,
1998. IEEE Computer Society.

17. M. K. Smith, C. Welty, and D. L. McGuinness. OWL Web Ontology Language
Guide. Technical report, W3C, 2004.

18. J. Tidwell. Designing Interfaces. O’Reilly Media, Sebastopol, CA, USA, first
edition, 2005.

19. M. van Welie and G. C. van der Veer. Pattern Languages in Interaction Design:
Structure and Organization. In Interact 2003. IOS Press, Amsterdam, The Nether-
lands, 2003.

20. C. Zannier and F. Maurer. Tool Support for Complex Refactoring to Design Pat-
terns. In M. Marchesi and G. Succi, editors, Extreme Programming and Agile Pro-
cesses in Software Engineering (XP), volume 2675 of Lecture Notes in Computer
Science, pages 123–130. Springer, Heidelberg, Germany, 2003.

21. I. Zukerman and D. W. Albrecht. Predictive statistical models for user modeling.
User Modeling and User-Adapted Interaction, 11(1-2):5–18, 2001.

B4 – 18


