Test Automation Design Patternsfor Reactive Software Systems

A.-G. Vouffo Feudjio, I. Schieferdecker
Fraunhofer Institute for Open Communication Systems (FSKU
Alain.Vouffo, ina.schieferdecker@fokus.fraunhofer.de

Abstract

Patterns have been successfully applied in software dewedat to improve the development process, by facil-
itating reuse, communication and documentation of souhdisos. However, the testing domain is yet to benefit
from a similar approach. This although, with the growing @lexity of test automation solutions, identifying
and instrumenting patterns in test design to facilitatese@ppears to be a promising approach for shortening
the development cycle and save costs. This paper presentketion of patterns for designing test automation
solutions for reactive software systems and reports ondiperiences of applying those patterns in a case study.

1 Introduction

It is now widely acknowledged that testing is no longer justaat, but an engineering discipline in its own,
with test development following a similar process as genssitware development. Patterns are a canonical docu-
mentation of the essential concepts underlying successfutions to recurrent engineering and design problems.
They are used to capture experiences, expertise, and daictptove system quality and facilitate the production
of new solutions. In previous publications, we proposednalar approach for the design and implementation
of tests automation systems [23]. This is particularly ries&ing with the growing popularity of Model-Driven
Testing (MDT), which raises the level of abstraction fott ssign, to a degree that it allows reuse of concepts for
new solutions.

In this paper, we present a selection of test patterns we ¢@lierted so far by performing pattern mining on
existing test automation solutions designed using diffetest design and test scripting notations e.g. the Testing
and Test Control Notation (TTCN-3) [12] the UML Testing PlefUTP) [21] or JUnit [15]. Each test pattern is
defined along a template we introduced in previous work [B3]which was refined to align with generic pattern
methodologies. This work is organised as follows: Sectigmeésents a selection of the test patterns we have
identified, then Section 3 reports on a case study in whicloegype tool implementing some of those patterns
was used to desigh a conformance test suite for the IP Muliem8ubsystem communication protocol (IMS).
Section 3.2 discusses some related work in this area, b8krton5 concludes the paper and draws an outlook
for further research.

Readers familiar with the pattern concept can skip partseatisn 3 and go directly to section 2.1, where the
description of patterns starts.

E6-1

Test Planning Generic
Prioritizati f Test Objecti
rionitization of 1es jectives Separation of Test Design

Traceability of Requirements Concerns

To Test Artifacts (and back) Grouping of testing concermns

Traceability of Test Objectives

Appl i tii
to Fault Management PPy haming convention

Crganizational

Technical .
Test Behaviour
Test Data Test Architecture Assertion-Driven
. Test Behaviour Design
Purpose-Driven Test One-on-One Test
Data Design Architecture Test Components Factory
Flexible Test Data Proxy Test Component Time Constraints on Test
Design Events

Centralized Test Coordinator Architecture-Driven Test-

Dynamic Test Data Pool Behaviour Design

Figure 1. Overview of Identified Test Patterns

2 A Collection of Test Patternsfor Black-box test design

We consider test engineering to be a process that startstirerdefinition of test objectives via abstract test
models through to executable test cases. We classify téstimalong the various activities of that process into
the following categories:

e Generic test design patterase those applicable to all activities of the test engimggprrocess.

e Test objectives design pattermsccording to IEEE 829 [16], a test objectivis a brief and precise descrip-
tion of the special focus or objective for a test case or a&seri test cases. Test objectives can be viewed as
the equivalent to system requirements in product developared will certainly benefit from the application
of patterns in a similar way as with requirements engingefiRE) patterns [13]. Accordinglyest objective
design patterngre those addressing that activity in the test engineeningegs for a given system under
test (SUT).

e Test procedure design pattern& test procedure is defined as a prose description of a sequ#ractions
and events to follow or to observe for executing of a test.cAsest procedure describes how a test objective
will be assessed. Therefore, Test procedure design patieerthose that are applicable when designing the
test procedures for a given SUT.

e Test architecture design patteraiefine good practices and established recommendationgeittisg and
designing appropriate test architectures. The test athites describe the topology of a test system, i.e.
its composition as a collection of (parallel) test compdsgimterconnected among each other and with the
SUT and communicating through Points of Control and ObsemwgPCOs). Depending on the overall
goal of a test e.g. conformance, performance, functignatibustness, etc., different test architectures are
suitable.

Test objectives are sometimes also referred testspurposesest requirementsr test directivesn the literature

E6-2

e Test data design pattermescribe approaches for designing the data used in testrimeas stimuli for the
SUT or to express assertions, based on which the SUT’s respaitl be evaluated to assess if they meet
their requirements or not.

e Test behaviour design pattermmcument approaches and principles for designing the Imiraof test
systems, i.e. the patterns of interactions between esiiitia test architecture.

The ultimate goal of test patterns is to increase the quafitests. Which leads us to the issue of defining the
characteristics of test quality. The ISO/IEC 9126 standiardldefines a model for internal and external quality of
software, including quality characteristics and assedianetrics.

Zeiss et al [26] demonstrated the applicability of that mddeests and came up with a model combining
test-specific quality characteristics such as test effeigtiss and test efficiency with more generic ones such as
(re-)usability, maintainability, portability etc. Hower the value and applicability of those characteristick wi
mainly depend on the chosen test design strategy. Bindesld8%ifies test design strategies in four main cate-
gories: Responsibility-based , implementation-baserithyand fault-based test design. Responsibility-bassid te
design uses specified or expected responsibilities of an tBUWEsign tests and is synonymous to “black-box”,
“specification-based”, “behavioural”, “functional” t&sfj. Implementation-based test design relies on internal
knowledge (e.g. source code, internal design) of the SUTefsirdesign and is also labelled “structural”, “white-
box”, “glass box” or “clear box” testing. Hybrid test desigombine responsibility and implementation-based
test design. Whereas fault-based testing purposely éfecits in the SUT to check whether those faults are
discovered by a test suite.

Although some of the patterns discussed in this work may pécafble to other test design strategies, the main
concern is on responsibility-based test design. As expgedtés has had repercussions on our methodology for
pattern mining. This is illustrated for example by the fdwtttest effectiveness - i.e. the capability of tests to
reveal faults on the SUT - only plays a marginal role for tegtliy in responsibility-based test, although it's a key
factor in implementation-base test design.

Basically, pattern mining for test design patterns can besdrby one or both of the following questions:

e Question 1: What is the best way for designing tests, so flegtwould help uncovering as many errors of
the SUT as possible, before it is delivered to end customiei®

e Question 2: What is the best way for designing and modell@sgstso that the resulting test specification
and/or solution matches best main quality criteria sucleasability, maintainability, understandability etc.?

A pattern template is a list of subjects (sections) that atse@ pattern [2]. The content of the test pattern template
depends on which of question 1 or question 2 above is the nmaimgl force for pattern mining. In [2], Binder
proposes a test pattern template, which is driven by quedtioOur pattern mining activities are mainly driven
by question 2, although question 1 is considered as wellrefbee, we took the test pattern template provided
by Binder [2] as the base for our own template, but modified itefflect the fact that our focus is more on reuse
towards more automation than on effectiveness of the tests.

As a consequence subjects such assthigiects fault modelthe entry criteria and theexit criteria proposed
by [2] were removed from the template. Instead, we addedpipécable test scopgubject to capture the precon-
ditions for applying test patterns. Our test modelling @attemplate consists of the following subjects:

e Pattern nameA meaningful name for the test pattern.

e Context To which specific context does it apply? This includes thedlof test pattern (organisational vs.
design, generic, architectural, behavioural or test daty as well as the test scope for

2The test scope describes the granularity of the item undéf18], which may vary from a low-level entity such as clafes (nit
testing) to a whole software system (for system testing).

E6-3

e Problem What is the problem, this pattern addresses and which arfothes that come into play for that
problem?

e Solution A full description of the test pattern.

¢ Known UsesKnown applications of the test pattern in existing tesugohs (e.g. test specifications, test
models, test suites, or test systems) or by test modellipgoaphes.

e Resulting contextWhat impact does this pattern have on test design in geandcabn other patterns appli-
cable to that same context in particular?

¢ Related pattern®ptional): Test design pattern related to this one or systesign patterns in which faults
addressed by this test pattern might occur. This sectioptisral and will be omitted, if no related pattern
can be named.

e Referencdeptional): Bibliographic references to the pattern. Téegtion is also optional and will be
omitted, if no reference can be provided.

Figure 1 displays an overview of those patterns we haveiftehso far for each of the categories mentioned
above. In the following sections, we present a selectedesutbshose patterns.

E6-4

2.1 Pattern: Separation of Test Design Concerns

2.1.1 Context

This pattern is a generic organisational test design patied is applicable at any test scope for large size test
projects. It is assumed that test development is processngiin parallel to the development of the SUT or
integrated to it, with both of them having the requiremesta @ommon starting point.

2.1.2 Problem

How to organise the file structure of test artifacts. Tesfeats are resources used for storing the design and
implementation of a test automation solution. They inclhitgh level design models, documentation artifacts

through to source code of executable test scripts. The sidehee complexity of those test artifacts can grow

considerably, raising questions as to how to organise piyopekeep a good overview and facilitate collaborative

work.

Forces

e To avoid test design activity becoming a bottleneck to theetiggment process, having different teams
working in collaboration on the will speed up that process.

e Synchronisation and version control conflicts between tiera involved in test design may cause resources
being wasted to address them.

e Large compilation units increase the risk of potential Mergontrol conflicts among parallel developers/de-
signers.

2.1.3 Solution

Divide the various tasks over several test designers, bgnising modules accordingly. Each task is addressed
separately to allow parallel processing. Applying thistgr requires that the technologies involved (e.g. the

notation used for designing the tests) provide such meshami Modules may be organised based on the aspect
they cover(e.g. Test data, test architecture) or basedeo8UH feature they target.

2.1.4 Known Uses

Instantiations of this test pattern can be observed in nousetest automation solutions. The code snippet below
from the IPv6 conformance test suite [22] displays an exarmpll TCN-3 of a test script importing elements of
other test modules to design test behaviour.

module Atslpv6_CommonFunctions {

I/l Importing Generic Libraries

// LibCommon

import from LibCommonBasicTypesAndValuesall ;
import from LibCommonDataStrings all ;

// Importing test data modules

//Liblpv6

import from Liblpv6_InterfaceTemplates all;
import from Liblpv6_.CommonRfcsTypesAndValuesall

// Importing test architecture modules

I/ Atslpv6
import from Atslpv6_TestSystemall;

E6-5

15 import from Atslpv6_TestConfigurationTypesAndValues all
16 A
17 } //end module AtslpvBCommonFunctions

2.1.5 Discussion

A difficulty in applying this pattern consists in ensuringatithe number of separate modules remains within
sensible limits. Otherwise, the effort of managing all fHlataactivities can reduce the positive impact of the
pattern and even lead to less productivity. However a snoatiber of modules will inevitably lead to more version
controlling conflicts, with several people potentially Wiorg in parallel on the same modules. In such cases the
usage of an appropriate version controlling system, aloitiy elearly defined policies is highly recommended.

2.1.6 Reélated Patterns

This pattern is an application of the Separation of ConcatnaDivide and Conquedesign pattern known both
in generic software engineering, as well as in test design [7

E6-6

2.2 Pattern: Prioritization of test objectives

2.2.1 Context

This pattern is an organizational pattern that addressesibgectives design

2.2.2 Problem

Due to resource limitations, often not all test cases canripdeimented and/or executed at a within the decided
deadline. Some key decisions need to be taken confidentptdoning the testing activities and to be able to react
to changes in a proper way. Example of key decisions include:

e Which test cases need to be implemented and executed firgitdaolk ones can be left aside for later stage
in the testing process?

e When can test activities be considered sufficient to progidevel of confidence in the SUT, that is high
enough to allow its release?
2.2.3 Solution

As recommended by IEEE 829[16], introduce a prioritizatssheme for test objectives in the test model. Prior-
itization should be provided for a test objective takenvidtiially or for a group of test objectives. Prioritization
of test objectives can be based on factors such as:

e Priority level of the feature or requirement(s) coveredHtoy test objective.
e Level of criticality of the errors targetted by the test aitjee.

Testing activities (e.g. design, implementation, exegytican then be planned based on the priority level of the
test objectives and taking the time and resources contsrito account, to ensure that test cases with highest
priority are available on time before product delivery.

2.2.4 Discussion

The size of the testing project and the time constraintcégawill be taken into account, whenever the application
of this pattern is considered. Obviously, applying the gratffor large scale projects yields more benefits than
doing so for smaller ones.

2.2.5 Known Uses

Prioritization of test cases is used implicitly in severatances, though it is not always supported by a specific test
notation. Generally a separate tool is used to manage thattsf the test process. However, it would be highly
beneficial to integrate it into the test design process, abrtiating it to other tasks in the product development
process would be more straightforward.

226 References

[8,9, 6]

E6-7

2.3 Pattern: Traceability of Test Objectives to Requirements

231 Context

This pattern is an organizational pattern that addressem#nagement of large test suites under restrictive time
and resource constraints.

2.3.2 Problem

To keep control of your development process, you want to beattany point in time to evaluate the progress of

the test project to gain objective criteria for making dexis on the project.

Forces:
e 100% code coverage is an illusion
e 100% requirements coverage is achievable, but needs toagith clear and sensible metrics.

e Being able at any time to give an estimation of the currenecage of requirements by the specified test
objectives will facilitate decision making for releasirgetproduct.

How to achieve traceability between tests and system rempaints to enable automatic coverage analysis?

2.3.3 Solution

Provide a mean for linking each test objective to a (set afuirements or features of the SUT that it addresses.
Those include functional as well as non-functional requigats. The test objectives will be designed based on
potential risks for the SUT related to a particular featurea® a mean for verifying that the SUT meets the

requirements

2.3.4 Known Uses

Please refer to [24] for an overview of requirements traidigalhat includes numerous examples of traceability
to test artifacts as proposed in this pattern.

2.3.5 Discussion

Benefits of this pattern include the fact that the selectibtest cases to address specific products or features is
facilitated based on the requirements they support. Fumihiee, automated requirements coverage analysis of the
test cases can be achieved at any time in the lifecycle.

One key difficulty in applying this pattern is to ensure thiages to the test model are propagated in both
directions of the link to avoid dead links and keep the testiehconsistent. The test design tool should take care
of that and update a test objective element accordinglypéf af the covered system requirements is altered (e.g.
deleted, moved to another location, renamed etc.). Suobpagation of changes could be facilitated by the usage
of the same notation or of the same modeling technology ENE, MOF) for those aspects being linked with
each other. Otherwise, some serious maintainability ssught emerge.

E6-8

2.4 Pattern: Traceability of Test Objectives to Fault Management

241 Context
This pattern is an organizational pattern that addressem#nagement of large test suites under restrictive time
and resource constraints.
24.2 Problem
In spite of all testing efforts, errors in software are italsle and will eventually occur. We want to avoid experi-
encing and fixing the same errors many times. How can it beredsthat the information gathered in analyzing
and fixing errors identified at the user end or through testing be exploited for the benefit of future testing
activities and for improving the overall quality of the sefire product under test?
Forces

e Fixing errors is generally granted higher priority than uimenting them.

e Besides, who cares about fixed issues?

e Developers lack of time to do such additional presumablivitiels. So they tend to postpone them until

they pop-up again as higher priorities.

24.3 Solution

Provide a mechanism for ensuring traceability betweerieanin the fault management system and elements of
the testing process. The mechanism should fullfil the falmwequirements:

e The mechanism should be integrated in the test developmantigement tool to ensure that it can the
process does not cost too much additional effort.

e Every time a failure is (inadvertently or deliberately) aisered on a version of the SUT, make sure that
while creating a new entry for that failure in the fault maeagnt system, that it is associated with a test
objective addressing the root cause of the bug and thatassts@re implemented to cover that test objective.

e Provide technical means for enforcing that policy autooadiy online (i.e. in the process of creating the
entries in the model repository) or offline (after the eletadrave been created)

¢ Automatically integrating the newly added tests in subsatjuegression tests would yield additional bene-
fits.

244 Known Uses

Agile methods apply this pattern by making test developnaarintegrated part of the development lifecycle (e.g.
Test-driven development in XP).

245 Discussion

The same type of potential issues identified for titaeeability of test objectives to system requiremgratiern
(section 2.3) also apply for this pattern.

E6-9

2.5 Pattern: One-on-One Test Architecture

251 Context

This pattern addresses test architecture design for an 8atTcan be viewed as one entity providing a well-
known set of entry points and interacting with its enviromtnllowing a sequential non-concurrent behaviour.
Functional testing at unit or system level is the goal.

25.2 Problem

How to design a static test architecture for achievingngstine SUT with highest possible efficiency.

Forces

e Resources planned for testing are generally and stramgydfd solutions are always welcome.

e The level of complexity of the test system should be kept asde possible, to keep maintainance and
associated efforts as low as possible.

e Usage of concurrency in the test system increases the rigitrofiucing erroneous test behaviour and the
cost of the test system, because a coordination mechanisuised to control the choreography of parallel
test components.

2.5.3 Solution

Design the test architecture consisting of one single @stponent connected to the SUT in a way that it can
stimulate the SUT and verify its response to those stimufie @ossible way of achieving that is by making the
test component a mirrored image of the SUT, e.g. by providiterfaces required by the SUT and using interfaces
the SUT provides.

Figure 2 displays two examples resulting from applying frettern. The upper part of the figure shows a test
architecture consisting of a single test component that ose port both for sending impulses to and receiving
responses from the SUT to verify its correct behaviour. @ndtiner hand, the lower part of the figure illustrates
a test architecture for an SUT providing three differentyepbints for stimuli and responses. Benefits: Having a

<<CompaonentInstanc...
MTC

tes%o tt

testDutPort
<<Componenﬂnstance>>?es e

MTC
frestinPort

L

L|_‘testInOutI30rt sysInOutPort

Figure 2. Test architecture Diagram for One-on-One Pattern

single test component implies that synchronization meishasmbased on message exchange or other Remote Pro-
cedure Control(RPC) or similar mechanisms do not have toipéeimented at the testing side. Variables defined

E6-10

in the test component can be used to describe states baseliadndecisions can be made on the test verdict.
Shortcomings: The test component has to emulate the coerpddiaviour of system component it replaces. De-
pending on the level of complexity of that behaviour, thightibe more or less difficult to achieve. Furthermore,
having a single component makes it difficult to deal with aonency at the testing side, if required.

254 Known Uses

This pattern is applied in numerous conformance test sutgs the collection of IPv6 test suites [22] used e.g.
for the IPv6 logo brand ,the IMS benchmark test suite [5] uUsegerformance testing IMS server equipment or
the CORBA component test suite [1] used for integratioririgsdf CORBA components

255 Discussion

Potential difficulties in handling concurrent behaviowrfrthe SUT and to emulate similar behaviour to stimulate
the SUT.

256 Related Patterns

This pattern is the logical opposite to tientralized Test Coordinatdest pattern described in section 2.6. Itis
also referred to as théentralized testetest pattern [10].

257 References

[10]

E6-11

2.6 Pattern: Centralized Test Coordinator for Concurrent Test Components

2.6.1 Context

e This pattern addresses test architecture design.

e This pattern is more applicable to integration and systesting. It is less the case for unit testing at the
class level. However, it can be applied for system testifgeraeby a unit testing framework is instrumented
for that purpose.

2.6.2 Problem

How to model a test architecture, that is suitable for loagerformance- or conformance testing on an SUT
requiring parallel and possibly distributed processing.

Forces The motivations for this pattern are:

e An SUT featuring concurrent behaviour cannot be verifieduph a test system supporting only sequential
behaviour.

e Certain requirements of software (e.g. robustness, loadpimance) can hardly be addressed using test
architectures that allow only sequential behaviour.

e Simple test architectures (e.g. t@me-on-One test architecture patt¢nmestrict the level of flexibility for
the test system with regard to deployment. The fact thattallised testing setup would not be possible is
an example of those restrictions. A conscequence of thasectens is that certain test scenarios would
not be possible.

However, this pattern comes with its liabilities that shiblé considered as well:

e It must be ensured that, despite the introduction of coecuy in the test system, the tests remain repro-
ducible and deterministic.

e The introduction of concurrency will require some form obodination between the entities involved. The
effort for providing that coordination scheme should bestalnto account as well.

2.6.3 Solution

As depicted on figure 3, this pattern features a test compa@matimg as test coordinator and thus controlling the

life cycle other components it controls. Each of the colgbltest components is connected to the controlling

component via a connection through which coordination agess can be exchanged to control the components’
behaviour. To keep the overhead of processing those catiainmessages as low as possible, to not affect the
proper test behaviour, coordination messages should keakegimple as possible in their structure. The real

testing activities are performed by the controlled testgonents, which are directly connected to the SUT.

2.6.4 Known Uses

Several TTCN-3 projects such as [20] involving UTML protbtasting (Siemens) and [4] involving BCMP pro-
tocol performance testing.

E6-12

<<Componentlnstance:s >
MTC

coordPort

coo%oﬂzl coordPort? coor%ort_n
[T] {T}

v L |
<=Companentinstance > <<Companentinstance > <=Componentlnstance >
FTCL PTC2 PTCh

TT Tl
testhartl testPart2 tesi\:ﬂ_o‘rﬂ

sutPortl

Figure 3. Test architecture Diagram for Centralized Test Co ordinator Pattern

2.6.5 Discussion

A coordination scheme is required between the main test oopm and the parallel test components to control
the latters behaviour according to the overall test chaagay. The additional load and delays created by that
communication should be taken into account while evalgatie SUT component’s test results.

2.6.6 Reélated Patterns

This pattern is the opposite of tiine on One test architectupattern defined in section 2.5

2.6.7 References
[10]

3 Evaluation of the Approach: IM S Case Study
3.1 MDTester: A Pattern-Oriented Test Design Tool

Integrating patterns in a process requires a suitable pontteat would allow the creation of new artifacts in
a flexible and efficient way, while at the same time ensurirgg the rules defined by the patterns are followed
in the creation process or can be verified afterwards. Dor8pgtific Modeling Languages (DSML) provide a
good mean for integrating patterns to a given process.lfilscause they operate at a level of expression, that
is abstract enough to express concepts in a solution-imdiepe, but yet formal manner. Secondly, because they
can be tailored precisely to define model templates and ia$sdaules, that are specific to the targeted process’
domain. Therefore, to evaluate the impact of the patternpmgsented in section 3, we defined a UML MOF
Meta-model for a DSML dedicated to black box test enginggrirhe particularity of this DSML is that, tests are
modelled based on meta-elements representing the pattermentioned earlier.

E6 - 13

Test Pattern Implemen- | Application
tation to Case
Status Study

Separation of test design concerns | Yes Yes

Grouping of concerns Yes Yes

Naming convention Yes Yes

Prioritization of test objectives Yes No

Traceability of test objectives to re-Yes Yes

quirements

Traceability of test objectives to faultYes No

management

One on One test architecture Yes No

Proxy test component Yes Yes

Centralized test coordinator Yes Yes

Purpose-driven test data design Yes Yes

Flexible test data definition Yes Yes

Dynamic test data pool No No

Focus on expected test behaviour Yes Yes

Test component factory No No

Time constraints Yes Yes

Table 1. Summary of Test Patterns and Status

3.2 The IMS testing case study

Following an MDE process, we developed MDTester, a tool fpsut pattern-oriented test design with au-
tomated generation of test designs according to selectierms and automated model transformations of the
high-level test design into test scripting or test spedificanotation for specific target test environments (e.qg.
TTCN-3, JUnit). The MDTester tool was used to design fun@idests for the IP Multimedia Subsystem (IMS)
architecture. Table 1 lists all test patterns and their @m@ntation status in the prototype tool, as well as their
application to the IMS case study test model.

The impact of model-driven and pattern-oriented test dgwrakent can be analyzed from a quantitative and
a qualitative view point. The purpose of quantitative asilys to evaluate how productivity is affected by the
introduction of the methodology. On the other hand, qualtaanalysis aims at measuring the effect on quality
factors, both of the process itself and of its output, i.e.dbnerated test scripts. The goal of the case study was to
analyse both the qualitative and the quantitative aspétigbimpact and at the same time, to compare the results
with those obtained with a “traditional” test developmeppgpach.

3.21 Quantitative Analysis

A key metric for quantitative analysis of any developmertgess is productivity. Evaluating the productivity of
pattern oriented test development is a relatively stréogivard task. For that purpose, we simply have to correlate
the output (e.g. number of implemented test cases) to thestes effort (e.g. number of person-days/person-
months involved) for a project or a series of projects. Haveto measure the impact of introducing a new
approach on that productivity is a less trivial task, beegu®ductivity data before and after the introduction of
the new approach need to be compared with each other. Idieedipsure a fair comparison, at least the following
conditions need to be fulfilled:

EG-14

¢ Both methodologies should be applied on the same case Sthéystarting point for both test development
approaches should be the same system specification ordestgigeting the same SUT

e Separate teams should apply the methodology, each onétssadseparate project.
e The same time frame will apply to both projects and resultsheicollected at the end for evaluation.
e Both teams should have comparable level of expertise in tegpective field.

However, we could not provide such an ideal setup for our I&§ecstudy. Therefore we had to base our quanti-
tative comparison on assumptions resulting from statistioalysis of past TTCN-3 test development projects.

Taking into account that the project duration was set to Sqgredays and that a total result of 19 test cases
were implemented at its end, productivity factor is 19/5 & tést cases/day. It should be pointed that, this result
was obtained with team of designers with a rather low leveésfing and modelling expertise. Therefore, it can
be assumed that slightly higher results would be obtaingl exiperienced test designers.

To measure the productivity gain generated by our approaehcompare our results with those generally
obtained through “traditional” test development appr@schGenerally, for TTCN-3 test development, realistic
estimations of productivity range between 2 and 5 test édagsThe obtained results indicate that, if the existing
process allows a production rate of more than 4 test cage@fdduding test objectives definition, test procedure
design and documentation), then applying our methodologyiavrather cause a productivity loss. On the other
hand, the productivity could be significantly improved (8090%), when the production rate of the existing
methodology is between 2 and 4 test cases/day.

Moreover, if we estimate that, the specification of a tesh fftast objectives) and of test procedures consumes
20% of the effort in pattern-oriented test development aedganerally not taken into account, when estimating
the productivity of the test development process, then thduztivity gain is even higher.

3.22 Qualitative Analysis

Using model-driven approach to test development offersdewange of qualitative benefits, compared to tradi-
tional development approach. Test models offer a highed levreadability, maintainability, documentation and
flexibility that plain test scripts and non-formal notasor-urthermore, existing MDE frameworks (e.g. Eclipse
EMF, TOPCASED) provide a wide range of functionalities foeating, managing, validating and transforming
models, that can be used to provide powerful tool chains pp@ut the process. However, a source of general
concern is the quality of the test scripts generated auioaligt from the process. For our case study, we used
the TRex [25] tool to measure the quality of the generated N93test scripts. The authors of TRex define a
metric calledTemplate couplingranging between 1 and 3) to measure the maintainabilityT@N-3 scrips. The
automatically generated IMS test scripts scored 1.015 anntietrics, indicating the high level of maintainability
of those scripts (1.0 is best).

4 Related Works

The potential benefits of cataloguing best practices angnoatin test design has been advocated by several
authors before. Binder [2] discusses a test pattern tempdased on a pattern language of object oriented testing
(PLOOT) proposed by Firesmith [11] and introduces a cdldechf test patterns from the object-oriented software
design domain. Meszaros [18] presents a collection of tagems for unit testing. Howden [14] presents a
collection of patterns in selecting tests for maximum ed®etection. It appears that existing work on test patterns
tend to focus on interactions at the object level and arelyhamplicable for higher level (i.e. integration, system,
and acceptance-level) testing whereby the applied pragiagparadigm are less relevant. Delano et al [3] present
a collection of patterns focussing more on the organisatiaspects of test development as a process, rather

E6-15

than on test design itself. On the other hand, Dustin [7] oa#l aspects of test development, with one chapter
dedicated to test design and documentation. in 2005, thepgan Telecommunications Standards Institute (ETSI)
started an initiative on patterns in test development (FfiB)hich some of the patterns defined in this work were

introduced and discussed. However, to the best of our krimelenone of the existing work attempts to formalise

test patterns, so that they could be instrumented to sugipotest development process in an automated way.

5 Conclusion and Outlooks

This paper has presented first ideas on a collection of patt#rtest design based on a template defined for that
purpose. First experiences with that prototype tool chawvelshown some promising results. However, model-
driven test development has not reached a high level of populyet. Therefore, some of the patterns described
here can only be considered as mere candidates and wiltegiyuiher analysis with regard to their usability and
their consequences. Also, we have presented a case studyidh those patterns have been applied to develop
tests for IMS. An analysis of the approach through that cagilysndicates that it can significantly improve the test
process, both quantitatively and qualitatively. In theufat we intend to conduct further case studies to analyze
the impact of the approach, when developing tests for otberaihs.

6 Acknowledgements

We would like to thank our shepherds Uwe Zdun and especidilys@an Kohls (on-site shepherd) who were
both very helpful in the process of improving this paper tigto their challenging comments, their patience as well
as their interesting ideas. Also, we would like to thank alitigipants to writer’'s workshop E at the EuroPLoP
2009 conference for their contributions to bring this paptr shape. A special thank you to Dietmar (Didi) Schtz,
Michael Kircher, Heiko Hashizume, klaus Marquardt and kagtnot least, Markus Voelter!

References

[1] Harold J. Batteram, Wim Hellenthal, Willem A. Romijn, Areas Hoffmann, Axel Rennoch, and Alain Vouffo. Imple-
mentation of an open source toolset for ccm components asidrayg testing. In Roland Groz and Robert M. Hierons,
editors, TestComvolume 2978 of_ecture Notes in Computer Scienpages 1-16. Springer, 20Q4dited at p. 11]

[2] Robert V. Binder.Testing Object Oriented Systems: Models, Patterns andTAddison-Wesley Longman Publishing
Co., Inc. Boston, MA, USA, 1999cited at p. 3, 15]

[3] David E. Delano and Linda Rising. System test patterglege copyright 1996 ag communication systems corporation
permission is granted to make copies for plop '96., 19@fd at p. 15]

[4] Sarolta Dibuz, Tibor Szabd, and Zsolt Torpis. Bcmp parfance test with ttcn-3 mobile node emulator.TeéstCom
pages 50-59, 2004cited at p. 12]

[5] George Din. Anims performance benchmark implemeniatiased on the ttcn-3 languagdpet. J. Softw. Tools Technol.
Transf, 10(4):359-370, 2008cited at p. 11]

[6] Hyunsook Do, Gregg Rothermel, and Alex Kinneer. Prigititg junit test cases: An empirical assessment and cost-
benefits analysisEmpirical Softw. Engg.11(1):33—70, 2006ited at p. 7]

[7] E. Dustin. Effective Software Testing. 50 Specific Way to Improve Yesting Addison-Wesley, 2003cited at p. 6, 16]

[8] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Bwotlel. Test case prioritization: A family of empirical
studies.IEEE Trans. Softw. Eng28(2):159-182, 200Zcited at p. 7]

[9] Sebastian Elbaum, Gregg Rothermel, Satya Kanduri, degef G. Malishevsky. Selecting a cost-effective test case
prioritization techniqueSoftware Quality Contrgl12(3):185-210, 2004cited at p. 7]

EG - 16

[10] M. Frey et al. Etsi draft report: Methods for testing aspkcification (mts); patterns for test development (ptd).
Technical report, European Telecommunications Standastitute (ETSI), 2005cited at p. 11, 13]

[11] D.G. Firesmith. Pattern language for testing objattmted softwareObject Magazin1996.[cited at p. 15]

[12] Methods for Testing and Specification (MTS). The tegtand test control notation version 3; partl: Ttcn-3 core
language. Technical report, European Telecommunica8tarsdards Institute (ETSI), 200ited at p. 1]

[13] Lars Hagge and Kathrin Lappe. Sharing requirementgerging experience using patteriiSEE Software22:24-31,
2005. [cited at p. 2]

[14] William E. Howden. Software test selection patternd atusive bugs. IlCOMPSAC '05: Proceedings of the 29th
Annual International Computer Software and Applicatioms@rence (COMPSAC’05) Volumedages 25—-32, Wash-
ington, DC, USA, 2005. IEEE Computer Sociefyited at p. 3, 15]

[15] Andy Hunt and Dave Thomas?ragmatic Unit Testing in Java with JUnifThe Pragmatic Programmers, September
2003. [cited at p. 1]

[16] IEEE. Draft ieee standard for software and system testichentation (revision of ieee 829-1998). Technical repor
IEEE, 2008.[cited at p. 2, 7]

[17] ISOI/IEC. Isofiec standard no. 9126: Software engimgeproduct quality; parts 14. Technical report, Organarafor
Standardization (ISO) / International Electrotechnicah@nission (IEC), Geneva, Switzerland, 2001-200#&d at p. 3]

[18] Gerard MeszarosXUnit Test Patterns: Refactoring Test Codaldison-Wesley, 2007cited at p. 15]

[19] Helmut Neukirchen. Languages, Tools and Patterns for the Specification of Disted Real-Time
Tests PhD thesis, Dissertation, Universitat Gottingen, Nuober 2004 (electronically published on
http://webdoc.sub.gwdg.de/diss/2004/neukirchen#rdel and archived on http://deposit.ddb.de/cgi-
bin/dokserv?idn=974026611 . Persistent Identifier: uyn:de:gbv:7-webdoc-300-2), November 20(#ed at p. 3]

[20] Andrej Pietschker. Automating test automatiamt. J. Softw. Tools Technol. Transt0(4):291-295, 2008cited at p. 12]

[21] OMG ptc. Unified modeling language: Testing profile, fined specification. Technical report, Object Management
Group, 2004 [cited at p. 1]

[22] Stephan Schulz. Test suite development with ttcn+&tiles.Int. J. Softw. Tools Technol. Transt0(4):327-336, 2008.
[cited at p. 5, 11]

[23] Alain Vouffo-Feudjio and Ina Schieferdecker. Testtpats with ttcn-3. IFFATES pages 170-179, 200¢&ited at p. 1]

[24] Stefan Winkler and Jens von Pilgrim. A survey of tradbgtin requirements engineering and model-driven depelo
ment. Software and Systems Modelji@ecember 2009cited at p. 8]

[25] Benjamin Zeil3, Helmut Neukirchen, Jens Grabowski, DoaEvans, and Paul Baker. TRex - An Open-Source Tool
for Quality Assurance of TTCN-3 Test Suites. Proceedings of CONQUEST 2006 — 9th International Confexec
Quality Engineering in Software Technology, Septembe22 Berlin, Germanydpunkt.Verlag, Heidelberg, Septem-
ber 2006 [cited at p. 15]

[26] Benjamin Zeil3, Diana Vega, Ina Schieferdecker, Heliatikirchen, and Jens Grabowski. Applying the 1ISO 9126
Quality Model to Test Specifications — Exemplified for TTCN-&st Specifications. 18oftware Engineering 2007 (SE
2007). Lecture Notes in Informatics (LNI) 105. Copyrightsélschaft fir Informatik pages 231-242. Kollen Verlag,
Bonn, March 2007 cited at p. 3]

EG6-17

