
Handling Application Properties
Simplify Application Customization in Different

Environments

Tim Wellhausen

kontakt@tim-wellhausen.de
http://www.tim-wellhausen.de

Martin Wagner, Gerhard Müller

martin.wagner@tngtech.com
gerhard.mueller@tngtech.com

http://www.tngtech.com

January 10, 2010

Copyright retain by authors. Permission granted to Hillside Europe for
inclusion in the CEUR archive of conference proceedings and for Hillside
Europe website.

F4 - 1

Introduction
Applications are often deployed in different environments, e.g. on developers' machines,
in test or production. In each of these environments, certain configuration settings differ.
Examples for such settings are:

● Database logins/passwords

● Access parameters of remote systems

● Email addresses or mobile phone numbers for administrative notifications

● Localization files and configuration

● Interval settings of periodically recurring jobs

● On/off switches of specific sub-modules

● Directories for program resources

This paper aims at evolving a language of patterns dealing with these application proper-
ties. It contains patterns dealing with flexible ways of loading properties, providing com-
mon properties for multiple deployments and enforcing the explicit setting of some prop-
erties. Using the patterns facilitates maintenance of properties, allows for simplified re-
factoring and gives the possibility to keep varying environment settings under version
control. As property storages, property files and database tables are discussed.

The paper starts with the probably well-known Property Loader pattern and elaborates
on its particular problems and shortcomings. The paper then discusses patterns that im-
prove the handling of application properties in specific situations. At the end of the paper,
a reference implementation in pseudo code shows how the patterns interact in practice.

Illustration 1 shows an overview of the patterns and how they depend upon each other.
Please note that an arrow from pattern A to pattern B denotes that pattern A provides a
context for pattern B.

F4 - 2

Illustration 1: Dependencies between patterns described in this paper.

Recursive
Property

Resolution

Dynamic
Property
Loader

Property
Enforcement

Default
Properties
Bundling

Hierarchical
Property
Loader

Embedded
Property
Defaults

Property
File

Templates

Property
Loader

Property Loader

Context

A software application may be deployed and run in different environments. An applica-
tion that is used internally in a company, for example, may need to run in different envir-
onments for development, testing, integration, and production. An application that is sold
as a product may be deployed at many different customer sites.

Problem

Varying environments usually mandate different behavior and configuration of the applic-
ation. This may include different passwords or connection parameters, the configuration
of caches, or the email addresses of people to notify in case of errors.

How can you adopt an application to varying environments?

Forces

The following requirements make the problem difficult:

● Easy to use as developer. There should be an easy-to-use programming interface to
determine the value of a property with respect to the current environment at
runtime. The logic on how to retrieve a property value should not be distributed
all over the application.

● Changing behavior after deployment: It should be possible to change the behavior
of a deployed application without modifying the code and redeploying the applic-
ation.

Solution

Extract all configurable properties from the source code into an external storage and
use a Property Loader to load and provide access to the property values at
runtime.

Analyze the application to find those parts that need adoption to different environments.
Create a property, that is a key/value pair, for every such part and collect the properties in
a property storage.

Create a Property Loader that reads the properties from the storage at start-up time and
makes the values of all properties available to the application at runtime via a dedicated
API. The application may query the Property Loader any time for the value of a specif-
ic property to change its behavior accordingly.

Deploy the property storage together with the application binaries and change the prop-
erty values in every installation so that they fit the needs of the respective environment.

Property storages can be every form of persistent memory that is able to store pairs of
property names and values. The most common property storages are text files and data-
base tables.

A simple text file as property storage typically contains a key/value pair on each line of
text as shown below:

F4 - 3

db.username=user
db.password=secret

Accordingly, a database table for properties typically contains at least two columns: one
for the property name, which might be used as primary key column, and one for the prop-
erty value with both columns containing text.

The following Java interface shows an example API for a minimal Property Loader that
uses a property file as property storage.

public interface PropertyLoader
{
 /**
 * Loads all properties from the file with the given name.
 */
 public Map<String,String> loadProperties(String propertyFileName);

 /**
 * Returns the value of the property with the given key if
 * that property exists, null otherwise.
 */
 public String getValue(String key);
}

Consequences

A Property Loader offers the following advantages:

● The Property Loader provides a centralized access point for all application
properties and handles the loading of the properties.

● All relevant properties of an application are located in a single property storage. It
is therefore easy to check and manage all properties at a glance.

● By modifying the externalized properties of a deployed system, you can change
the behavior of the system without redeploying the system. In particular, it is not
necessary to change the source code of the application to adopt it to another envir-
onment.

The Property Loader also has the following liabilities and shortcomings:

● Application developers often cannot foresee exactly which parts of an application
need to be adaptable in different environments. If a new environment or a new re-
quirement mandates a change in the behavior of an application for which no prop-
erties yet exist, the source code must still be modified.

● By relying exclusively on an external property file, an application may be vulner-
able to incompatible manual changes in the property file resulting in runtime er-
rors. By using Embedded Property Defaults, the application may protect itself
against missing or corrupt property values.

● Every application update may introduce new properties that need to be set or ad-
justed in a local installation. Bundle Property File Templates with your applica-
tion binaries for easier and more robust local customization of the application.

● Some applications need different property values not only for different environ-
ments like development, integration, and production but also for different hosts

F4 - 4

and different users (e.g. an application developer needs different property values
while developing the application than a user needs). Maintaining a separate prop-
erty storage for each possible combination of property values can be very cumber-
some. In that case, consider creating a Hierarchical Property Loader to main-
tain a storage with default properties and separate storages with differing proper-
ties for each environment or user.

● After an application has been successfully deployed, new properties may be intro-
duced at any time when the development continues. When an application upgrade
is to be installed, care must be taken to also deploy the new properties. This may
prove exceptionally difficult if some properties of the deployed system were
manually changed. To simplify this problem, consider using a Hierarchical
Property Loader with Default Properties Bundling.

● Once a property key has been defined and is in use, it is very difficult to change
the name of the key because developers don't have access to the property storages
of local installations. Using a Hierarchical Property Loader with Default
Properties Bundling also lessens this problem a little, in particular if used in
combination with Recursive Property Resolution to provide aliases.

● In order to let changed property values come into effect, the application needs to
be restarted, which is not feasible in many cases. Dynamic Property Loading
may help.

● Sometimes, sets of property values need to be changed at once, i.e. if one property
value of a set is changed, all other properties also need to be changed consistently
(e.g. host/username/password for a remote connection). Consider Recursive
Property Resolution to manage property sets.

● If a database table is used as property storage, obviously, the database connection
parameters itself must be stored in a different place. As such, a hybrid approach
combining files and databases as property storage is preferable.

Known Uses

The Java platform brings its own standard properties API that can be used to easily access
application properties stored in files [4]. The Log4J logging framework uses this frame-
work to allow a flexible configuration [11].

Early versions of the Windows platform made extensive use of .ini files, holding proper-
ties in files. Starting with the Win32 API, this approach has been replaced by the Win-
dows registry [5].

Most applications for the UNIX platform are configured via property files, usually stored
in the /etc file system tree or in dot files.

F4 - 5

Embedded Property Defaults

Context

In an application, properties are externalized from the source code by using a Property
Loader that provides an API to retrieve the values at runtime.

Problem

A property storage may not be consistent with the source code at all times: When the con-
tent of a property storage is edited, for example, errors may arise by accidentally changing
the key of a property. Or a new property may be introduced to the application but cannot
be immediately added to the property storages of all installations. The application code
should be made robust against such errors.

How do you make sure that an application always receives a valid value when request-
ing a property from the Property Loader?

Forces

The following constraint applies:

● Robustness: The application code that queries a property value should not cope ex-
plicitly with non-existing property values as this puts a burden on individual pro-
grammers.

Solution

Extend the Property Loader and provide a method that takes a default value and
returns that value when the requested property does not exist in the property storage.

By calling such a method, an application makes sure that it always gets a valid value from
the Property Loader regardless of the content of the property storage.

The following example extends the Java interface given earlier as an example in the
Property Loader pattern.

 /**
 * Returns the value of the property with the given key if
 * that property exists, the given default value otherwise.
 */
 public String getValue(String key, String default);

Consequences

The given solution has the following advantages:

● The application is more robust against inconsistencies in the property storage.

● It is not necessary to set values for all properties in every installation.

The solution also has some disadvantages:

● Application developers must take care to always use the API method that takes a
default value.

F4 - 6

● The default value itself is embedded in the source code, which may not be desir-
able. If you use a Hierarchical Property Loader and Default Properties
Bundling, you can use externalized default properties.

Known Uses

The Java platform [4] contains a class Properties with the method getProperty(key,
defaultValue) whose semantics are as described by this pattern.

F4 - 7

Property File Templates

Context

An application uses a Property Loader and stores properties in property files.

Problem

When configuration information is externalized in a property storage, the source code and
the actual properties available in a specific deployment environment may not be consistent
any more. Errors may arise when users or administrators manually change the content of
the property files.

How do you keep externalized properties consistent with the application code?

Forces

The following constraints need to be resolved:

● Maintenance: Property files can be copied and modified freely. It can be difficult
to find out and maintain the correct version of a property file for a specific version
of an application.

● Robustness: An application that reads a property file with properties that are in-
consistent with its own version (different property keys or allowed property val-
ues) may not work properly.

● Updating: A new version of the application may introduce new properties that
must be made available in every installation after the upgrade.

Solution

Include Property File Templates into the build process so that they are bundled
with the application binaries and unbundle these files as part of the installation pro-
cess so that they can then be modified by the administrator or user.

A Property File Template contains all properties that the application relies on. Every
property should have a default value that enables the application to work.

When a new version of an application is installed, the new Property File Template is
also installed, possibly overwriting an existing, earlier version of the same file. The admin-
istrator of the installation (or a user) then needs to adapt the properties as needed.

Consequences

Property File Templates offer the following advantages:

● When properties are changed (e.g. as part of a system refactoring) and new binar-
ies are deployed, these changes are deployed in all updated environments at once
without further manual effort.

● The property files can be stored in the same repository as the source code so that
the history of changes to the application is synchronized with the history of
changes to the property files.

The solution also causes the following liabilities:

F4 - 8

● For some properties, e.g. database passwords, there are no defaults available to put
into a Property File Template or it is not feasible to put secret values into a file
that is available to all developers. With a Hierarchical Property Loader and
Default Properties Bundling you can keep such information outside the
bundled property files.

● When doing an upgrade, existing property files are overwritten. Therefore, manual
effort and great care is necessary to restore all property values that had been modi-
fied before the upgrade.

Known Uses

Unix packaging systems such as Debian [6] or RPM [7] bundle application binaries with
default settings that can subsequently be modified by system administrators.

Mac OS X applications are distributed as folders having both binaries and property files at
well-known locations. These bundle packages [8] are presented to the user as unique
items.

Programs written for the Java platform usually distribute binary code in the form of JAR
files (ZIP format) that can also bundle property files with application logic [9]. An ex-
ample of this is the Maven build system which stores build meta information as properties
in a JAR file [12].

F4 - 9

Hierarchical Property Loader

Context

An application externalizes properties from the source code by using a Property Loader
that loads property values at start-up time and provides an API to retrieve the values at
runtime.

Problem

An application may need to be configured differently in different environments, for dif-
ferent users, or on different hosts. Maintaining separate property storages for every pos-
sible combination of these factors may be very expensive, in particular because, quite of-
ten, only a few property values differ between the environments.

How can you provide an application with customized, i.e. environment-specific or
user-specific, configuration settings without maintaining separate, mostly redundant
property storages?

Forces

Several constraints and requirements make the problem difficult:

● Maintainability. Redundancies among the property storages should be avoided. If
a default value exists for a property, that value should be declared only once. If the
value of a property needs to be changed for a specific host or user, only that prop-
erty should be redefined.

● Administrability: It should be easy for a system administrator to recognize which
properties still have default values and which property values have already been
changed locally.

● Compatibility. It should be possible to introduce new configuration properties
without the need to manually modify existing local property storages when an in-
stallation is updated.

● Security: In most enterprise setups, developers should not have access to some
properties such as production server passwords. Yet, it should still be possible for
developers to provide defaults for non-critical properties.

Solution

Extend the Property Loader to handle not only a single property storage but
multiple storages and let it process the application properties from these storages in a
way so that property values from a more specific storage overwrite the values from a
less specific storage.

Create a default property storage with all properties that the application relies on and as-
sign a default value to each property. For each supported environment, host, or user create
an additional property storage that contains only those properties whose values differ
from the defaults.

When the application starts up, let the Hierarchical Property Loader determine the
current environment, host, and user and check for the respective property storages. Let
the loader read first all default properties and then all properties from the more specific

F4 - 10

property storages: every property value of a more specific property storage overwrites the
values of the less specific property storages (see illustration 2).

Security-critical properties are stored in property storages that are only available locally
whereas non-critical properties may be stored in default property storages. Security is en-
forced by means of the local platform. It is possible, for example, to set the permissions of
a local properties file so that only the administrators and the application itself may read
these properties.

In a complex scenario, a single property may be overwritten by values from several prop-
erty storages. In order to make the actual value of a property at runtime comprehensible,
the Hierarchical Property Loader internally stores information about the origin and
overwritten values of each property.

If property files are used as property storages, you could implement the pattern by creat-
ing separate property files for each environment, host or user and apply a naming conven-
tion to make the Hierarchical Property Loader aware of the appropriate files. For
example, you could call the master property file config.properties and environment,
host or user specific property files config.<environmentname>.properties,
config.<hostname>.properties or config.<username>.properties, respectively.

If a database table is used as property storage, consider adding a database column as quali-
fier that takes the name of the environment, host or user to which a property entry be-
longs. By filtering property entries by this qualifier you could retrieve the respective
properties by executing several queries and handling the retrieved properties as described
above.

An typical application is able to easily determine the name of the host it is deployed on
and the name of the user that started the application. The name of the environment the ap-
plication is currently deployed in (i.e. test, integration, production), is typically not avail-
able by standard means. Instead, quite often, a proprietary system variable is declared out-
side the scope of the application itself and queried from within the application. Such a sys-
tem variable could be set, for example, in a system start-up script or in the application's
start-up script.

F4 - 11

Illustration 2: Structure of deployment unit with a Hierarchical Property Loader

Deployment Unit

Application Binaries

Hierarchical Property Loader

1 2 3
Properties in files loaded later
in the sequence override
values defined previously

Master ConfigMaster ConfigMaster ConfigMaster Config
Master ConfigMaster ConfigMaster ConfigHost-specific

Config
Master ConfigMaster ConfigMaster ConfigUser-specific

Config

Consequences

The Hierarchical Property Loader offers several advantages over the normal
Property Loader:

● Redundancies among property storages are avoided because environment-specific
property storages don't duplicate default values.

● You can bundle both default and environment-specific properties with the binaries
and still allow a system administrator or user to change some property values in a
local, not-bundled property storage.

● The unique properties of an environment are clearly documented by the content
of environment-specific property storages because these storages contain only
changes to the default settings.

● The Hierarchical Property Loader is responsible to determine the current en-
vironment and to provide access to the configuration properties. This encapsula-
tion reduces the possibility of errors when retrieving configuration properties at
runtime.

● Developers can change properties in property storages of their own that only af-
fect their development environments without the danger of unintentionally check-
ing in any changed default properties to version control systems.

The Hierarchical Property Loader also causes liabilities of its own:

● The actual complete configuration settings of a system in a specific environment
cannot be determined any more from a single source.

● The more hierarchies the loader has to consider, the more complex the property
handling becomes, in particular for a system administrator that needs to know
how to determine and change properties quickly.

● The application needs a robust mechanism to identify the current environment,
which might be difficult if the application is deployed on a cluster or in a virtual-
ized environment. If, for example, the name of host on which the system is de-
ployed is used as qualifier, the system cannot be easily moved to another host any
more.

● If several applications are deployed and run on a single machine or cluster, you
must take care that the applications' property storages are not mixed up.

● Because every property needs a default value, you cannot enforce that some prop-
erties for which there are no valid defaults need to be defined in environment spe-
cific property storages. Property Enforcement helps in this case.

Variants

You can change the number of hierarchy levels, which allows for more fine-grained con-
trol of environments. For example, users might have different database account names in
different environments. In such a setting, the mechanism described above is not sufficient.
Extending the hierarchy levels is straightforward – in case of property files, adding a new
property file config.<hostname>.<username>.properties that overrides all other files
does the job.

F4 - 12

Besides a distinction in environment, host, and user, other distinctions are possible as
well, for example for language and country specific settings.

Known Uses

In standard UNIX systems, hierarchical properties are a common pattern. For many pro-
grams, first a system-wide configuration is read, then properties are replaced by user-spe-
cific values or even from arguments given on the command line. A well-known applica-
tion using this pattern is OpenSSH. It allows for global configuration using
/etc/ssh_config, user-specific configuration with file ~/.ssh/config and for com-
mand-line options via the parameter -o <option> [2].

Microsoft Group Policy applies a similar approach to setting policies for Windows ma-
chines. Group policies define defaults, user policies get into more specific details [3].

F4 - 13

Default Properties Bundling

Context

A Hierachical roperty Loader uses property files as property storage.

Problem

Once configuration information is externalized and distributed over multiple configura-
tion files, the source code and the actual properties available in a deployment environment
may not be consistent any more.

How do you keep externalized properties that are hierarchically evaluated consistent
with the application code?

Forces

The following constraints need to be resolved:

● Robustness: An application may depend on the availability of specific property
values.

● Updates: When an application update is installed, new property values must be
made available in the local installation.

● Administration: If an application is installed only in a few different environments
(e.g. one test, one integration, and one production system), the respective property
settings for each environment may be known at development-time and should be
maintained at a single location.

Solution

Include the property files for all supported environments into the build process so that
they are bundled with the application binaries. Do not unbundle them as part of the
installation process so that they stay unchanged after the installation.

First, include the property file that contains global default properties so that for all prop-
erties that the application relies on property values are available. Also include property
files with properties for specific environments whose values are well-known at develop-
ment time.

By using the Hierarchical Property Loader, all property values can still be overwrit-
ten by values from local property files.

Consequences

Default Properties Bundling offers the following advantages:

● When properties are changed (e.g. as part of a system refactoring) and a new ver-
sion of the application is deployed, the changed properties affect all updated envir-
onments at once without further manual effort.

● Default values for specific environments can be changed and new properties can be
introduced without affecting an installation's manually set properties.

F4 - 14

● Default property files can be stored in the same repository as the source code so
that the history of changes to the application is synchronized with the history of
changes to the property files.

The solution also causes the following liabilities:

● When application developers change the values of default properties and these
properties are not overwritten locally, the behavior of an updated application
might change without being noticed by the administrators.

● Although default values can be set and deployed for every property, it is not pos-
sible to enforce setting properties locally that can not or must not be deployed
(e.g. passwords). Consider using Property Enforcement then.

Known Uses

Many Unix applications deliver default properties in their packaged application binaries
and allow the creation of a user-specific property file where all properties can be changed.

The Windows Registry [5] allows applications to write properties into the system part
during its installation and to let users modify properties in the user part of the registry.

F4 - 15

Property Enforcement

Context

A Hierarchical Property Loader reads from property storages for specific environ-
ments, hosts, or users and provides an API to retrieve the values at runtime.

Problem

When a property may be set and refined in multiple property storages, it may happen that
a property value is not set at all for a specific environment.

How can you ensure that a mandatory property for which no default value exists is
set in an environment, host, or user specific property storage?

Forces

The following constraints apply:

● Fail early: If a property is mandatory but no default value exists, the application
should fail early, i.e. before the property is requested for the first time.

● Notify user: If the application fails due to a missing property, the application user
should be told how to fix the problem.

Solution

Add all mandatory properties for which no default values exist to the default property
storage and assign a dedicated value to them so that the Hierarchical Property
Loader can check whether this value has been changed in a more specific storage.

In the default property storage, set the property value of each mandatory property that
does not have a default value to a value such as “TO_BE_DEFINED”. After the
Hierarchical Property Loader has loaded the properties from all property storages,
let the loader check whether any property still has the “TO_BE_DEFINED” value. In
that case, let it clearly state the misconfiguration and, if no other option is suitable, let it
terminate the application.

Consequences

The given solution has the following advantages:

● By marking all properties in the default property storage as described, mandatory
properties without defaults are clearly documented.

● If a software upgrade introduces a new mandatory property, there is no risk that
the system administrators might miss setting the appropriate value.

The solution also has a disadvantages:

● Care has to be taken to spell the default value correctly – a slight misspelling can
cause the system to not notice missing properties.

Known Uses

The Confluence Wiki requires administrators to set the confluence.home property [14].

F4 - 16

Recursive Property Resolution

Context

A (Hierarchical) Property Loader reads from property storages and provides an API
to retrieve the values at runtime.

Problem

Sometimes, a set of properties needs to be changed at once because the properties are
closely semantically associated and it would be wrong to change only individual proper-
ties. For example, there are several databases to connect to and a couple of properties such
as the host name, user name, and password need to be changed to connect to each one.

How do you create a connection between individual properties so that if their values
need to be changed all of them are changed at once?

Forces

The problem shows the following forces:

● Consistency: If some properties must always be changed together, it is important
to make these changes consistently.

● Maintainability: It must be clear which properties are connected.

Solution

Extend the Property Loader by adding the ability to resolve indirections between
properties so that by changing the value of one property, the values of a set of proper-
ties that refer to the changed property are changed as well.

Extend the Property Loader so that properties can not only be mapped to concrete val-
ues but also to other properties which are resolved subsequently. Consider the following
example:

environment=dev

dev.dataSource.username=devuser
dev.dataSource.password=devpw
ci.dataSource.username=ciuser
ci.dataSource.password=cipw

dataSource.username=${${environment}.dataSource.username}
dataSource.password=${${environment}.dataSource.password}

In this example the property dataSource.username is first resolved to
${dev.dataSource.username} and then to devuser and, accordingly,
dataSource.password is resolved to devpw. If the value of the property environment
would be changed to ci, the value of dataSource.username would therefore be resolved
to ciuser and the value of dataSource.password to cipw.

Consequences

The solution has the following advantages:

F4 - 17

● By changing a single property value, you can switch between sets of property val-
ues.

● If a Hierarchical Property Loader is in use, all foreseeable possible values of
property sets may be added to the default property storage. Only the value of the
“switching” property needs to be declared in a more specific property storage.

The solution also has some disadvantages:

● Recursive property resolving adds another layer of indirection that makes it more
difficult to understand which properties are actually in use by a system, in particu-
lar if the affected properties are spread across multiple property storages.

Known Uses

The Apache Commons Configuration framework allows for recursive property resolu-
tion [15] very similar to the pattern described above. The Rails programming language
supports different property settings for three testing environment settings that effectively
work as a recursive property resolution – based on a single switch property
(RAILS_ENV), other properties are adjusted accordingly [16]. The Spring Framework
[17] contains a class PropertyPlaceholderConfigurer that, since version 2.5 of the
framework, is able to recursively resolve properties.

F4 - 18

Dynamic Property Loader

Context

A (Hierarchical) Property Loader reads from property storages and provides an API
to retrieve the values at runtime.

Problem

The Property Loader loads properties at start-up time and stores them internally. Prop-
erties are not checked every time they are accessed for performance reasons: Some stor-
ages may impose relatively long waiting times when being queried. Still, many applica-
tions have very limited time slots for maintenance and restarting.

In other cases, it is desirable to change settings back and forth while the application runs,
for example to temporarily change the logging level at a production system.

How can the values of some properties be changed without restarting the application?

Forces

The following forces apply:

● Uptime: Restarting an application to reload the properties from their property
storages might not be feasible for some applications to comply with quality of ser-
vice agreements. In particular, server applications might take a considerably long
time to start-up.

● Performance: Switching property values at runtime needs to be fast to avoid per-
formance problems, in particular in large sites under load.

Solution

Extend the (Hierarchical) Property Loader so that it reloads the properties
from all property storages on request.

Special care must be taken to prevent the access to properties while they are reloaded and
to remove references to properties values that might not be valid any more after the re-
load.

Implement any of the following three strategies to trigger the reload: (1) The Property
Loader may check for changed properties on every access to property values, (2) may
periodically scan for changes to local property storages and/or (3) may provide an API to
be explicitly notified when property storages change and a reload must occur.

From a performance point of view it is usually not feasible to execute full hierarchical
property loading each time a property is accessed. Some cache invalidation strategy is ne-
cessary. With implicit invalidation, a periodic watchdog scans all property storage candid-
ates for changes and reloads properties if necessary. With explicit invalidation, the re-eval-
uation of the hierarchical property loading is triggered via some signal (e.g. a JMX com-
mand [10]).

The choice between implicit and explicit cache invalidation is a tradeoff between quick
round-trip times and prevention of accidental reconfiguration. For example, hierarchical

F4 - 19

property loading for logging configuration benefits a lot if any changes are loaded auto-
matically – the potential damage of a misconfiguration is usually low.

Consequences

Dynamic property loading has the following advantages:

● Properties can be changed without restarting an application.

● It is also possible to trigger the reload of property values in a cluster of application
servers nearly at the same time if the servers share the same base property storage,
e.g. property files from a shared directory via NFS.

The solution also has some disadvantages:

● Changing properties may cause inconsistent system behavior if some operations
assume constant property values over a period of time.

● Administrators must be aware that they must not change property storages while
the application is running if the change should not have an immediate effect.

● Implementing a strategy to detect that properties need to be reloaded may harm
the application's performance.

Known Uses

The Apache Web Server can be told via a control command (apachectl graceful) to
re-scan its configuration files without effectively restarting [18].

The Jetty servlet engine constantly monitors its context directory and reconfigures itself
by restarting only specific web applications if any changes occur [19].

Most database systems maintain parts of their own configuration as internal database
tables; as such, the configuration properties can be changed at runtime using standard
SQL commands. An example is MySQL [20].

The Log4J Java Logging framework implements a periodic check of changing configura-
tion properties via its PropertyConfigurer#configureAndWatch() method [11].

F4 - 20

Pattern Language Example
The patterns described in this paper build upon each other and are usually combined. In
this section, we give an example combining the Property Loader, Hierarchical
Property Loader, Recursive Property Resolution and Property Enforcement
patterns.

The Java platform offers a standard API to load properties [4]. As such, it serves as the
basis of our example. Yet, we have also implemented the pseudo code described below in
the Ant build system. Adoptions to other platforms are straightforward.

We assume that the default configuration is declared in a file called config.properties.
It is stored with bundled with the application binary, as well as the host-specific configur-
ation file config.earth.properties and the user-specific file
config.joe.properties. On the deployment environment, a file
config.dev.properties overrides specific parameters.

// Property Loader pattern
Properties props = read("config.properties") // default properties

// Hierarchical Property Loader pattern
String env = System.getEnv() // assume "dev"
String host = System.getHostname() // assume "earth"
String developer = System.getCurrentUser() // assume "joe"

File[] overrides =
 ["config." + env + ".properties", // config.dev.props
 "config." + host + ".properties", // config.earth.props
 "config." + developer + ".properties"] // config.joe.props

foreach file in overrides do
 Properties newProps = read(file)
 foreach newProp in newProps do
 props.setValue(newProp.name, newProp.value)
 done
done

// Recursive Property Resolution pattern
while (props.containsPropValueContainingOtherProp)
 String oldValue = propWithValueContainingOtherProp.value
 String newValue =
 oldValue.replace("${" + otherProp.name + "}", otherprop.value)
 propWithValueContainingOtherProp.setValue(newValue)
done

// Property Enforcement pattern
String UNDEFINED = "<HAS_TO_BE_DEFINED>"
if props.containsValue(UNDEFINED)
 throw Exception ("Some required properties are not set")

F4 - 21

Acknowledgements
The authors are very thankful to Andreas Rüping who provided invaluable feedback dur-
ing the shepherding process. We'd also like to thank the participants of the writers' work-
shop at EuroPLoP 2009 for their valuable comments and suggestions.

References
All WWW links are valid as of January 10th, 2010.

[1] Apache Ant Project - http://ant.apache.org/

[2] OpenSSH manual - http://www.openssh.com/manual.html

[3] Jakob H. Heidelberg, Managing Windows Vista Group Policy (Part 2) -
http://www.windowsecurity.com/articles/Managing-Windows-Vista-Group-
Policy-Part2.html

[4] The Java Tutorials: Properties –
http://java.sun.com/docs/books/tutorial/essential/environment/properties.html

[5] MSDN – Windows Registry –
http://msdn.microsoft.com/en-us/library/ms724871(VS.85).aspx

[6] The Debian GNU/Linux FAQ; Chapter 7. Basics of the Debian package
management system – http://www.debian.org/doc/FAQ/ch-pkg_basics.en.html

[7] Maximum RPM: Taking the Red Hat Package Manager to the Limit; Chapter 13.
Inside the Spec File –
http://www.rpm.org/max-rpm/s1-rpm-inside-files-list-directives.html

[8] Apple Developer Connection: Bundle Programming Guide – http://developer-
.apple.com/mac/library/documentation/CoreFoundation/Conceptual/CF-
Bundles/index.html

[9] The Java Tutorials: Packaging Programs in JAR files –
http://java.sun.com/docs/books/tutorial/deployment/jar/index.html

[10] The Java Tutorials: Java Management Extensions (JMX) –
http://java.sun.com/docs/books/tutorial/jmx/index.html

[11] Log4J Manual - http://logging.apache.org/log4j/1.2/manual.html

[12] MaestroDev, Better Builds with Maven, Chapter 5.4.1 -
http://www.maestrodev.com/better-build-maven

[13] Configuring Logging in Atlassian Confluence -
http://confluence.atlassian.com/display/DOC/Configuring+Logging

[14] Installing Confluence EAR-WAR on Tomcat -
http://confluence.atlassian.com/display/DOC/Installing+Confluence+EAR-
WAR+on+Tomcat

[15] Apache Commons Configuration, PropertiesConfiguration class -
http://commons.apache.org/configuration/apidocs/org/apache/commons/config-
uration/PropertiesConfiguration.html

[16] Rails testing environments - http://guides.rubyonrails.org/testing.html

F4 - 22

[17] Spring Framework - http://www.springsource.org/about

[18] Apache Web Server apachectl documentation -
http://httpd.apache.org/docs/2.2/programs/apachectl.html

[19] Jetty Servlet Engine Context Deployer -
http://docs.codehaus.org/display/JETTY/ContextDeployer

[20] MySQL Server Administration Documentation -
http://dev.mysql.com/doc/refman/5.5/en/server-administration.html

F4 - 23

