Dealing with Complexity

Klaus Marquardt
Dorothea-Erxleben-Stral3e 78
23562 Lubeck

Germany
mailto:pattern@kmarguardt.de
http://www.kmarquardt.de

Copyright © 2009 by Klaus Marquardt. Permissiomngea to Hillside Europe for
inclusion in the CEUR archive of conference prodegsland for Hillside Europe website

All but the most trivial software systems are coexpland complex systems have
a high risk of failure.

Across all industries, large projects have a highsk of failure than small
projects. Their sheer size is a major contributifagtor to their internal
complexity; the infrastructure and communicatiormdyaes more complex. With
many factors combined and interrelated, smalletuthing effects get out of
control; the project develops unexpected behawvidrrafuses to be manageable.

Within the project the complexity must be tackledincrease the chances for
success. Engineering disciplines manage complextpid, circumvent, and
reduce it. A prominent aspect again is to limit e of the system to take care
of at once — decomposition and incremental devetsymesemble each other in
this respect. Our engineering and project managemsdom well in place, we
are inherently optimistic that we will be able tacseed.

At the same time, complex systems are the natuihds of highly qualified
engineers. They provide intellectual and culturbhlienges, and they require
experts to solve it. The latest project is typigaiiore complex than the ones we
have already completed. We need to cope with cotitpleve know it and we
actually love it Marquardt2008]. Viewed from very far away, the continued
overestimation of our abilities and this inhereptimism ultimately enables the
successes of homo fabé&irisch1957] in the first place.

Success, just as complexity, is in the eyes ob#telder. This paper is aimed to
assist project managers and key stakeholders iasideoutside of the project, to
cope with the complexity and control its contrilmgtifactors.

Complexity

Dealing with large and complex systems is the daminoccupation of IT

professionals. Many advances of the past decadesh®ped here, mostly in the
Lampson styled2lampson]: "all problems in Computer Science can be solved

another level of indirection”, allowing to negletiost levels of detail for the
moment:

! In praxis, this is only partly successful. Theapion of abstraction levels does not imply them
being independent; details often influence the nadstract levels.

E4-1



Complexity has been analyzed and treated extegsivelluding the founding of
scientific branches. However, few insights haventbtheir way into the working
knowledge of software professionals, and are agphieaily routine.

Complexity and complicatedness are different cotscepomplicated
systems or problems can be subdivided and solveddependent parts,
where this is by definition impossible with compleroblems.

Solving complicated problems thus benefits fromiadd-and-conquer
approach in some form — breaking tasks down, deusdo features
sequentially or in parallel, separating technicaldomain concerns. In
contrast, solving complex problems requires an tstdeding of the entire
mechanism and its internal and external influences.

This distinction is not entirely helpful in actuptojects. Complexity is
already added with human interaction; adding diffeér aspects of
complicatedness will create a problem that is nstirdyuishable from a
complex problem. If you are fluent in different garages, you might want
to check out different understandings to complexitjikipedial.

The separation of essential (intrinsic, problem dimmelated) complexity
from accidental complexity, introduced by Broolsdoks1995], helps to
distinguish complexity that stems from the approatiproblem solving,
i.e. that the project is essentially creating ftsel

While the awareness created by this distinctioa inajor step, Brooks
resolution proposals, like his concept of conceptotegrity, are only
valuable if you know already what to do. They aaedfy accessible to and
applicable by the uninitiated.

Directly attacking complexity will change the sitiaa, but the response often is
that complexity comes back at another place. Tewog attempts to reduce
complexity contribute their own complexity, at dfelient location depending on
their individual mechanism:

Raising the level of abstraction requires educatiod personal ability,
which is expensive at best. In case of “analysiglgais” or extreme
toolsmithing (XT) it can break your project at wors

Scope reduction is a craft that can be taughtjtbaltvays has a political
dimension to it: the renegotiation with the staksders. Applying it to
actual project situations is both an art and tesliwark.

Finally, striving for conceptual integrity createstrong coupling between
projects, teams and individuals. Such an intenaegling between many
system components is a factor to complexity itsatid the necessary
amount of work and friction may outweigh any poignvenefits.

Chosen Complexity

Complexity thrives from contributing factors, art tfactors can be classified and
considered individually. When the complexity cdmiions are reduced in
amount or severity, humans are able to deal withréimaining complexity due to

E4 -2



their personal experience. Indirectly, the compiekself becomes decomposed
and resolved. Early complexity factor managemennae promising, but it is
never too late to take control of your project'uence factors.

A distinction between chosen complexity, and implosemplexity, helps to gain
consciousness about the mechanisms that add catgpiexthe project, and to
take control of and possibly eliminate contributfiagtors. The chosen complexity
is typically a subset to Brooks’ accidental compiex- but also intrinsic
complexity could partly be chosen. Most importanthe viewpoint and focus are
different. Chosen complexity comprises any compyefactor a project leader
and team has actively or passively accepted irggtbject.

Ultimately the project leader is responsible fag giroject’'s success. This includes
managing and minimizing risks; if some stakeholdatially imposed some
condition that increase the overall complexity éimas increase the risk, it is the
project leader’s duty to bring these conditions ampgroject control and remove
obstacles when possible. This attitude is closerBaexk's “play to win”
[Beck1999] than to dutiful acceptance of the requirementsudeent. The project
shall strive to be successful, including negotiatal success criteria, or to fail
quickly.

The complexity factor attribute chosen versus ingglas not stable. Many factors
start out as imposed by stakeholders or other $ore®wever, once a project
leader becomes aware that the current situatioomsegpan obstacle or significant
risk, she needs to remove the respective factorsnemgotiate about their
importance and how success is defined for thisiquéar project. By silently
accepting or ignoring imposed factors that are kméavcontribute to complexity,
the project leader abandons responsibility, takingabsent without leave”.

Complexity Factor Classification

The key technique for coping with complexity is identify and name the

contributing factors, and to treat them in a wagt treduces their impact on the
project. This works against complexity in two walg:the removal of the factors,
and by creating consciousness about these factwis gaining insight and

security.

CLAssIFY COMPLEXITY is the introductory pattern in this paper. It Isetp list all
the risk and size factors, and to classify thems Thassification follows the two
dimensions stated above, essential and accidesrisy imposed and chosen. The
diagram shows these dimensions, and typical contpléxctors found in these
coordinates:

* The team members and overall infrastructure arenoéstablished from
the very beginning. They are initially imposed aactidental, i.e. they
belong to the solution domain.

* Roles and workflow are typically chosen by the teand could be
changed.

* Non-functional requirements are mostly implicithated, and typically not
subject to discussion: imposed, and essentialegsrtiate to the problem.

E4 -3



Functional requirements belong to the problem damdowever, a fair

amount of them is often not essential for the mtgesuccess and should
be interpreted as a part of the chosen complegity@uld be removed.

>

A
Non-Functional | 5|3 /Team members,
Requirements | @G | Infrastructure,
o3 Offshoring
. Q E
Functional g8
Requirements
Essential Accidental
5
<
— 3 [Roles, Workflow,
0 g Architecture
oL
o
OE

Once some factor is identified as chosen and @kferelated to the solution
approach, the project can control and address it.

The following patterns help to move the compleXagtors into a lower quadrant
and enable project control. The overview also liseskey techniques used:

complexity.

Pattern Key Mechanisms

RE-NEGOTIATE COMPLEXITY

to approach and influence the project’s stakehelder
to shrink the size of (some aspect of) the project;

to improve on the internal organization and comroaton;

influence stakeholders

DE-VISUALIZE STRATEGIC PROJECTS

influence stakeholders; shrink size

COMBINATORIAL BUDGET

shrink size; influence stakeholders

PiECEMEAL GROWTH

shrink size

DIVIDE AND CONQUER

improve organization

DELEGATE COMPLEXITY

improve organization

MANAGEMENT BY TRIGGERS

improve organization

LocAL DEcCISIONCOMMUNITIES

improve organization; gain competeng

GATHER DOMAIN KNOWLEDGE

gain competence

2 Divide and Conquer has many known publicationsiamit included in this paper.

to gain competence to enhance the personal abiiitycope with

e

E4-4



Development Methodology

Most development methods claim to successfully coeenplexity management.
While process models that closely follow CMMI acgkeomplexity by ensuring
the organization’s ability to minimize risk, agikgpproaches ensure that the
organization is able to react to feedback.

With respect to complexity, both virtues are esaénMany of the mechanisms
can be found in agile methods, while others reserpbbject management best
practices. Your project likely benefits from boBeware though: whenever some
practice or approach does not help you to imprdwee dituation, refrain from
enforcing more of the same.

Pattern Form
The pattern format can contribute to the qualitpvity.

In this paper, the pattern context is kept veryadrand sketched within one line
after the name. The problem statement is followgdthe forces pulling in
different directions and listed mostly in “...but..."erstences. The “therefore”
keyword initiates the description of the solutidrhe solution includes general
strategy as well as implementation details, andng@s wherever these would
not compromise the desired brevity.

E4 -5



Classify Complexity

Applies to projects considered complex by key stakaers.

It is unclear how complex the project actually asd which measures can be
taken to increase the project’s success probability

Knowing your complexity does not remove it,
but not becoming aware of complexity will not yieltfective measures.

Many factors contribute to a project’'s complexity,
but reducing the number and severity of even aftestors increases the
chances for success.

Some complexity factors appear imposed onto thggto
but whether to accept them or to fight them is @@ of the project.

Therefore, create awareness of the project's complexityisting all the risk and
size factors that have an impact on your projemiimplexity. Afterwards, classify
these factors along multiple dimensions, especiatijuding a distinction whether
a factor is essential to the problem or createdtH®y solution approach, and
whether it is imposed or chosen. Chosen factordharge that, according to the
evaluation, could be changed by the project itself.

The complexity factors’ classification is similay & project risk assessment. It
needs to be fairly complete so that you can comoat@iand discuss the influence
factors. The classification also needs honestyit ®@an give a prospect and a
healthy signal to upper management: we are awaoeropotential problems, and
we try to gain control over them.

Depending on the company culture, the classificatieeds to avoid factors that
are considered trivial — except when you think y@ed to address exactly these
factors. Furthermore, each company has its tagoes;mentioning factors like
“offshoring” or “lack of education” might set a pd¢al tone. If your company
demands or favors some practice, you would onlytwamention it if you are
willing to make a strong case against it in youtipalar project.

Use the classification’s visualization to discusthwhe stakeholders and move
factors into the chosen area. When the stakeholtersptimistic and would not
value an increased chance for project succeseaxpense of allowing slips in
some initial boundaries, your negotiation mightsiecessful only after you have
already missed some milestone.

E4-6



Re-Negotiate Complexity

Applies to projects whose stakeholders impose emtbject’s approach.

Accepting every wish that a stakeholder mentionstdi the project’s options to
make decisions that fit its situations.

Stakeholders define the terms and conditions optbgct,
but terms that proscribe parts of the solution riiayt the chances for
success,
and the project leader is responsible for the pteuccess.

At project initiation, all costs and effects argyogated,
but complexity factors that are identified latdl stifect you,
and when new insights arise, a renegotiation nbghteeded.

Therefore, renegotiate all factors that contribute to theeralt complexity, as
soon as you become aware of them.

Stakeholders may prescribe project relevant togike development team
members or technology choices. Once you can witbwlkedge argue about
chosen complexity, you can start making a caséém@e the project. Even with
prominent risks, however, it might be that the riegon just confirms the
conditions you tried to overcome.

Approaching stakeholders and asking for a chang@raject settings is an

inconvenient step. However, not raising issuesstuhem into your own — the

project leader becomes responsible for all chabesdid not challenge. You need
a strategy to escalate in a way that keeps evepddace, and you need to be
successful with your first try.

For implementation, use &IVATIONAL QUESTIONS [Marquardt2004] to address
all aspects that hit back when ignored. They needriswer the immediate
questions for steering, address prioritization espeand ensure that the decision
becomes secured against later opposition. An exasgll of questions contains
these:

* What s the problem?

* What is the proposed solution?
*  Who wants this?

* What does it cost?

* What happens if we don’t do it?
» Does everybody agree?

E4-7



De-Visualize Strategic Projects

Applies to innovative projects with high visibility

Projects initiated by top management and aimedlflihg high expectations, are
suspiciously observed from all parties that migbhsider themselves affected.
These projects likely suffer from stakeholder crdefpowed by all other types of
creep including complexity creep.

All potential parties desire to be involved in s&gic projects,
but a project involving all parties might neverrstt all.

Strategic projects will affect many different conulitees and departments,
but the final effects can merely be guessed.

Highly visible projects invite fans and criticskai making non-political progress
impossible,
but hiding important projects will even be more etauproductive, once
they go public.

Important projects are often assumed large andrgasky funded,
but simple, small and properly funded projects havegher probability to
succeed.

Therefore, start the most visible projects as small as ptssand reduce their
scope even further. Define them to answer very deestions, so that all parties
that did not become sponsors or stakeholders seeewto interfere.

Small projects have fewer factors that contriboteamplexity, and they have a
higher potential to successfully cope with the remng complexity since they
need not spend effort due to their sheer size.

Strategic projects need to address numerous aspecisange. However, it is
virtually impossible to get them addressed alhatsgame time, and likely some of
the answers will prove incorrect in the final implentation. Furthermore,
strategic projects typically have a bunch of stak#drs and subsequent projects
to serve. Have one stakeholder to become the pjesponsor
[MannsRising2005], and focus on his aspects only. Define the ptdjede less
strategic at first, its success depending on i$ulsess for the sponsor.

Follow-up efforts can take care of other aspectd another stakeholder.eb
VISUALIZE STRATEGIC PROJECTScan be applied in alCEMEAL GROWTH manner,
growing the number of stakeholders, requirememtd,aanount of visibility.

E4 -8



Combinatorial Budget

Applies to projects with many dimensions of variiyi

Sheer size is the key risk to unmastered compleXig combinatorial explosion
of many variables defines the technical size of gmeject, contributing to
implementation, test, installation, and maintenance

Variability can help you to satisfy different usevigh the same application,
but variability multiplies the effort in implemeation and testing.

Variability can compensate for uncertainty and condecisiveness,
but it contributes a complexity factor that incremsthe project risk
significantly.

Therefore, budget the amount of variability and configurdpilin the same
manner as you budget resource consumption. Allexctistomer to select a small
number of configurable items. Whenever the demamdfdrther configuration
arises, the necessary budget needs to be freeehinyving variability in another
area of the application.

Be sure not to miss the relevant variability fastof your application. These may
include: number of product variants; number of @psi a user may order; number
of releases (versions) that need to be maintainettha field; number of other
applications for interaction; number of configuebtems for installation or
usage. While these factors do not directly multigtheir consideration easily turns
one application into several 1.000 applicationddwelop, test and support.

The combinatorial budget needs to be defined agdtieged with product owners
respectively product managers. It is mandatoryrémleé combinatorial factors
against each other, and not try to enable a highbawatorial factor with a larger
team or a prolonged development time. These woelddditional factors to the
overall product complexity. Also take care that tha&intenance costs are included
in that subsequent development projects can balatdtless aggressively.

The QOMBINATORIAL BUDGET is related to the QWPLEXITY BUDGET
[Marquardt2005] that also includes metrics from organization atesign. The
key to dealing with complexity is to turn as mamntibuting factors as possible
into chosen factors, and then eliminate them. \dii@ needs to be discussed
with the product owner, while organizational chasmgeed to be agreed with the
organization owner.

E4-9



Piecemeal Growth

Applies to projects that are large and hard to aetmgnd.

The project team needs to react to incomprehensitations, dealing with many
issues and requirements at once.

Following a plan avoids unnecessary mistakes duhagroject’'s course,
but it cannot describe necessary changes duerniedjaxperiences.

Plans can be established for anticipated circurastgn
but a project exploring new territory will exper@anthe unplanned.

Risk management prepares project management tovatdpthe unexpected,
but changes and learning experiences will leaverdinge of anticipated
risks, and will exhibit unknown challenges and atemn

Therefore, introduce an attitude into the project to solvebfems one at a time.
Reduce the amount of things to care for at oncdobysing on the next few
important things, only one or two per person. Adaptattitude that actively
refuses to plan ahead for complex issues, evehaif would seem smart and
apparently could reduce the overall effort. Thesfjoa to ask is: what could we
try or show next?

PIECEMEAL GROWTH [FooteYoder1998] helps on problem domain as well as on
solution domain complexity. Since “the problem wiglg Design Up Front is the
big, not the up front’ it slices the problem to portions that are comprsible.
While establishing this culture, some amount obktunness helps. Refuse any
task that would take days, is not immediately iacte and has links with other
tasks — as long as there is still some gain passitih less coupling.

This attitude can best be transported by an exteneator or coach brought into
the project. Novices often apply it by themselvest seasoned engineers can
benefit from a frequent reminder to ignore someuaesl facts and focus on each
function individually. Without external help, it alll become tough to actively
ignore some of the company culture.

PIECEMEAL GROWTH is a counterpart to IRIDE AND CONQUER it describes the
iterative and incremental nature of progress asrasied to independent progress
in different areas. It also contrasts taT@ER DOMAIN KNOWLEDGE, where the
perceived complexity is reduced by increasing thersgnal ability of
comprehension.

% Proverb of unknown origin, mentioned during theksbop at EuroPLoP 2009

E4-10



Delegate Complexity

Applies to complex projects with a competent team.

You cannot deal with all complexity the projectesff, and you cannot control it.

Complexity cannot be controlled or planned,
but what is considered as complex varies with peakty.

Complexity scares many people away,
but engineers and technical leaders love to haratigplex topics, and are
proud of their problem solving abilities.

Therefore, share dealing with complexity. Decide who of them shall deal with
which topics. Give the authority to deal with coewty to the team members
who are willing and able.

Complexity has a strong link to cognitive psychglog/hether some endeavor is
considered complex depends on the undertaker angdrception. Individuals
with a strong attitude to problem solving and théity to abstract thinking likely
perceive problems as simple that would overwhelmeiopeople.

There are common pitfalls when managing complexity:

* Risk avert managers would try to avoid complexikys is helpful though
not always possible.

* Managers with a strong technical background wounlghge themselves on
the most difficult and exciting topics, and becombottleneck within the
project [Coldewey1998] while neglecting their management duties.

Develop the habit to approach team member strongnalysis or design, and
discuss difficult problems with them while thesee arot urgent yet. Discuss
informally every once in a while: your peers widl\e a different but helpful view
on many aspects that you had viewed as hopelesse €wme complex issue
becomes urgent, you know who could handle some hwesgpnd you have
established communication mechanisms.

Dealing with difficult problems adds to the jobisttction and to the reputation
of engineers. It gives them positive visibility. TRELEGATE COMPLEXITY both
gets managers more help, and prevents communidatiiis that otherwise could
cause the brightest people to quit.

The caveat is that you need to know when to stapog&ire to complexity often
equals exposure to conflicting goals and compariiqe Employees need to be
backed that once they are overstrained, they camréo technical tasks.

E4-11



Management by Triggers

Applies to managers with large teams and complejept settings.

When a project gets out of hands, adding even durtbvels of control and
tracking is hardly possible and rarely helpful.

Uncontrolled projects do not allow monitoring ofdrmed decision making,
but controlling and tracking a project costs effand must only be done
for a clear purpose.

Control does not answer the important questions finathin the project, and may
discourage initiative of the project team,
but desired behavior can be triggered by indudmogights and mindset.

Therefore, set triggers to invoke desired behavior in thd tarm.

When projects get out of hands, many managers bgattcreasing the level of
control. However, detailed process instructionstight tracking adds further
complexity to the process, and minimizes the ititeof the project participants
to cope with complexity.

Refrain from adding more control to a project thast fundamentally
uncontrollable, it would just be costly and resalfrustration on all sides. Change
the fundamental assumptions from the leaders gpl#e problems, to each
participant solving the problems. Loosen on thewhside, and take a look at the
“who” side: who is the right one to finish the joB®d then, what trigger can | set
to foster initiative and create a supportive projeam?

Choosing good triggers is a virtue that parentsnlesith their children. Make
others think instead of providing them with solago Ask questions, guide team
members beyond the scope of their daily dutiese@non-monetary) incentives
to team members that evolve beyond their work agsants.

Richard Gabriel tells the story of two classesijayna one-week pottery course.
The first class is asked to build the most bealidise they can, the second one to
build as many vases as they can. In the end thtevhess from the second class
are the most beautiful. The teacher has set aetritpgt led to a much higher level
of experience in creation and in judgment.

In a large software team, changes to already fuistode became unwanted since
several clients to that code did not want to chahgé code in return. However,
the system was still in development; restrictingaraie would have stalled
progress. Relaxing on code ownership, the teaneddgteat who wants to change
some code also needs to cleanup the entire code bhe undesired workload
prevented thoughtless changes. However, the chahgesvere still tackled by
some engineer managed to earn acceptance by albgevs Marquardt2007].

E4-12



Local Decision Communities

Applies to projects with a large team.

Project team members’ decisions need to be in sytththe overall architecture,
without asking for approval individually.

Conceptual integrity is best created by askingiglsimind for advice,
but a central approval person is a bottleneck fojegt progress,
and no process step could replace implementati@actagl functionality.

Homogenous approaches increase the maintainatfilggftware,
but they introduce a tight coupling between engis@ad tasks,
and the need to establish concepts prior to imphtatien hinders the
immediate progress.

Therefore, enable developers to take local decisions. Emgaua communication
culture of small neighborhoods. Within these depets can develop a common
spirit without the need to share this spirit wilte tentire project team. Establish
very few rules to adhere to, the core of the oVarahitecture.

LocAL DecisioN CoMMUNITIES are the more useful, the higher the costs of
communication within the project team are. Localcisiens are virtually
unavoidable then, and better named and planne®fstributed development is a
typical example: interfaces and strategies canligaeal, but the implementation
is subject to a local team. Any rigor, in architeet or process, requires control
measures that quickly become overly hard to implgraed maintain. Less rigor
can actually enable new ideas, and increase thegisoptions for reaction.

However, several kinds of decisions should not besitlered local since they
have a tendency to influence other teams. Usefucadlepends on the kind of
system at hand; typical examples are

» the processing model, with infrastructure and comication design;
» transactions, notifications, pull-push and provideriever decisions;
» cross-cutting services like security, failure hamglland system startup.

The potentially harmful effects of inadequate lodatisions can be measured and
addressed by an NTEGRATION FIRST ARCHITECTURE [Marquardt2004].
Furthermore, local decisions also increase comiyiegspecially when they are
not backed by adequate experience. To preventteffmdy visible at system
maintenance, the system architects may applyeBINBD NEGLECTION LEVEL
[Marquardt2004a] at one decision level inside the individual teanome
mentoring and frequent contact between the teamng’developers can provide
sufficient early warning signals.

E4 -13



Gather Domain Knowledge

Applies to organizations that run many projectseiated domains.

When complexity is a key problem to projects, ahd #bility to deal with
complexity is largely depending on individuals, wisaould the team members
learn and do to increase their personal abilityape with complexity?

Each defined processes guides you through a project
but no process can replace knowledge about whanp®rtant to the
project at hand.

Engineers need to be knowledgeable in the solukionain,
but the project team has to fulfill expectationshia application domain.

Complexity is perceived largest where you leaverymmfort zone of situations
you are familiar with,
but additional experience and expertise will expaymur area of
familiarity.

Therefore, increase your knowledge about the application alomYou will be
able to apply your own judgment, and reduce the pdexity associated with
unknown settings and questions.

Software development process models typically pl#oe domain expertise
outside of the development tedriihe development team should focus on generic
planning and problem solving, keeping the projeatttack no matter what the
domain. However, most large companies have theim ogevelopment
departments, or they cooperate with partners tfeafaamiliar with their business
and domain for many years. The reason is a riskatezh, stemming from an
increased ability to cope with complexity.

Clients look for competence that guides them aras $leeir problem. Similar to
house building, customers expected to be guidedhtat they want. The choices
they make cannot break the project, but make themse a more or less
comfortable home. Architects and project managevenallow choices known to
cause trouble. The decisions customers make atieeoproblem domain side and
define the project’s inherent complexity.

A standard development process can serve as afgohdation, and remove risk
during implementation. However, generic methods ehaan attitude of
carelessness in domain responsibility. However,cahnot replace domain
expertise. Knowing your domain and the way thegqobpwner and software user
thinks reduces the complexity dramatically.

* Following a technical interpretation of\BbE AND CONQUER vendors occasionally declare that
some tool implemented by their developers carhkediomain experts express their knowledge
without further communication and adaptation. Hoarethe successful creation such a tool
requires exactly that domain knowledge.

E4-14



Outroduction

It is interesting to see how coping with complexigveals parallels between
traditional and agile approaches. Pragmatism t#kedest of both worlds, and
leaves aside all dogma. You need courage, sometgnesance (and courage to
ignore your best intentions), and local adaptatioAsld humbleness and
appreciation, and take control of your project!

Acknowledgements

Many thanks to Markus Vdlter, my knowledgeable &hdllenging shepherd for
EuroPLoP 2009. Further thanks to the workshop @pénts at EuroPLoP 2009
for their valuable feedback: Rene Bredlau, EduaBloFernandez, Michael
Kircher, Claudius Link, Dietmar Schiitz, Alain-GeasgVouffo Feudjio, and

Markus Volter.

References
Beck1999
Brooks1995

c2lampson

Coldewey1998

FooteYoder1998

Frisch1957

MannsRising2005

Marquardt2004

Marquardt2004a

Marquardt2005

Marquardt2007

Marquardt2008

Wikipedia

Kent Beck, Extreme Programming Explained.

Frederick P. Brooks Jr.: The Mythical Man Montmriversary
Edition, Addison-Wesley 1995

found at http://c2.com/cgi/wiki?ButlerLampson

Jens Coldewey: Lazy Leader. Available at
http://www.coldewey.com/publikationen/Managementilaeader.8
.html

Brian Foote, Joe Yoder: Big Ball of Mud. In: Patté anguages of
Program Design, edited by Neil Harrison, Brian Eoétans
Rohnert, Addison-Wesley 1998

Max Frisch: Homo Faber.

Mary Lynn Manns, Linda Rising, Fearless Changedigah-Wesley
2005

Klaus Marquardt: Platonic Schizophrenia. In: Peaings of
EuroPLoP 2004

Klaus Marquardt: Ignored Architecture, Ignored Hitect. In:
Proceedings of EuroPLoP 2004

Klaus Marquardt: Indecisive Generality. In: Prodiegs of
EuroPLoP 2005

Klaus Marquardt: Zeus: Innovation in Life-SuppogiSystems. In:
Cutter IT Journal, Vol. 20, No. 5, May 2007

Klaus Marquardt: Sisyphean Leadership. To appedtroceedings
of EuroPLoP 2008

found at http://en.wikipedia.org/wiki/Complexity

E4 -15



