
E5 - 1

Handling Variability
Version 2.0, December 11, 2009

Markus Völter, Independent/itemis

(voelter@acm.org)

© 2009 Markus Voelter

Copyright retain by author(s). Permission granted to

Hillside Europe for inclusion in the CEUR archive of

conference proceedings and for Hillside Europe website

Introduction

Traditionally, in software engineering, development happens for single

products. This is a very inefficient approach in cases where groups of

products are related. Software product line engineering [1] is about

systematically developing families of related products together, as a

product line. The products within a product line usually have many things

in common, but also significant differences. Managing and implementing

these differences can become complex because in realistic product lines,

variability abounds, and it is often a cross-cutting concern. Hence, to

exploit the benefits of product line engineering, it is important to

systematically manage the variability between the products.

Variability denotes differences between related products in a product line.

Typically one talks about variation points, where, to define a product, you

need to bind each variation point. There are different ways to bind a

variation point: setting a value, selecting an option or implementing a

program fragment or model (we’ll talk about this in the patterns below).

For each variation point, you’ll also have to define the binding time: at

design time, load time, runtime, etc.

This paper is a collection of patterns for handling variability in software

systems. It contains patterns for managing variability, introduces different

kinds of variability, and illustrates realization of variability in

implementation artifacts such as models or source code. The patterns are

intended as a contribution to a more comprehensive pattern language on

product line engineering.

The paper is intended to be read by architects who want to get a better

grasp on managing and implementing variability. The paper does not

address requirements and product management. I assume the requirements

that drive the variability are known.

mailto:voelter@acm.org

E5 - 2

Structure of the Paper

The paper is structured into three sections, Managing Variability, Classes

of Variability and Implementing Variability.

Managing Variability provides two approaches on how to reduce the overall

complexity that results from variability. One pattern, SEPARATE

DESCRIPTION OF VARIABILITY recommends the separation of the logical

description of variability from its implementation. The other one, MODEL-

BASED IMPLEMENTATION describes how and why to use domain-specific

models to capture variability.

The second chapter, Classes of Variability, contains two patterns,

CONFIGURATION and CONSTRUCTION. The level of expressiveness of these

two approaches is fundamentally different, and you have to make a

conscious decision for one of these when thinking about how to describe

variability.

Chapter three, Implementation Strategies, deals with lower-level mechanisms

for representing variability in implementation artifacts. It consists of three

patterns: REMOVAL, where you conditionally take something away from a

whole, INJECTION where you conditionally add something to a minimal

core, as well as PARAMETERIZATION where you define a variant by

providing values for a predefined set of parameters.

Representing Variability

In large product lines with many products and many differences between

the products, the variability inherent to implementation artifacts can easily

overwhelm developers. The overhead for representing, organizing or

managing the variability can become so complex that the potential benefits

of product line engineering cannot be realized

How can you represent the complexity introduced by variability in

implementation artifacts?

Separate Description of Variability

Make sure that the logical description of variability is separate (external)

from its realization in the implementation artifacts. The logical description

describes the variation points, the variants, as well as constraints between

these variants. The realization of the variability in the implementation

artifacts is tied to the logical variability description.

E5 - 3

Artefact 1

Artefact 2

Artefact 3

 VP
 VP

 VP
 VP

 VP

 VP VP

Artifact

Level

Logical

Level

 VP

 VP

 VP

· Artifact Level represents

realization artifacts such

as models, code or

documentation

· The Logical Level is the

external description of

variation points and the

conceptual constraints

among them.

· VP’s are variation points

· One or more VPs in the

implementation level are

associated with variation

points in the logical level

(n:1, n:m)

As a consequence of the cross-cutting nature of variability in many of

today's systems, the implementation of variability is scattered over many

implementation artifacts. However, in many cases several variation points

need to be configured in a consistent, mutually dependend way for the

resulting product to work. If each has to be configured separately, the

overall complexity grows quickly. By identifying logical variation points,

and then tying the (potentially many) implementation variation points to

these logical variation points, related implementation variations can be tied

together and managed as one. With reasonable tool support, you can also

select a logical variation point and navigate to all the implementation

variation points, providing a level of traceability. When customizing the

artifact level based on a configuration of the logical level, the mapping

should be automated, but doesn't have to be.

In most cases, the logical variability is also much more closely aligned with

the problem domain. The variability in the artifacts corresponds to the

solution domain. Consequently, meta data (why does the variability exist,

which stakeholders care about it, etc.) is associated with the logical level.

The logical level is typically visible to the non-developer stakeholders.

One way of separating logical variations from implementation variations is

using feature models. A feature model [2] describes features and their

dependencies in a hierarchical fashion. Implementation artifacts or artifact

processors can refer to those features and construct the product variant

accordingly.

An alternative approach is OVM, or orthogonal variability models [3]. In

contrast to feature models, they are not hierarchical. Technically, they don’t

describe features and their relationships but rather variation points. The two

representations are semantically equivalent.

E5 - 4

Model-Based Implementation

Describe the implementation of the system with high-level constructs, such

as models based on domain specific languages, and a subsequent

transformation, interpretation or code generation step. Because of the closer

alignment with the actual problem domain, variability is much more

localized, and the number of variation points is significantly reduced in

models compared to code.

Model

 VP VP VP

Impl. Artefact 1

 VP

 VP
 VP

 VP

T

Impl. Artefact 2

T

 VP

 VP

 VP

· A model describes

domain abstractions in

a formal and concise

way

· Transformations map

that model to (typically

more than one)

implementation artifact

· Variability is expressed

with fewer VPs in the

models compared to

implementation

artifacts

If you can describe something with a smaller amount

of “stuff” (i.e. code, configuration files, etc) on a more

abstract domain specific level, and then use the

transformation or generator to expand all the details,

you can simply implement the variation on the more

abstract level in one place. The trade-off is, of course,

that you have to define this high-level domain specific

language, including a way to define variants of programs written in that

language. You also need to define the transformation down to the actual

implementation artifacts.

The relationship of this pattern to SEPARATE DESCRIPTION OF VARIABILITY is

interesting. As the name suggests, the models mentioned in this pattern

play the role of the implementation/artifact level in SEPARATE DESCRIPTION

OF VARIABILITY. The logical description "customizes" the models which are

then further mapped down to code. In some cases the models in this

pattern play the role of the logical level and are not further customized by

an additional logical level.

Consider the case where the attributes of an address entity need to be variable.

For example, in the US version of the system the address needs to have a state

attribute. In European countries this is not necessary. The state attribute needs

to be taken into account in the UI, the data structures, the database table

structure, the SQL code to persist the data, and maybe in several other places.

Instead of implementing the variability in each of these places, you can simply

put one variation into a model that describes the data structure, and then use

Model-Driven Development

In Model-Driven Development,

we develop domain-specific

languages that are very closely

aligned with the domain at hand.

Consequently, when using such a

DSL (Domain-Specific-Language)

to describe a system in that

domain, the resulting

models/programs become very

concise. There’s much less

repetition and low-level detail in

the description.

In a subsequent step, code

generation (and sometimes

interpretation) is used to map the

models to implementation code.

The knowledge about how to

“expand” the knowledge in the

models to implementation code is

encoded into the code generator.

E5 - 5

code generation to derive the UI, the data structure, the database table

creation statements, as well as the SQL code from that model.

Another, similar example is the implementation of state-based behaviour. If it

is implemented directly with a programming language, you have to use either

the State pattern, a big switch/case statement, a number of arrays pointing

into each other, or state tables, together with a number of constants

representing the states, events and transitions. If the state-based behaviour

should be variable, implementing this variability on the level of the

implementation is very tedious and error prone. An alternative approach is to

directly describe the behaviour as a state machine using a suitable language,

together with an interpreter written in the target language. Making some of

the states, events or transitions variable requires only one change (for each

variability) in the model and no changes to the interpreter, reducing the

overall complexity significantly.

Classes of Variability

Regarding the definition of variation points and the mechanisms to define

the variants, there are several alternatives with different levels of

expressiveness.

How can the different alternatives be grouped according to their

expressiveness?

Configuration

A variation point allows the selection from several alternatives. Each

alternative is either in the system or not. Constraints between the

alternatives limit the valid combinations.

XOR

OR

x

x

x

From a given set of

configuration options you

select a subset.

Constraints between

configuration options limits

valid combinations

The biggest advantage of configuration is its simplicity. People don't have

to learn complex formalisms for defining a variant, they simply select from

a predefined set of alternatives. Invalid selections are avoided by

E5 - 6

restricting the valid combinations. To achieve this,

constraints (requires, prohibits, recommends,

discourages) are defined between the configuration

options. Of course there are limits to what you can

do with configuration only. For example,

cardinalities, instantiation or relationships cannot be

expressed very well. This can be seen as an

advantage (makes the configuration process simple)

and as a liability (the degrees of freedom are

limited).

If you want end-users to configure your product,

you should try to go as far as possible with

configuration only.

In the simplest case, configuration can be achieved

by simply setting flags in a configuration file.

In C compilers, the ability to define symbols which

are then evaluated by ifdefs is another way of

configuration. Another alternative is using the

Bridge or Strategy patterns. These support “plugging in” different

implementations at a specific variation point. In contrast to preprocessors,

they are bound at runtime using polymorphism in object oriented

languages.

A more powerful formalism for configuration variability is feature models

[2]. Feature models are hierarchical collections of flags (features) that can

be selected or not. There are several default constraints between such

features: mandatory (the feature must be included), optional (the feature

might be included), alternative (exactly one of the set of features has to be

included) and or (one or more from a collection of features has to be

included). Powerful tools exist to manage even large sets of features and

their relationships.

Most wizards are also a kind of configuration. You are guided through a

number of selections and parameter specification. What you have selected

in steps 1 through n possibly determines the options you can select from in

options n+1 through k, a form of constraints. From the resulting overall

configuration some kind of artifact is generated or some functionality is

executed.

Construction

A language is provided to define the variant. The definition of the variant is

a sentence in this language.

The C Preprocesseor

The C and C++ language family

includes a preprocessor that can

process the source code before it

is submitted to the actual

compiler.

One of the features of the

preprocessor is to conditionally

remove a region of code. To do

that, you have to use #ifdef:

#ifdef aSymbol

 // here is some code

#endif

The code between the #ifdef and

the #endif is removed (and hence,

not compiled) if aSymbol is not

defined. A symbol can be viewed

as a boolean variable, and

defining a symbol means to set it

to true.

E5 - 7

1 2

Bl 3

A

You define a language that can

be used to define a basically an

unlimited number of variants

You then define a sentence in

that language that describes a

particular variant

Construction is much more powerful than configuration, since it provides

an unlimited variant space. The language defines a grammar (or a meta-

model) and all valid instances are valid variants. Picture this in the

illustration above: you can always add one more box and line. Depending

on the language definition, construction can also be much more

complicated to use than configuration, because of the unlimited variant

space. However, it can be used to express relationships, instantiation and

cardinalities.

The most well-known example for construction is simply programming

languages. Frameworks define hooks into which the developer can plug in

code, as long as it conforms to a certain interfaces or other framework

imposed constraints. Essentially, the variability is unlimited.

Whenever domain specific languages [4] are used to configure a product,

then this is also construction. The variability is more limited, i.e. domain

specific, but almost all DSL grammars allow for unlimited variability.

The composition of a system from components that are then hooked up in

order to communicate is also a form of construction. This hooking up can,

for example, happen through a dependency injection framework or

through any other means of configuration file.

Combinations

Of course, configuration and construction can be used in conjunction.

· A complex system can be subdivided into several subsystems,

where possibly one set of subsystems is configured by a

configuration and another set of subsystems will be configured by

construction.

· Configuration can be superimposed onto construction, where a

constructively created variant is customized by configuration. This

can be achieved using Removal or Injection, as explained below.

· It is also feasible to use construction to provide details to

configuration. Many configuration options have parameters (see

Parameterization below). The type of such a parameter can be a

E5 - 8

construction language. Every instance of a construction language

would be a valid value for the parameter.

Implementation Strategies

Now that we have defined the various classes of expressiveness we can

look at the actual implementation of variability in implementation artifacts.

How can variability be implemented in implementation artefacts?

Removal (aka negative variability)

Remove parts of a comprehensive whole. This implies marking up the

various optional parts of the comprehensive whole with conditions that

determine when to remove the part.

a

a

b

b c

c

!a

!c

b

b

b

An artifact contains parts (the

rectangles) annotated with

features (a, b, c) with which

they are associated

A variant removes those

those parts whose features

are not selected in the

configuration

The biggest advantage of this approach is its apparent simplicity. However,

the comprehensive whole has to contain the parts for all variants (maybe

even parts for combinations of variants), making it potentially large and

complex. Also, depending on the tool support, the comprehensive whole

might not be a valid instance of the underlying language or formalism. For

example, in an IDE, the respective artefact might show errors which makes

this approach annoying at times. Because of its technical simplicity, the

approach can be easily retrofitted to all kinds of artifacts: documentation,

code, models.

ifdefs in C and C++ are a well-known example of this strategy. A preprocessor

removes all code regions, whose ifdef condition evaluates to false. When

calling the compiler/preprocessor, you have to provide a number of symbols

that are evaluated as part of the ifdef conditions.

E5 - 9

Conditional compilation can also be found in other languages. Preprocessors

that treat the source code simply as text are available for many languages and

are part of many PLE tool suites, such as pure::variants [5] or Software Gears

[6].

The Autosar [7] standard, as well as other modeling formalisms, support the

annotation of model elements with conditions that serve the same purpose.

The model element (and potentially all its children) are removed from the

model if the condition evaluates to false.

Injection (aka positive variability)

Inject additions into a minimal core. The core does not know about the

variability, the additions point to the place where they need to be added.

a

b

a

!b

A base artifact made of various parts (the small

rectangles) exists. There is also variant specific

code (the strange shapes), connected to features

external to the actual artifact and pointing to the

parts of the artifact to which they can be attached.

Defining a variant means that the

variant specific code associated with

the selected features are injected into

the base artifact, to the parts they

designated.

The clear advantage of this approach is that the core is typically small and

contains only what is common for all products. The parts specific to a

variant are kept external and added to the core only when necessary.

To be able to do this, however, there must be a way to refer to the location

in the minimal core at which to add a variable part. This either requires the

markup of hotspots or hooks in the minimal core or some way of pointing

into the core from an external source. In the latter case, the core requires no

modification and the approach can be used for implementing unexpected

variability.

Aspect Oriented Programming (AOP) [8] is a way to implement this strategy.

Pointcuts are a way of selecting from a set of join points in the base asset. A

joint point is an addressable location in the core. Instead of explicitly defining

hooks, all instances of a specific language construct are automatically

addressable.

Various preprocessors can be used in this way. However, they typically

require the explicit markup of hooks in the minimal core.

E5 - 10

For models, injection is especially easy, since in most formalisms model

elements are addressable by default. So it is possible to point to a model

element, and add additional model elements to it, as long as the result is still a

valid instance of the meta model.

The installation of optional packages for software systems is another example

of this pattern.

An example in the architectural patterns world would be the Microkernel [9].

A microkernel-based system is one that provides a minimal set of

functionality in its base functionality together with a protocol for plugging in

additional pieces of functionality that makes use of the functionality in the

microkernel, or other additions.

Parameterization

The artifact that shall be varied needs to define parameters. A variant is

constructed by providing different values for those parameters. The

parameters are usually typed to restrict the range of valid values.

 p2

p1

 p3

p1

p2

p3

X

Y

Z

 Y

X

 Z

An artifact defines a number of

(typed) parameters

A variant provides values for

the parameters

:=

:=

:=

The artifact that shall be parameterized needs to explicitly define the

parameters, as well as a way to specify values (this makes this approach

different from injection where it is possible to make it work without

marking up the minimal whole). Hence, the variability is limited to the

locations where parameters are defined. The core has to query the values of

those parameters explicitly and use them for whatever it does. The

approach requires the core to be explicitly aware and define all parameters,

unexpected variability cannot be handled.

In most cases, the values for the parameters are relatively simple, such as

strings, integers, booleans or regular expressions. However, in principle,

they can be arbitrarily complex.

A configuration file that is read out by the using application is a form of

parameterization. The names of the parameters are predefined by the

application, and when defining a variant, a set of values is supplied.

The strategy pattern is a form of parameterization, especially in combination

with a factory. A variant is created by supplying an implementation of an

E5 - 11

interface defined by the configurable application. Once again, the application

has to explicitly query the factory, and the type of the values is defined by the

interface which its strategy classes implement.

All kinds of other small, simple, or domain specific languages can be used as a

form of parameterization. A scripting language in an application is a form of

parameterization. That type of parameter is "valid program written in

language X". Also, systems where some kind of behavior can be configured

using workflow languages, activity diagrams, state machines or business rules

is a form of parameterization. In this case, too, the languages used to define

the behavior are the type of the parameter.

The classical approach of copying resources is also a form of parameterization.

Consider the place where a logo is exchanged. The application defines a

parameter ("logo for the company"), the type being the file type (such as GIF,

32x32 pixels) and the parameter is any valid image that makes sense as a logo

for the company.

Combinations

Of course there are also combinations of all of these approaches. Going

back to the component example introduced in the CONSTRUCTION pattern,

components that are wired together often also use PARAMETRIZATION to

implement another, smaller grained form of variability.

Another combination is using PARAMETRIZATION to determine which parts

are REMOVED or INJECTED.

Acknowledgments

I want to thank my EuroPLoP 2009 workshop for the feedback on this

paper: Christa Schwanninger, Klaus Marquardt, Didi Schütz, Rene Bredlau,

Claudius Link and Ed Fernandez.

Thanks to Iris Groher for providing feedback on earlier version of this

paper. I also want to thank my EuroPLoP 2009 shepherd Michael Stal for

his repeated useful feedback.

References
[1] http://www.softwareproductlines.com/introduction/introduction.html

[2] http://en.wikipedia.org/wiki/Feature_model

[3] Klaus Pohl, Günter Böckle, Frank van der Linden, Software Product Line

 Engineering. Foundations, Principles, and Techniques,

 http://www.amazon.de/Software-Engineering-Foundations-Principles-

 Techniques/dp/3540243720

[4] http://en.wikipedia.org/wiki/Domain-specific_language

E5 - 12

[5] http://www.pure-systems.com/pure_variants.49.0.html

[6] http://www.biglever.com/solution/product.html

[7] http://www.autosar.org/

[8] http://en.wikipedia.org/wiki/Aspect-oriented_programming

[9] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael

 Stal, Pattern Oriented Software Architecture, Vol 1,

 http://www.amazon.com/Pattern-Oriented-Software-Architecture-System-

 Patterns/dp/0471958697

