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Abstract 

We have previously described a “language” consisting of more than seventy patterns.  This 

language is intended to support the development of reliable embedded systems: the particular 

focus of the collection is on systems with a time triggered (TT) system architecture.  

  

The present paper has a focus on techniques for converting an event-triggered (ET) system to 

an equivalent TT system.   

 

The introduction to this paper describes the approach that we have taken to migrate from an 

ET to a TT architecture, and the motivation for making such a change.  The core of the paper 

then goes on to describe some new patterns which represent the first parts of what is intended 

to be a small pattern collection.   
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Introduction 

We have previously described a “language” consisting of more than seventy patterns, which 

will be referred to here as the “PTTES Collection” (see Pont, 2001).  This language is 

intended to support the development of reliable embedded systems: the particular focus of the 

collection is on systems with a time triggered (TT) system architecture.  Work began on these 

patterns in 1996, and they have since been used in a range of industrial systems, numerous 

university research projects (e.g. see Kurian and Pont, 2005; Phatrapornnant and Pont, 2006; 

Short and Pont, 2007; Bautista-Quintero and Pont, 2008; Gendy and Pont, 2008; Hughes and 

Pont, 2008) as well as in undergraduate and postgraduate teaching on many university 

courses. 

 

Our focus throughout this work has been on systems with a “time-triggered architecture”, the 

main alternative to which is an “event triggered architecture”.  We distinguish between these 

two alternatives in as shown in Figure 1 below: 

 

 

Figure 1: One way of distinguishing between time-triggered (TT) and event-triggered (ET) 

software architectures in a system design.   

We assume that - in a static TT system - we always know (i) when the next interrupt will 

occur, and (ii) exactly what the system will do in response to this interrupt.  At the other 

extreme, we have dynamic ET systems: in such designs we assume that (i) we never know 

when the next interrupt will occur, and (ii) that we do not know exactly what the system will 

do in response to this interrupt.  In reality, many systems lie somewhere between these two 

extremes.   

When and why should you migrate? 

Our underlying assumption is that, in most cases, making a system “more TT” is likely to 

make it easier to predict how the system will behave and will – therefore – improve reliability.   
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If you‟d like further information about the differences in behaviour between ET and TT 

systems, Short et al, 2008 describe, in detail, the results from a 4-year study which compared 

ET and TT architectures when used in a multi-processor automotive system.  In summary, the 

results demonstrated that ET systems had a greater failure rate.  For systems which are not 

safety related (for example, simple consumer products), we find that the greatest single 

benefit obtained through the use of TT architectures is a reduction in testing times. 

 

Organisation of this paper 

We have structured this paper in the form of a new (abstract) pattern (EVENTS TO TIME 

(TTC)), two new design patterns (BUFFERED OUTPUT and POLLED INPUT), plus two pattern 

implementation examples (RS 232 DATA TRANSFER and SWITCH INTERFACE). 

 

Please note that EVENTS TO TIME (TTC) describes conversion to one possible TT architecture 

(“TTC”) provides a single tasking system architecture.  In the future we will explore 

conversions to a range of different TT architectures.  
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EVENTS TO TIME (TTC) 
{abstract pattern} 

Context 

 You and / or your development team have programming or design experience with “event-

triggered and / or pre-emptive” (ET/P) system architectures: that is, architectures which 

may involve use of conventional real-time operating system (RTOS) and / or multiple 

interrupt-service routines (linked to different interrupt sources) and / or task pre-emption. 

 You are in the process of creating or upgrading an embedded system, based on a single 

processor. 

 You already have at least a design or prototype for your system based on some form of 

ET/P architecture. 

 Because predictable and highly-reliable system operation is a key design requirement, you 

have opted to employ a “time-triggered co-operative” (TTC) system architecture in your 

system, if this proves practical. 

Problem 

How can you convert event triggered / pre-emptive designs and code (and mindsets) to allow 

effective use of a TTC scheduler as the basis of your embedded system? 

Background 

If we were forced to sum up the difference between “embedded” and “desktop” systems in a 

single word we‟d say “interrupts”.   

 

Event triggered behaviour in systems is usually achieved through the use of such interrupts.  

The system is designed to handle interrupts associated with a range of sources (e.g. switch 

inputs, CAN interface, RS-232, analogue inputs, etc).  Each interrupt source will have an 

associated priority.  Each interrupt source will also require the creation of a corresponding 

“interrupt service routine” (ISR): this can be viewed as a short task which is triggered 

“immediately” when the corresponding interrupt is generated.   

 

Creating such (ET/P) systems is – on the surface at least – straightforward.  However, 

challenges often begin to arise (in non-trivial designs) at the testing stage.  It is generally 

impossible to determine what state the system will be in when any interrupt occurs, which 

makes comprehensive testing almost impossible.   

 

A time-triggered system also requires an understanding of interrupts, but the operation is 

fundamentally different.  Of particular concern in this pattern is a “time-triggered co-

operative” (TTC) architecture which supports single- tasking system. In such systems only 

one task is active at any point in time: this task runs to completion and then return control to 

the scheduler.  At the heart of a TTC system is a cooperative scheduler which determines 

when the tasks in the system will be executed: once the tasks start running they “run to 
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completion”: they cannot be pre-empted by another task.  In such a system, there is only a 

single interrupt source (usually a periodic timer “tick”): this is used to drive the scheduler.   

Solution 

Here‟s what you need to do to migrate to a TTC design: 

 You need to ensure that only a single – periodic - timer interrupt is enabled (all other 

interrupt sources will be converted to flags, which will be polled as required).   

 You have to determine an appropriate “tick interval” for your system (that is, you need to 

determine how frequently the timer interrupts need to take place).   

 You have to convert any ET ISRs into periodic tasks and add these to the schedule.   

 You need to deal – cleanly – with any “long tasks” (that is, tasks which may have an 

execution time greater than your chosen tick interval. 

 

To illustrate part of the translation process consider a simple ET system running two tasks, X 

and Y.  These tasks are invoked by separate interrupts and implemented by associated ISRs.  

Table 1 illustrates one alternative TTC system, implemented using a standard TTC scheduler 

(Pont, 2001). 

 

 

Events 

 

Time 

void main(void) 

   { 

   X_init(); 

   Y_init(); 

   EA = 1 ; // Enable all interrupts 

 

   while(1) 

      { 

      PCON |= 0x01; 

      } 

   } 

 

void X_ISR(void) interrupt IEIndex 

   { 

   } 

 

void Y_ISR(void) interrupt IEIndex 

   { 

   } 

 

void main(void) 

   { 

   SCH_Init(); // Set up the scheduler 

   X_Init(); 

   Y_Init(); 

 

   // Add tasks to scheduler 

   SCH_Add_Task(X_Update(), 0, 100); 

   SCH_Add_Task(Y_Update(), 20, 200); 

  

   // Start the scheduler 

   SCH_Start(); 

   while(1) 

      { 

      SCH_Dispatch_Tasks(); 

      } 

   } 

 

 

Table 1: Converting a system from Event triggered pre-emptive to Time triggered Cooperative 
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Dealing with long tasks 

To deal with   the problem of long task, we need to find an elegant way of splitting up long 

tasks (which are called infrequently) into a series of much shorter tasks (called frequently).  

The pattern BUFFERED OUTPUT [later in this paper] describes a solution to this problem. 

 

As “TTC” allows only single interrupt to be enabled in the system , we need to convert all 

other interrupt sources to flags , and we need to “poll” (that is, check periodically) to see if 

these flags have been set.  The pattern POLLED INPUT [later in this paper] describes how we 

can achieve this. 

Related patterns and alternative solutions 

The PTTES collection 

The PTTES collection (Pont, 2001) describes, in detail, a range of techniques which can be 

used to implement embedded systems with TTC architecture.  This book can now be 

downloaded (free of charge) from the following WWW site: 

http://www.tte-systems.com/books/pttes  

TT Schedulers 

The pattern TT SCHEDULER* provides relevant background information on tasks, basic 

scheduling concepts and the situations in which it may be appropriate to use a TTC scheduler 

in your application. 

Reliability and safety implications 

When compared to pre-emptive schedulers, co-operative schedulers have a number of desirable 

features, particularly for use in safety-related systems (Allworth, 1981; Ward, 1991; Nissanke, 

1997; Bate, 2000).   

 

For example, Nissanke (1997, p. 237) notes: “[Pre-emptive] schedules carry greater runtime 

overheads because of the need for context switching––storage and retrieval of partially 

computed results. [Co-operative] algorithms do not incur such overheads. Other advantages of 

[co-operative] algorithms include their better understandability, greater predictability, ease of 

testing and their inherent capability for guaranteeing exclusive access to any shared resource 

or data”.   

 

Allworth (1981, pp. 53–54) also notes: “Significant advantages are obtained when using this 

[co-operative] technique.  Since the processes are not interruptable, poor synchronisation does 

not give rise to the problem of shared data. Shared subroutines can be implemented without 

producing re-entrant code or implementing lock and unlock mechanisms”. 

 

                                                
*    Wang, H., M. J. Pont, et al. (2007). Patterns which help to avoid conflicts over share  resources in time-  

       triggered embedded systems which employ a pre-emptive schedule the 12th European Conference on  

       Pattern Languages of Programs (EuoPLoP 2007),Irsee, Germany 

http://www.tte-systems.com/books/pttes
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V0N-4BWM353-1&_user=123215&_coverDate=05%2F31%2F2004&_rdoc=1&_fmt=full&_orig=search&_cdi=5651&_sort=d&_docanchor=&view=c&_acct=C000010181&_version=1&_urlVersion=0&_userid=123215&md5=f76db914fd7e9d695247a96856e7fe2e#bib3
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Although not the main focus of this pattern, the advantages of a TT(C) approach also apply in 

distributed systems: see, for example, Scarlett and Brennan (2006). 

Overall strengths and weaknesses 

 Use of TTC architecture tends to result in a system with highly predictable patterns of 

behaviour. 

 Inappropriate system design using this approach can result in applications which have a 

comparatively slow response to external events. 

Examples 

In applications where systems have been designed using event-triggered architecture it is 

occasionally later found to be necessary for higher reliability to migrate to time-triggered 

architectures.  One such example is found in a recently published article (Turley, 2009).  The 

article has mentioned the changes in the architecture design Sony Electronics have done to 

improve the performance. It states  

 

“Given high packet rates Sony was hoping for, frequent interrupts turned from being a 

necessity to being a problem. In their experience, most network stacks are interrupt driven, 

especially from the hardware interface when it needs servicing.  As data rates climb, these 

interrupts (and their attendant context switching) become so frequent that the overhead 

overwhelms the actual task.  To fix this, the team has decided to switch from an interrupt 

driven to a software polled design. The resulting efficiency was dramatic”. 

 

This pattern can be applied to a variety of systems from drive by x-wire systems to simple 

control systems where performance and reliability is an important issue. 
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BUFFERED OUTPUT 
{design pattern} 

Context 

 You are applying the pattern EVENTS TO TIME (TTC) 

 You need to deal – cleanly – with a “long task” (that is, a task which may have an 

execution time greater than your chosen tick interval. 

 You need to send a significant amount of data between your processor / system and an 

external device: the data transfer process will take some time. 

Problem 

How can you structure the data-transfer tasks in your application in a manner which is 

compatible with TTC architecture? 

Background 

We illustrate the need for the present pattern with an example. 

 

Suppose we wish to transfer data to a PC at a standard 9600 baud.  Transmitting each byte of 

data, plus stop and start bits, involves the transmission of 10 bits of information (assuming a 

single stop bit is used).  As a result, each byte takes approximately 1 ms to transmit. 

 

Now, suppose we wish to send this information to the PC: 
 

Current core temperature is 36.678 degrees 

 

If we use a standard function (such as some form of printf()) the task sending these 42 

characters will take more than 40 milliseconds to complete.  In a system supporting task pre-

emption, we may be able to treat this as a low-priority task and let it run as required.  This 

approach is not without difficulties (for example, if a high-priority task requires access to the 

same communication interface while the low-priority task is running).  However, with 

appropriate system design we will be able to make this operate correctly under most 

circumstances. 

 

Now consider the equivalent TTC design.  We can‟t support task pre-emption and a long data-

transmission task (around 40 ms) is likely to cause significant problems.  More specifically, if 

this time is greater than the system tick interval (often 1 ms, rarely greater than 10 ms) then 

this is likely to present a problem as shown in Figure 2. The RS-232 task is a “long task” has 

duration greater than the system tick and so is missing the next tick intervals. 
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Figure 2: A schematic representation of the problems caused by sending a long character string 

on an embedded system.  In this case, sending the massage takes 42 ms while the System tick 

interval is 10 ms. 

Perhaps the most obvious way of addressing this issue is to increase the baud rate; however, 

this is not always possible, and - even with very high baud rates - long messages or irregular 

bursts of data can still cause difficulties. 

 

More generally, the underlying problem here is that the data transfer operation has a duration 

which depends on the length of the string which we wish to submit.  As such, the worst-case 

execution time (WCET) of the data transfer task is highly variable (and, in a general case, 

may vary depending on conditions at run time).  In a TTC design, we need to know all WCET 

data for all tasks at design time.  We require a different system design. As Gergeleit 

and Nett (2002) have noted “ Nearly all known real-time scheduling approaches rely on the 

knowledge of WCETs for all tasks of the system.” The known WCET of tasks will be helpful 

for developers in designing the offline schedule and preventing task overrun. 

Solution 

Convert a long data-transfer task (which is called infrequently and may have a variable 

duration) into a periodic task (which is called comparatively frequently and which has a very 

short – and known – duration). 

 

A BUFFERED OUTPUT consists of three key components: 

 A buffer (usually just an array, implemented in software) 

 A function (or small set of functions) which can be used by the tasks in your system to 

write data to the array. 

 A periodic (scheduled) task which checks the buffer and sends a block of data to the 

receiving device (when there are data to send). 

 

Figure 3 below provides an overview of this system architecture.  All data to be sent are first 

moved to a software buffer (a very fast operation).  The data is then shifted – one block at a 

time – to the relevant hardware buffer in the microcontroller (e.g. 1 byte at a time for a 

UART, 8 bytes at a time for CAN, etc): this software-to-hardware transfer is carried out every 

1ms (for example), using a (short) periodic task. 

 

Time

Rs-232 Task

System ‘ticks’
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Figure 3: An overview of the BUFFERED OUTPUT architecture. 

From Figure 3, it should be noted that the long task  “RS-232 task “ in Figure 2 has been 

replaced by two short (high frequency) tasks, as shown in Figure 4: 

 

 

Figure 4: Long “RS-232” task is now transformed into two short tasks 

Hardware resource implications 

In most cases, the CPU requirements for BUFFERED OUTPUT are very limited, provided we 

take reasonable care at the design stage.  For example, if we are sending message over a CAN 

bus and we know that each message takes approximately 0.15 ms to transmit; we should 

schedule the data transmission task to check the buffer at an interval > 0.15 ms.  If we do this, 

the process of copying data from the software buffer to the (CAN) hardware will take very 

little time (usually a small fraction of a millisecond).   

 

For very small designs (e.g. 8-bit systems) the memory requirements for the software buffer 

can prove significant.  If you can‟t add external memory in these circumstances, you will need 

to use a small buffer and send data as frequently as possible (but see the comment above). 

 

In some cases, hardware support can help to reduce both memory requirements and processor 

load.  For example, if using UART-based data transmission, UARTs often have 16-byte 

hardware buffers: if you have these available, it makes sense to employ them. 

Portability 

This technique is generic and highly portable.   
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Reliability and Safety Issues 

 Special care must be taken while defining buffer length, the data transfer should not cause 

any buffer overflow 

 Applications that involve high amount of data transfer like video and DSP applications or 

data acquisition systems the use of buffer might not be a viable solution. 

Overall strengths and weaknesses 

 Use of buffered output  is an easy solution for faster data transfer from a task running in 

an embedded application  

 One has to be very careful while defining the buffer length, inappropriate buffer 

definitions may cause buffer overflow and data loss. 
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RS-232 DATA TRANSFER (BUFFERED OUTPUT) 
{pattern implementation example} 

Context 

 You need to transmit data from your embedded processor using “RS-232”. 

 You wish to transmit the data using a BUFFERED OUTPUT [this paper]. 

 Your chosen implementation language is C. 

 Your chosen implementation platform is 8051 family of microcontrollers. 

Problem 

How can you implement a BUFFERED OUTPUT in C for the 8051 family of microcontrollers? 

Background 

RS232 is a standard asynchronous protocol used for serial communication between the 

processor and the peripherals; it is character oriented and is intended to be used with single 8-

bit blocks of data. To transmit a byte of data over a serial link the data frame consists of a start 

bit to indicate start of transmission, the data itself(5 to 8 bits) and one or more stop bits to 

indicate the end of data block. RS232 can operate at different baud rates ranging from value 

of 75 to 330,000, however a baud rate of 9600 (a value lies in mid of the range) is 

recommended for safe use in our context.  

Solution 

Use of Buffered output can greatly reduce the time for data transfer task as compared to 

printf() function. The printf() function sends data immediately to UART. As a result the 

duration of the transmission is usually too long. The pattern buffered output makes use of 

an intermediate software buffer (character array) in between. Sending data to buffer is a 

fast operation. Our code library of RS232 data transfer as shown in Listing 1 replaces the 

printf() function. A brief functionality of each function is shown in Table 2: 

 
 

Function Functionality 

PC_LINK_IO_Write_String_To_Buffer() This function copies a null terminated string to 

the character buffer. The contents of the buffer 

then passed over a serial link. 
PC_LINK_IO_Write_Char_To_Buffer() Stores a character in the 'write' buffer, ready 

for later transmission. 
PC_LINK_IO_Get_Char_From_Buffer() Retrieves a character from the (software) buffer, if 

one is available. 
PC_LINK_IO_Update() Checks for characters in the UART (hardware) 

receive buffer and sends next character from 

the software transmit buffer. 
 

Table 2: RS-232 code library functions descriptions 
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void PC_LINK_IO_Write_String_To_Buffer(const char* const STR_PTR) 

   { 

   tByte i = 0; 

 

   while (STR_PTR[i] != '\0') 

      { 

      PC_LINK_IO_Write_Char_To_Buffer(STR_PTR[i]); 

      i++; 

      } 

   } 

 

void PC_LINK_IO_Write_Char_To_Buffer(const char CHARACTER) 

   { 

   // Write to the buffer *only* if there is space 

   if (Out_waiting_index_G < TRAN_BUFFER_LENGTH) 

      { 

      Tran_buffer[Out_waiting_index_G] = CHARACTER; 

      Out_waiting_index_G++;      

      } 

   else 

      { 

      // Write buffer is full 

      // Increase the size of TRAN_BUFFER_LENGTH 

      // or increase the rate at which UART 'update' function is called  

      // or reduce the amount of data sent to PC 

      Error_code_G = ERROR_USART_WRITE_CHAR; 

      } 

   } 

 

char PC_LINK_IO_Get_Char_From_Buffer(void) 

   { 

   char Ch = PC_LINK_IO_NO_CHAR; 

 

   // If there is new data in the buffer 

   if (In_read_index_G < In_waiting_index_G) 

      { 

      Ch = Recv_buffer[In_read_index_G]; 

 

      if (In_read_index_G < RECV_BUFFER_LENGTH) 

         { 

         In_read_index_G++; 

         } 

      } 

    

   return Ch; 

   } 

 

void PC_LINK_IO_Update(void) 

   { 

    

   // Deal with transmit bytes here 

 

   // Is there any data ready to send? 

   if (Out_written_index_G < Out_waiting_index_G) 

      { 

      PC_LINK_IO_Send_Char(Tran_buffer[Out_written_index_G]);      

 

      Out_written_index_G++; 

      } 

   else 

      { 

      // No data to send - just reset the buffer index 

      Out_waiting_index_G = 0; 

      Out_written_index_G = 0; 
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      } 

 

   // Only dealing with received bytes here 

   // -> Just check the RI flag 

   if (RI == 1) 

      { 

      // Flag only set when a valid stop bit is received,  

      // -> data ready to be read into the received buffer 

 

      // Want to read into index 0, if old data has been read 

      // (simple ~circular buffer) 

      if (In_waiting_index_G == In_read_index_G) 

         {  

         In_waiting_index_G = 0; 

         In_read_index_G = 0; 

         }  

       

      // Read the data from USART buffer    

      Recv_buffer[In_waiting_index_G] = SBUF; 

 

      if (In_waiting_index_G < RECV_BUFFER_LENGTH) 

         { 

         // Increment without overflowing buffer 

         In_waiting_index_G++; 

         } 

     

      RI = 0;  // Clear RT flag 

      } 

   

   } 

 

void PC_LINK_IO_Send_Char(const char CHARACTER) 

   { 

 

   tLong Timeout1 = 0; 

   tLong Timeout2 = 0; 

 

   if (CHARACTER == '\n')   

      { 

      if (RI)   

         { 

         if (SBUF == XOFF)   

            { 

            Timeout2 = 0; 

            do { 

               RI = 0; 

                 

               // Wait for uart (with simple timeout) 

               Timeout1 = 0; 

               while ((++Timeout1) && (RI == 0));   

 

               if (Timeout1 == 0) 

                  { 

                  // USART did not respond - error 

                  Error_code_G = ERROR_USART_TI; 

                  return; 

                  }  

 

               } while ((++Timeout2) && (SBUF != XON)); 

 

            if (Timeout2 == 0) 

               { 

               // uart did not respond - error 

               Error_code_G = ERROR_USART_TI; 

               return; 

               }  
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            RI = 0;  

            } 

         } 

 

      Timeout1 = 0; 

      while ((++Timeout1) && (TI == 0));   

 

      if (Timeout1 == 0) 

         { 

         // uart did not respond - error 

         Error_code_G = ERROR_USART_TI; 

         return; 

         }  

 

      TI = 0; 

      SBUF = 0x0d;  // output CR   

      } 

   

   if (RI)   

      { 

      if (SBUF == XOFF)   

         { 

         Timeout2 = 0; 

 

         do { 

            RI = 0; 

 

            // Wait for USART (with simple timeout) 

            Timeout1 = 0; 

            while ((++Timeout1) && (RI == 0));   

 

            if (Timeout1 == 0) 

               { 

               // USART did not respond - error 

               Error_code_G = ERROR_USART_TI; 

               return; 

               }  

 

            } while ((++Timeout2) && (SBUF != XON)); 

       

         RI = 0;  

         } 

     } 

 

   Timeout1 = 0; 

   while ((++Timeout1) && (TI == 0));   

 

   if (Timeout1 == 0) 

      { 

      // USART did not respond - error 

      Error_code_G = ERROR_USART_TI; 

      return; 

      }  

 

   TI = 0; 

 

   SBUF = CHARACTER; 

   } 

 

 

Listing 1: RS232 Data transfer code Library using Buffered output 
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POLLED INPUT 
{design pattern} 

Context 

 You are applying the pattern EVENTS TO TIME(TTC) 

 You need to poll inputs from the available interfaces (switches, keypads, sensors, ADCs) 

etc 

Problem 

How do I build a TT system which is equivalent of my ET system such that it can respond to 

all (external/internal) input interfaces? 

Background 

Designing a TT system requires more planning efforts. In a “TTC” design the possible 

occurrence and the execution times of all the tasks needs to be known in advance. The 

designer has to plan a task schedule which must execute all the tasks periodically at their 

allocated time intervals.  This effort makes the system more predictable. In contrast to this, in 

an event triggered system the schedule executes the tasks dynamically as the events arrive 

thus no guarantee that they meet any timeliness constraints.  This is the reason that ET 

designs are not recommended for safety critical applications.  The event triggered behaviour 

in systems is achieved through the use of interrupts.   To support these interrupts, Interrupt 

Service Routines (ISRs) are provided. Whenever an interrupt occurs it stops the currently 

running task and ISR executes to respond to the interrupt. This “context switching” is an 

overhead that sometimes raised serious complications in systems. 

The abstract pattern EVENTS TO TIME [this paper] provides more relevant background 

information. 

 

Solution 

A POLLED INPUT should meet the following specification: 

 

 It should include a periodic task which polls for the occurrence of the event. 

 The period of the above task should be set to some value less than or equal to 

minimum inter-arrival time* of the event in question. 

 The interrupt associated with this event should not be enabled.  In fact only one 

interrupt associated with the timer responsible for generating system “ticks” should be 

enabled. 

 

                                                
* In ET systems the exact arrival time of events is not known so we assume a minimum distance between the 

arrivals of two consecutive events. 
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Hardware resource implications 

Different interfaces have different implications under various circumstances. Reading a 

switch input imposes minimal loads on CPU and memory resources whereas scanning the 

keypad interface imposes both a CPU and memory load.  

Reliability and safety issues 

One major concern here in migrating from event triggered to time triggered is to make 

systems more predictable. Characteristic for the time triggered architecture is the treatment of 

(physical) real time as a first order quantity (Kopetz and Bauer 2002) this implies to the fact 

that time triggered systems must be very carefully designed, the task activation rates must be 

fixed according to the system dynamics i.e. how frequent an input needs to be polled. 

Portability 

This technique is generic and highly portable.   

Overall strengths and weaknesses 

 A flexible technique, programmer can easily do changes in code for example if auto repeat 

is required in case of SWITCH INTERFACE 

 It is simple and cheap to implement. 

 Provides no protection against out of range inputs or electrostatic discharge (ESD) 

 More processor utilization in polling for tasks which are unlikely to occur, because the 

tasks are always tested for readiness whether actually enable or not. 
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SWITCH INTERFACE (POLLED INPUT) 
{pattern implementation example} 

Context 

 You need to respond to a switch press from your embedded application 

 Your chosen implementation language is C 

 Your chosen implementation platform is NXP LPC2000 family of ARM7-based 

microcontrollers 

Problem 

How can you implement POLLED INPUT for a simple switch press in C for NXP LPC2000 

family of microcontrollers? 

Background 

 Simple push button switches as given in Figure 5 are very common in embedded 

applications. Pressing them causes a voltage change from Vcc to 0 volts at the input port. (For 

a detailed explanation see pattern SWITCH INTERFACE in PTTES (Pont 2001) 

 

 

Figure 5: A simple push button switch with no internal pull-up 

 

Note: There could be various types of switches (reset, on-off, multistate) for simplicity we are 

considering here only the simple interface push button switch with debounce support. 

 

In an ideal world the change in voltage would take the form as shown in Figure 6: 

 

Figure 6: The voltage signal resulting from switch 
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In practical all mechanical switch contacts bounce (that is, turn on and off, repeatedly, for a 

short period of time) after the switch is closed or opened. As a result the actual waveform 

looks more like that shown in Figure 6 (bottom). 

 

Solution 

Polling a switch for an input involves the following steps: 

1. A relevant port pin is read and if a switch depression is detected it will be read again 

after their debounce period (provided in datasheets) to confirm the detection. 

2. If it is confirmed that switch is pressed a task is run to respond to the switch press. 

 

A simple code example illustrating simple switch detection and debounce system is given in 

Listing 2. This example demonstrates a simple switch interface with debounce support. The 

interface is implemented as a task which periodically checks a switch pin to see if it is pressed 

or not. 

 
/*------------------------------------------------------------------*- 

 

   switch.c (v1.00) 

 

  ------------------------------------------------------------------*/ 

 

   Simple switch detection and debounce system. 

 

#include "main.h" 

#include "switch.h" 

#include "port.h" 

#define PORTS (1) 

 

 

// ------ Private variable definitions ------------------------------ 

 

static uint32_t gSwitchListeners[PORTS],gLastState[PORTS],gCurState[PORTS]; 

 

// ------ Private constants ---------------------------------------- 

 

//Allows NO or NC switch to be used (or other wiring variations) 

 

#define SW_PRESSED (0) 

 

/*------------------------------------------------------------------*- 

 

  Switch_Pin_Read() 

 

  Checks the read register bits locally to avoid excess overhead. 

 

-*------------------------------------------------------------------*/ 

 

#define Switch_Pin_Read(l,m,n) \ 

   ((((l) ? (IOPIN1) : (IOPIN0)) & n) ? (SW_PRESSED) : (1 - SW_PRESSED)) 

 

 

/*------------------------------------------------------------------*- 

 

  Switch_Init() 

 

  Initialising the switches. 
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-*------------------------------------------------------------------*/ 

 

void Switch_Init() 

   { 

   uint8_t port; 

    

   for (port = 0; port < PORTS; port++) 

      { 

      gSwitchListeners[port] = 0; 

      gLastState[port] = 0; 

      gCurState[port] = 0; 

      } 

 

   //Initialise the output LED pin (LED_pin2) to indicate  

   //switch is pressed 

   PORT_Pin_GPIO_Set_Direction(LED_pin2, 1); 

   PORT_Pin_Write(LED_pin2, 1); 

 

 

   //Add Button_Pin to the switch listener 

   Switch_AddListener(Button_Pin); 

} 

/*------------------------------------------------------------------*- 

 

  Switch_AddListener() 

 

  Adds a switch to the listen list for pins. 

 

-*------------------------------------------------------------------*/ 

 

void Switch_AddListener(uint16_t pin) 

   { 

   // Get the port 

   uint8_t 

      port = (uint8_t)(pin / 100); 

   if (port < PORTS) 

      { 

      pin %= 100; 

      gSwitchListeners[port] |= 1 << pin; 

      PORT_Pin_Set_Mode(pin, 0, 0); 

 

      PORT_Pin_GPIO_Set_Direction(pin, 0); 

 

      } 

   } 

 

/*------------------------------------------------------------------*- 

 

  Switch_RemoveListener() 

 

  Removes a switch from the listen list for pins. Does not remove the pin's mode. 

 

-*------------------------------------------------------------------*/ 

 

void Switch_RemoveListener(uint16_t pin) 

   { 

   // Get the port 

   uint8_t 

      port = (uint8_t)(pin / 100), bit; 

   if (port < PORTS) 

      { 

      pin %= 100; 

      bit = ~(1 << pin); 

      gSwitchListeners[port] &= bit; 

      gLastState[port] &= bit; 

      gCurState[port] &= bit; 

      } 
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   } 

*------------------------------------------------------------------*- 

 

  Switch_Update() 

 

Detects and debounces switch presses on hooked pins. Could be recorded VERY 

efficiently with direct HW access as this already has the bits to check in the pin 

registers. 

 

-*------------------------------------------------------------------*/ 

void Switch_Update() 

   { 

   // Used for debugging with RapidiTTy 

   T0TCR = 0; 

   T0TCR = 1; 

    

   uint8_t  port, pin; 

   uint32_t temp, bit; 

     for (port = 0; port < PORTS; port++) 

      { 

      //Check for switches on this port 

       

      if ((temp = gSwitchListeners[port])) 

         { 

         pin = port * 100; 

         bit = 1; 

         do 

            { 

            if (temp & bit) 

               { 

               if (Switch_Pin_Read(port, pin, bit)) 

                  { 

                  if (!(gCurState[port] & bit) && (gLastState[port] & bit)) 

                     { 

                     // Was held before, debounced 

                     // Call the callback 

                     gCurState[port] |= bit; 

                     Switch_Pressed(pin); 

                     } 

                  else 

                     { 

                     // Start debouncing 

                     gLastState[port] |= bit; 

                     } 

                  } 

               else 

                  { 

                  if ((gCurState[port] & bit) && !(gLastState[port] & bit)) 

                     { 

                     // Was released before, debounced 

                     // Call the callback 

                     gCurState[port] &= ~bit; 

                     Switch_Released(pin); 

                     } 

                  else 

                     { 

                     // Start debouncing 

                     gLastState[port] &= ~bit; 

                     }           } 

               temp &= ~bit; 

               } 

            pin++; 

            bit <<= 1; 

            } 

         while (temp); 

         } 

      } 
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   // Used for debugging with RapidiTTy 

   T0TCR = 0; 

   T0TCR = 1; 

   } 

 

/*------------------------------------------------------------------*- 

 

  Switch_Pressed() 

 

  Called when a switch is first pressed and debounced. 

  Passes the full pin id of the activated input. 

 

-*------------------------------------------------------------------*/ 

 

void Switch_Pressed(uint16_t pin) 

   { 

   if (pin == Button_Pin) 

      { 

      // Set to 0 to turn LED on 

       PORT_Pin_Write(LED_pin2, 0); 

       

      } 

   } 

/*------------------------------------------------------------------*- 

 

  Switch_Released() 

 

  Called when a switch is released. Passes the full pin id of the activated input. 

 

-*------------------------------------------------------------------*/ 

void Switch_Released(uint16_t pin) 

   { 

   if (pin == Button_Pin) 

      { 

      // Set to 1 to turn LED off 

       PORT_Pin_Write(LED_pin2, 1); 

       

      } 

   } 

/*------------------------------------------------------------------*- 

 

  Switch_IsPressed() 

 

  Checks if a given pin is currently pressed and debounced. 

 

-*------------------------------------------------------------------*/ 

uint8_t Switch_IsPressed(uint16_t pin) 

   { 

   uint8_t 

      port = pin / 100; 

   if (port > PORTS) 

      { 

      return 0; 

      } 

   return (gCurState[port] & (1 << (pin % 100))) ? (1) : (0); 

   } 

/*------------------------------------------------------------------*- 

  ---- END OF FILE ------------------------------------------------- 

-*------------------------------------------------------------------*/ 

 

Listing 2: Simple switch press and debounce system using Polled Input 
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