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Abstract. Database management has undergone more than four decades of 

evolution producing vast range of research and extensive array of technology 

solutions. The database research community and software industry has 

responded to numerous challenges resulting from changes in user requirements 

and opportunities presented by hardware advances. The relational database 

approach as represented by SQL databases has been particularly successful and 

one of the most durable paradigms in computing. Most recent database 

challenges include internet-scale databases – databases that manage hundreds of 

millions of users and cloud databases that use novel techniques for managing 

massive amounts of data. In this paper we review the evolution of database 

management systems over the last four decades and then focus on the most 

recent database developments discussing research and implementation 

challenges presented by modern database applications.  
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1   Introduction 

Databases, in particular relational databases, are a ubiquitous part of today’s 

computing environment. Database management systems support a wide variety of 

applications, from business to scientific and more recently various types of internet 

and electronic commerce applications. Database management systems (DBMS) are a 

core technology in most organizations today and run mission-critical applications that 

banks, hospitals, airlines, and most other types of organizations rely on for their day 

to day operation. Over the last three decades relational DBMS technology has proven 

to be highly adaptable and has evolved to accommodate new application requirements 

and the ever-increasing size and complexity of data. But, there are indications that 

some of the recently emerging data-intensive applications (e.g. internet searches) 

cannot be satisfactorily addressed using existing DBMS technology, and some experts 

argue that significant innovation is needed (a new database paradigm) to overcome 

the limitations of the current generation of database technology.  

The combination of inexpensive and high capacity storage and the prevalence of 

digital devices (digital cameras, sound recorders, video recorders, mobile phones, 
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RFID readers, and various types of sensors) is creating a deluge of digital 

information. According to a recent article in the Economist [1] the amount of data 

collected by various sensors, computers, and devices is growing at a compound 

annual rate of 60%. A 2008 study by International Data Corporation (IDC) predicted 

that over a thousand exabytes of digital data will be generated in 2010 [2]. Scientific 

applications in astronomy, earth sciences, etc. (e-science) tend to produce massive 

amounts of data; well-documented examples include the Large Hadron Collider at 

CERN [3] that generates 40 terabytes of data every second. Storing and analyzing 

such volumes of data represents an insurmountable challenge for the current 

generation of database technology. Another relatively recent development that may 

require a revision of current database paradigms are internet-scale applications (e.g. 

search engines, social networking applications, cloud computing services, etc.) that 

typically process petabytes of data, use thousands of servers, and  serve millions of 

users that demand sub-second access to information. Companies like Google, 

Facebook, Amazon, and eBay manipulate petabytes of data every day.  For example, 

Facebook handles 20 petabytes of data, managing 20 billion photographs in 4 

different resolutions, growing by 2 billion photographs per month. The Facebook 

database is serving 600,000 photographs per second for a user base of 300 million 

active users  [4]. Google manages vast amounts of semi-structured data: billions of 

URLs with associated internet content, crawl metadata, geographic objects (roads, 

satellite images, etc.), and hundreds of terabytes of satellite image data, with hundreds 

of millions of users and thousands of queries per second [5]. The scale and level of 

functionality required for such “big data” applications has not been anticipated by 

commercially available DBMSs, and almost invariably internet companies were 

forced to develop their own database solutions. But, even more traditional database 

applications manage increasingly large volumes of data; for example the retail chain 

WalMart handles more than one million transactions per hour, and manages databases 

with more than 2.5 petabytes of data.  

It is estimated that structured data constitutes only about 5% of the total volume of 

generated data, with the rest of this “digital universe” in semi-structured or 

unstructured form, making it more difficult to manage and to extract meaningful 

information from it. This massive increase in the volume and complexity of data is 

challenging available database management techniques and technologies, forcing a re-

evaluation of the direction of database research. Some fundamental questions arise, 

including what constitutes a database application. Can applications that search 

petabytes of unstructured data (e.g. Web pages) using thousands of servers working in 

parallel be classified as database applications?  

In this paper we firstly review the past achievements of database research and 

technology solutions (section 2), and then discuss the research challenges and 

opportunities created by new types of database applications (section 3). The final 

sections (section 4) are our conclusions.  
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2   Evolution of Database Technology 

While the origin of commercial database management systems can be traced to 

hierarchical and CODASYL (Conference on Data Systems Languages) databases of 

1960s and 1970s it was the emergence of relational DBMS during the 1980s that 

started a revolution in data management. The simplicity and elegance of the relational 

model proposed by E.F. Codd in 1970 [6] resulted in unprecedented volume of 

research activity and the emergence of highly successful relational DBMS (RDBMS) 

implementations. Relational databases are a rare example of a theoretical model 

preceding and guiding the implementation of technologies. Codd is often credited 

with turning the previously black art of data management into an engineering 

discipline providing a blueprint for the design and implementation of databases and 

the foundation of modern database technology. The basic idea of the relational model 

is to represent data as two-dimensional tables with well-defined properties and to use 

of a high-level query language for data access. This remarkably simple set of ideas 

based on the underlying relational theory had a major impact on the development of 

database technology over the following two decades. Relational databases solved two 

major interrelated problems of the earlier database approaches. The first achievement 

was to de-couple the database from application programs by providing effective 

support for data independence. Second, and equally important achievement of the 

relational approach was to free database application developers from the burden of 

programming navigational access to database records by introducing a non-procedural 

query language.   

A number of different relational languages were proposed following Codd’s 

original description of the relational model, notably a language called QUEL (Ingres 

DBMS) developed at University of California at Berkeley, and IBM’s Structured 

Query Language (SQL) developed at the IBM San Jose Research Laboratory. The 

next major milestone in the evolution of relational databases was the acceptance by 

ANSI (American National Standards Institute) of a subset of IBM’s SQL as the first 

version of the standard relational database language - SQL86.  Although SQL86 

lacked many important features of the relational model as originally proposed by 

Codd, including key aspects of the model such as referential integrity and domains, it 

quickly became universally accepted as the database language for relational DBMS 

systems. The shortcomings in SQL86 were largely rectified in the subsequent releases 

of the SQL standard (SQL89, SQL92) and SQL has evolved from a relatively simple 

language into a comprehensive database language implemented in all significant 

RDBMS products today. Many of the enhancements incorporated into SQL over the 

last two decades were integral features of the relational model omitted from the earlier 

standard specifications, other features, such as triggers, role-based security, and stored 

procedures were retrofitted into the standard as a result of their widespread use in 

commercial products.  

Given the computing environment of the 70s and early 80s, relational databases 

were initially used for relatively simple business applications running on large 

mainframe computers; data used in such traditional business applications (e.g. 

financial and banking) can be structured into tables and stored in a relational database 

with relative ease. The main concern of early RDBMS implementations was to ensure 

adequate performance, in particular for online transaction processing (OLTP) 
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applications. Initially, relational DBMSs had inferior performance when compared 

with earlier DBMS approaches as SQL uses expensive join operations and relies on a 

query optimizer to determine how to access data records instead of using faster 

pointer-based navigational access implemented in hierarchical and CODASYL 

databases. For that reason the main use of relational DBMSs was initially confined to 

decision support applications that did not involve users waiting for query results 

online. However, as computer hardware became more powerful and optimization 

techniques improved, relational systems became the technology of choice in most 

application environments, including those with stringent response time requirements.  

Relational DBMSs proved to be extraordinarily successful in taking advantage of 

new computing platforms, architectures and environments. The first significant 

demonstration of the adaptability of relational databases was the extension of the 

relational model to cover distributed database environments. The origin of distributed 

relational database was IBM’s research project System R* (continuation of the Project 

R) which addressed distributed database issues including distributed query 

optimization, distributed transactions, and catalog management. Following on from 

the System R* database researchers solved most of the problems that concern running 

applications transparently across multiple databases. Most commercial RDBMSs 

incorporate a whole range of distributed database features, including reliable (two-

phase commit) distributed transactions, optimized distributed queries, and advanced 

replication facilities. Similarly, relational DBMSs were among the first technologies 

to support applications with large number of users in distributed client/server 

environments. This was largely due to the non-procedural nature of SQL, which made 

it possible for database queries to be packaged and send over a computer network as 

messages from a client application to a database server. This type of client/server 

interaction later supplemented with remotely executed database stored procedures 

using RPC calls (Remote Procedure Calls) enabled the implementation of scalable 

client/server database applications.  

Relational DBMSs were quick to take advantage of the new multiprocessor 

architectures and provide support for parallel execution of SQL queries. Query 

decomposition, necessary for parallel execution is made possible by the declarative 

nature of the SQL language enabling queries to be decomposed into well-defined sub-

queries that run in parallel across multiple processors. Parallel SQL was implemented 

for shared memory, shared-disk, and shared-nothing parallel architectures with 

excellent performance and scalability. Both distributed and parallel databases benefit 

from the theoretical underpinning provided by the relational model. As a result of 

such developments relational databases became the fastest and most scalable 

commercially available DMBS systems. 

2.1 Objects and Databases  

RDBMs have shown remarkable ability to take advantage of new computing 

platforms and continuously improve functionality, performance and scalability to a 

point where relational databases became the dominant database technology in 1990s, 

supporting mission-critical environments with tens of thousands of users. However, 

by mid 90s it became quite clear that the simple data structures and a limited set of 
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data types that characterize SQL92 relational DBMSs constitute a significant 

drawback when implementing new types of applications that use complex data. 

Modern database applications are characterized by four categories of requirements: 

 

(1) need to store and manage large multimedia data objects – images, sound 

clips, videos, maps, etc. 

(2) requirement for database data types to mirror application-level data types, 

including the ability for users to define their own data types as needed by 

specific applications  

(3) representation of complex relationships, including composition and 

aggregation, e.g. multi-level component assemblies used in CAD (Computer-

Aided Design) and similar applications  

(4) need for seamless integration with object-oriented programming languages; 

with Java in particular 

 

Such requirements are particularly evident in applications that use multimedia data, 

GIS (Geographical Information Systems), e-science and web applications. Web 

applications typically contain a whole range of multimedia data types such as textual 

information, images, video and audio clips, and fragments of program code. Many 

modern applications require specialized data types, for example GIS applications 

involve spatial data types (e.g. points, lines, polygons, etc.) and spatial operations 

(e.g. distance, area, etc.). The initial solution adopted in relational databases to 

accommodate non-traditional data (e.g. multimedia, GIS, etc.) was to allow the 

storage of large objects (LOBs) as columns in database tables. However, using this 

approach multimedia data is treated as unstructured large granularity objects – the 

data type of the object is not explicitly recognized by the database type system and 

only very limited processing of the object data is supported.   

In addition to the need to store large and complex objects in the database, there is 

another important requirement that motivated the introduction of object support at the 

database level. Most modern applications are developed using object-oriented 

programming languages (i.e. Java, C++, C#) and close integration of the database 

language SQL with object-oriented programming languages reduces impedance 

mismatch (i.e. differences between the type systems, error handling, etc.) with 

corresponding improvements in programmer productivity. This requirement, while 

not new gained urgency with the emergence of Java as a de facto standard 

programming language for internet applications, making it imperative to ensure that 

Java objects can be easily mapped into database objects.  

While there was a wide agreement within the database research community about 

the need to support objects at the database level, there was a considerable divergence 

of opinion about how this should be achieved. Two competing approaches emerged: 

the revolutionary approach, seeking to develop a completely new fully object-oriented 

database solution [7], and the evolutionary approach which took the path of adding 

object features to SQL. In early 90s a number of database management systems were 

developed ground-up as pure object DBMS (ODBMS) systems with the goal to 

address the limitations of relational databases by adopting a completely new database 

model with support for objects with unique identifiers, methods, inheritance, 

encapsulation, polymorphism and other features commonly associated with object 
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systems. The basic idea was to build on top of object-oriented programming 

languages and provide persistence for application objects achieving homogeneous 

programming environment with close correspondence between application objects 

and objects stored in the database. This (revolutionary) approach popularized by the 

Object Database Management Group (ODMG) resulted in the proposal for a new 

database model and Object Query Language (OQL). As the commercial ODBMS 

products appeared on the market and attempted to capture market share from the 

established relational DBMSs, many regarded object-oriented databases as the next 

generation of database technology destined to supersede relational databases in much 

the same way as relational technology superseded earlier databases approaches. 

However, this radical attempt to break with the past has been largely unsuccessful as 

ODBMSs have not been able to match RDBMS technology in a number of important 

aspects, including reliability, scalability and level of standardization. Even more 

importantly, while popular in some niche application areas (e.g. CAD/CAM), object 

databases have not been able to address the wider requirements of mainstream 

corporate applications. 

As a response to ODBMS enthusiasts a number of influential database researches 

formed a Committee for Advanced DBMS Function with the objective to define the 

requirements for the next generation database systems, and published the Third-

Generation Database Systems Manifesto [8] as a blueprint for future database 

development. While recognizing the limitations of relational databases, this important 

effort argued that the next generation database systems should subsume the existing 

(second generation) DBMSs and preserve the benefits of relational databases, in 

particular non-procedural access and data independence. The essential point of 

difference from the advocates of object-oriented databases was the insistence on 

natural evolution from the existing relational DBMSs technology, and the 

implementation of object identity, abstract data types, inheritance, and other object 

features as relational database extensions.  

The evolutionary approach resulted in a new breed of hybrid Object-Relational 

database technology. In retrospect, Object-Relational databases to a very large extent 

achieved the original objective of the Third-Generation Database Systems Manifesto, 

to preserve the benefits of relational database and at the same time to take advantage 

of object features. However, bringing object features into SQL did not turn out to be 

an easy task, and the evolutionary approach has struck numerous challenges and 

produced a number of changes in direction. At a superficial level there seems to be a 

good match between relations and objects, more specifically the concepts of relational 

rows and object instances. But, at closer inspection there are deep conflicts between 

the two models. For example, encapsulation, a key feature of object systems is 

difficult to reconcile with a database query language, as encapsulated data cannot be 

queried directly and requires access via methods, imposing unacceptable performance 

overheads. Various attempts at the unification of relations and objects using concepts 

such as ADTs (Abstract Data Types) have been proposed and discussed extensively 

by the ISO WG3 (Working Group 3), the working group responsible for database 

language standardization, but failed to gain the necessary wide support. After more 

than five years of intensive work by the WG3 Working Group on Database 

Languages some of the early ambitious attempts to incorporate object-orientation into 

the SQL standard were significantly scaled down. The resulting SQL:1999 standard is 
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a very pragmatic solution, which addresses the main limitation of relational databases 

by enabling data type extensibility, providing the basis for a rich database type system 

[9]. The mainstream database vendors (Oracle, IBM, and others) have strongly 

endorsed the object-relational approach and actively participated in the development 

of SQL:1999, and most leading DBMS products support object-relational features of 

SQL:1999. 

2.2 XML and Databases  

Another challenge to the dominance of relational databases that echoed the efforts to 

incorporate object support into databases in the 90s arose approximately a decade 

later with the emergence of XML. XML became the de facto standard formatting 

language for semi-structured data and has been widely adopted in e-business 

applications as a standard data interchange language and a core standard for Web 

Services and related technologies. The availability of a standard XML query language 

XQuery [10], and a standard schema definition language XML Schema [11], and 

numerous other XML tools and languages (XPath, SAX, DOM, XQL, etc.) provided a 

basis for the implementation of XML DBMSs. This lead to the development of a 

number of research prototypes, e.g. Lore [12], XTABLES [13], SilkRoute [14], and 

some commercial products, e.g. Tamino [15].  

Native XML Databases (NXD) that store XML documents in their native format 

and use XML query languages for retrieval were regarded by some as a new 

generation of DBMS technology destined to supersede relational DBMS. However, 

similar to ODBMS, NXD did not replace relational DBMS and remain a solution in 

niche application domains, mainly in document and content management applications. 

A detailed analysis of the benefits and limitations of NXD databases is available in 

[16].  

As an alternative to the Native XML Database approach, ORDBMSs (e.g. Oracle) 

provide a repository functionality called XML native type to store XML documents in 

the database without any conversion, and support updates, queries, indexing, and 

views on this data type. Another option available in ORDBMS is to convert XML 

data into a relational or object-relational form (so called shredding) and store the 

resulting rows of data in corresponding typed tables. The SQL/XML specification 

[17] that is a part of the SQL:2003 standard defines the XML data type and provides 

mapping rules between XML schemas and SQL structures, as well as functions that 

support manipulation of XML data within SQL queries.   

3   Database Research Directions 

As per our discussion in the previous section (section 2), database research and 

associated standardization activities have successfully guided the development of 

database technology over the last four decades and SQL relational databases remain 

the dominant database technology today. This effort to innovate relational databases 

to address the needs of new applications is continuing today. Recent examples of 

database innovation include the development of streaming SQL technology that is 
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used to process rapidly flowing data (“data in flight”) minimizing latency in Web 2.0 

applications [18], and database appliances that simplify DBMS deployment on cloud 

computing platforms [19].  It is also evident from the above discussion that the 

relational database approach has proven to be extraordinarily durable, and has adapted 

to new hardware architectures as well as new application requirements, successfully 

subsuming both object-oriented and XML paradigms. Database research has played 

an important role in solving key research problems and facilitating rapid technology 

transfer making DBMS technology one of the most successful efforts in computer 

science [20]. However, it is equally evident that database research is facing major new 

challenges due to explosion of data, novel usage scenarios, and a major shift in 

computing architectures. A recent meeting of leading database experts characterized 

the present situation as a “turning point in database research” and identified a number 

of trends that necessitate re-evaluation of research directions, and at the same time 

present new research opportunities. “The Claremont Report on Database Research” 

[21] identified the following trends: 

 

(1) Big Data (applications that process very large volumes of data, e.g. Web 

search, e-science, etc) 

(2) Data analysis as a profit center (increasing number of companies where the 

main business is data) 

(3) Ubiquity of structured and unstructured data (mainly originating from 

various Web sources) 

(4) Developer demands (as adoption of open source relational DBMS 

accelerates, developers demand more intuitive programming models) 

(5) Architectural shifts in computing (emergence of cloud computing services 

brings about a fundamental change in software architecture towards parallel 

clusters of computers; shift away from increasing CPU clock speed to 

increasing the number of processor cores) 

 

The report goes on to identify the following research opportunities: 

 

(1) Re-design of architecture of database engines, to overcome the limitations of 

current relational databases (RDBMS provide poor price/performance for 

many popular applications, including text indexing, serving web pages, and 

media delivery)  

(2) Declarative Programming for Emerging Platforms (support for data 

independence, declarative programming and cost-based optimization for new 

programming models, e.g. MapReduce) 

(3) The Interplay of Structured and Unstructured Data (managing a rich collection 

of structured, semistructured and unstructured data, spread over many 

repositories in the enterprise and on the Web) 

(4) Cloud Data Services (improving manageability of cloud databases, Federated 

cloud architectures, etc.) 

(5) Mobile Applications and Virtual Worlds (manage massive amounts of diverse 

user created data, and provide real-time services) 
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The report notes that a number of additional research areas were not included as 

these are the subject of ongoing investigation, and includes a summary of past reports 

in the appendix. Setting agenda for database research is a challenging task, and forty 

years of database research and development illustrates both the successes and failures 

of such efforts. Database management is a very pragmatic field and many promising 

research ideas were discarded as they did not provide any practical benefits, or turned 

out not to be a database problem (e.g. deductive databases [22], expert databases [23], 

etc.).   

4   Conclusions 

The Claremont Report on Database Research made an interesting observation noting 

that the database research community has doubled in size over the last decade (as 

measured by the number of publications and number of database related conference 

sessions), but at the same time there was a perception that the quality of reviews (and 

consequently, the quality of publications) has been decreasing over time. 

Notwithstanding this massive research effort most significant recent innovations came 

out of research labs of various companies (e.g. Google, Facebook, etc.), who are 

facing urgent challenges of unprecedented size and complexity of data, and millions 

of users running many thousands of transactions per second. These developments 

have not been fully anticipated by the database research community and interestingly 

not even by the traditional database vendors whose products offerings were dwarfed 

by the scale and complexity of new application domains.   

Recent rise of the NoSQL movement whose proponents regard the existing 

relational DBMSs as inefficient, complex and expensive, and favor open source non-

relational solutions, demonstrates this point. For example, the MapReduce 

programming model developed by Google [24], and its open source clone Hadoop 

[25] initially used to simplify the construction of inverted indexes, has been applied to 

text processing and numerous other tasks that require parallel computation over a very 

large set of data. MapReduce is designed to automatically parallelize and execute a 

program on a large cluster of commodity machines (typically, tens of thousands of 

machines), managing data partitioning, task scheduling, inter-machine 

communication, and recovery from machine failures. The combination of Hadoop 

with Hypertable [26] (an open source version of Google BigTable [26]), enables the 

concurrent execution of programs on tens of thousands of machines processing 

petabytes of data on a daily basis [27].  

These types of applications were traditionally the domain of parallel databases, and 

a number of commercial database machines (e.g. Teradata, Oracle Exadata, etc.) have 

been available for some time with proven performance characteristics for processing 

very large data volumes. The comparison of MapReduce and parallel databases has 

been the subject of a recent publication [28], concluding that “using MapReduce to 

perform tasks that are best suited for DBMSs yields less than satisfactory results”, and 

that MapReduce resembles more Extract-Transform-Load (ETL) system rather than a 

DBMS, and therefore is a complimentary technology rather than competing with 

DBMS. But, these conclusions are being hotly disputed by MapReduce proponents 
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who claim that the scalability benefits of this approach will eventually “relegate 

relational DBMS to the status of legacy technology”. Database vendors are taking 

different approach to adopting the open source version of MapReduce (Hadoop), 

some implementing this technology in their products (e.g. Teradata, and IBM), while 

others (e.g. Microsoft) adopting a more cautious attitude [29].  

Other vendors, notably Netezza have developed massively parallel database 

machines (Data Warehouse Appliances) that perform data filtering directly on the 

disk so that only the relevant portions of the data are propagated to the SQL database, 

gaining significant performance improvements over more traditional parallel database 

architectures. Additional functionality such as data analytics functions can also be 

implemented directly in hardware, achieving further performance gains [30]. Such 

approaches are using standard SQL database technology and are betting on further 

advances in computer hardware (larger and less expensive computer memory and 

more powerful CPUs as predicted by Moore’s Law), and innovative, massively 

parallel database architectures to overcome the challenges of big data.  

A key to understanding present and likely future database developments is a firm 

view of what constitutes the database paradigm, i.e. defining the scope of database 

research problems. Many of the recent challenges (in particular those faced by 

internet companies such as Google, Facebook, etc.), concern situations where three 

key elements that normally constitute a database environment are not present. While 

these applications are clearly data-intensive, there is no database (data is not loaded 

into a database), there is no database schema (data is mostly semi-structured and 

sparse), and there is no support for database queries (application involve mainly text 

search over semi-structured data). It is therefore difficult to regard such applications 

as database applications. Learning from history we can observe that a similar situation 

arose in the 1990s with Object-Oriented databases and later with XML databases, and 

conclude that there is little benefit in applying database solutions to problems that do 

not fit the database paradigm.  
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