
Fast Fibonacci Encoding Algorithm?

Jǐŕı Walder, Michal Krátký, and Jan Platoš

Department of Computer Science
VŠB–Technical University of Ostrava

17. listopadu 15, Ostrava–Poruba, Czech Republic

{jiri.walder,michal.kratky,jan.platos}@vsb.cz

Fast Fibonacci Encoding Algorithm?

Jǐŕı Walder, Michal Krátký, and Jan Platoš

Department of Computer Science
VŠB–Technical University of Ostrava

17. listopadu 15, Ostrava–Poruba, Czech Republic

{jiri.walder,michal.kratky,jan.platos}@vsb.cz

Abstract. Data compression has been widely applied in many data pro-
cessing areas. Compression methods use variable-length codes with the
shorter codes assigned to symbols or groups of symbols that appear in
the data frequently. Fibonacci code, as a representative of these codes,
is often utilized for the compression of small numbers. Time consump-
tion of encoding as well as decoding algorithms is important for some
applications in the data processing area. In this case, efficiency of these
algorithms is extremely important. There are some works related to the
fast decoding of variable-length codes. In this paper, we introduce the
Fast Fibonacci encoding algorithm; our approach is up-to 4.6× more
efficient than the conventional bit-oriented algorithm.

1 Introduction

Data compression has been widely applied in many data processing areas. Vari-
ous compression algorithms have been developed for processing text documents,
images, video, etc. In particular, data compression is of the foremost importance
and has been well researched as it is presented in excellent surveys [13, 18].

Various codes have been applied for data compression [14]. In contrast with
fixed-length codes, statistical methods use variable-length codes, with the shorter
codes assigned to symbols or groups of symbols that have a higher probability of
occurrence. People who design and implement variable-length codes have to deal
with these two problems: (1) assigning codes that can be decoded unambiguously
and (2) assigning codes with the minimum average size.

In some applications, a prefix code is required to code a set of integers whose
length is not known in advance. The prefix code is a variable-length code that
satisfies the prefix property. As we know, the binary representation of integers
does not satisfy this condition. In other words, the size n of the set of integers
has to be known in advance for the binary representation since it determines the
code size as 1 + blog2 nc. Fibonacci coding is distinguished as a suitable coding
for a compression of small numbers [13].

? Work is partially supported by Grants of GACR No. P202/10/0573 and SGS, VŠB–
Technical University of Ostrava, No. SP/2010138.

J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 72–83, ISBN 978-80-7378-116-3.

Fast Fibonacci Encoding Algorithm 73

The time consumption of decompression is more critical than the time of
compression; therefore, efficient decompression algorithms were studied in many
works for the decompression of data structures [15, 6, 16] or text files [12, 3]. In
the case of physical implementation of database systems, retrieval of compressed
data structure’s pages may be more efficient than retrieval of uncompressed
pages due to the fact that the cost of decompression is lower than the cost of
page accessing in the secondary storage [16, 2].

Since fast decoding algorithms have not yet been known, variable-length
codes have not been used to compression of data structures, and, in generally,
in the data processing area. The first effort of the fast decoding algorithm for
Fibonacci codes of order≥ 2 has been proposed in [7, 8]. We studied fast decoding
algorithms of various variable-length codes in our previous work [17]. The fast
encoding algorithms for the Fibonacci code yet not has been studied. In the
case of data structures, pages are decompressed during every reading from the
secondary storage into the main memory or items of a page are decompressed
during every access to the page. If insert or update operations are considered,
data compression becomes more significant.

In this article, we present Fast encoding algorithm of the Fibonacci of order
2 code. In Section 2, we describe the conventional Fibonacci of order 2 encod-
ing algorithm. In Section 3, we provide a theoretical background of the fast
encoding algorithm based on Fibonacci right shift and Encoding-Interval table.
In Section 4, experimental results are presented and the proposed algorithm is
compared to the conventional approach. In the last section, we conclude this
paper and outline future works.

2 Fibonacci Coding

In this section, the theoretical background of Fibonacci of order 2 is briefly
described. This universal code introduced by Apostolico and Fraenkel in [1] is
based on the Fibonacci numbers [10]. The sequence of Fibonacci numbers is
defined as follows:

Fi = Fi−1 + Fi−2 , for i ≥ 1,

where F−1 = F0 = 1.

Definition 1. (Fibonacci binary encoding and computation of its value)
Let F (n) = a0a1a2 . . . ap be the Fibonacci binary encoding of a positive inte-

ger n. The value of the Fibonacci binary encoding, denoted V (F (n)), is defined
as follows:

V (F (n)) = n =
p∑

i=0

aiFi (ai ∈ {0, 1}, 0 ≤ i ≤ p)

In the Fibonacci binary encoding, each bit represents a Fibonacci number Fi.
Such a number has the property of not containing any sequence of two consec-
utive 1-bits [1]. This property is utilized for the construction of the Fibonacci

74 Jǐŕı Walder, Michal Krátký, Jan Platoš

code F(n) of number n. Fibonacci code F(n) maps n onto a binary string so
that the string ends with a sequence of two consecutive 1-bits. The Fibonacci
codes for some integers are shown in Table 1.

Table 1. Examples of Fibonacci codes for some integers

n F (n) F(n)

1 1 11
2 0 1 011
3 0 0 1 0011
4 1 0 1 1011
5 0 0 0 1 00011
6 1 0 0 1 10011
7 0 1 0 1 01011
8 0 0 0 0 1 000011
16 0 0 1 0 0 1 0010011
32 0 0 1 0 1 0 1 00101011

i 0 1 2 3 4 5 6
Fi 1 2 3 5 8 13 21

In Algorithm 1, we see how the conventional bit-oriented algorithm encodes
a positive integer n into a Fibonacci code. This algorithm outputs the encoded
number into Fn and its length into LFn. Due to the fact that bits of Fibonacci
coding are encoded in the reverse order we must use the temporary Fn variable.
Bits in the variable are right-shifted in each inner loop.

3 Fast Fibonacci Encoding Algorithm

The main issue of the conventional encoding algorithm is handling encoded num-
bers in the bit-by-bit manner. To design a fast encoding algorithm, encoded
numbers are separated into segments larger than one bit. Similar principles have
been utilized in fast decoding algorithms [17, 8, 9]. The separation of encoded
numbers utilizes the Fibonacci right shift operation introduced in [17, 9]. Indi-
vidual segments are then encoded by the precomputed Encoding-Interval table.
When all individual segments are encoded, they are put together into the com-
plete code. The Fibonacci right shift and Encoding-Interval table are presented
in Section 3.1. The fast algorithm is explained in Section 3.2.

3.1 Fibonacci Shift Operation and Encoding-Interval Table

The Fibonacci shift operation introduced in [17, 9] is required for the bit manip-
ulation in fast encoding and decoding algorithms. In this paper, we introduce
an efficient computation of this operation.

Fast Fibonacci Encoding Algorithm 75

input : n, a positive integer
output: Fn, encoded number by Fibonacci code of order 2 with LFn length

p ← 0 ;1

while Fp ≤ n do p ←p +1;2

p ← p − 1;3

Fn ← 1;4

LFn ← 1;5

while p ≥ 0 do6

Fn ← Fn << 1;7

if Fp ≤ n then8

Fn ← Fn | 1;9

n ← n − Fp;10

end11

LFn ←LFn +1;12

p ← p − 1;13

end14

Algorithm 1: Conventional encoding algorithm for the Fibonacci code of
order 2

Definition 2. Fibonacci shift operation
Let F (n) = a0a1a2 . . . ap be a Fibonacci binary encoding, k be an integer,

k ≥ 0. The k-th Fibonacci left shift F (n) <<F k is defined as follows:

F (n) <<F k =

k︷ ︸︸ ︷
00 . . . 0 a0a1a2 . . . ap

Fibonacci right shift is defined as is follows:

F (n) >>F k = akak+1ak+2 . . . ap

We utilize k-Fibonacci right shifts for the separation of numbers into seg-
ments. We do not need all k-Fibonacci right shifts, we only need multiplies of
the segment size S. If we consider 32 bit-length integers than the length of the
largest code is L(F (232)) = 46; therefore, k ∈ {0, 8, 16, 24, 32, 40} for S = 8 and
k ∈ {0, 16, 32} for S = 16.

The conventional approach to the calculation of Fibonacci right shift works
in the following steps:

1. Compute F (n) for the n value according to Definition 1.
2. Binary-shift the bits of F (n) by k: F (n) >> k.
3. Compute the value of the shifted number F (n) >> k according to Defini-

tion 1.

The Fibonacci right shift operation is time consuming since the Fibonacci
value computation in Steps 1 and 3 requires a summarization of Fibonacci num-
bers for 1-bits; therefore, we utilize the Encoding-Interval table for the fast
computation.

76 Jǐŕı Walder, Michal Krátký, Jan Platoš

The Encoding-Interval table allows separating of numbers into segments with
the k-th Fibonacci right shift and then direct translation of segments into Fi-
bonacci codes. The size of the Encoding-Interval table depends on the size of
the segment S. The segment size is usually one byte, i.e. S = 8. When we use
larger segments the length of the Encoding-Interval table grows; on the other
hand, the encoding becomes faster. There are FS−1 codes which can fit into one
segment; it means F8 − 1 = 54 codes which can fit into the 8 bit-length segment
and F16 − 1 = 2, 583 codes for the 16 bit-length segment.

Therefore, the total size of the Encoding-Interval table is:

table length = (FS − 1)×
⌈

2b

S

⌉

where b is the number of bits of the largest code.
Each line of the Encoding-Interval table is then built for all F (n) codes which

can fit into one segment and for all k-th Fibonacci right shifts. Each line includes
the following values (see Table 3 for some examples):

– F (n) – the Fibonacci code stored in the segment.

– L(F (n)) – the bit-length of the Fibonacci code

– k – the parameter k of the Fibonacci right shift operation

– n – the value stored in the actual segment n = V (F (n))

– 〈nmin, nmax〉 – an interval of numbers before the shift operation; this number
is formally defined as follows: ∀x ∈ 〈nmin, nmax〉 : V (F (x) >> F k) = n.

This table can be used for the computation of the k-th Fibonacci right shift.
For each x value we need to pass through the table to find the correct line
where x ∈ 〈nmin, nmax〉. In this line we can directly read the shifted value
V (F (x)) >>F k = n and also the corresponding Fibonacci code F (n). Ob-
viously, we need to pass only lines with correct k-th Fibonacci right shift.

To be able to compute a shifted value as fast as possible, we must consider
the properties of the Fibonacci code. Let Fi denote the i-th term of the Fibonacci
sequence then we can express each Fibonacci number by

Fi =
∥∥bφi

∥∥

where φ is the well-known golden ratio [11] and a is the coefficient of the domi-
nating term [9]. In the case of Fibonacci of order 2 the value φ = 1+

√
5

2 ≈ 1.6180
and b = 3

√
5+5
10 [4]. The Fibonacci sequence calculated according to this formula

is shown in Table 2.

Fast Fibonacci Encoding Algorithm 77

Table 2. Examples of the Fibonacci sequence calculation

i aφi
‚‚aφi

‚‚

0 1.17 1
1 1.89 2
2 3.07 3
3 4.96 5
4 8.02 8
5 12.98 13
6 21.01 21
7 33.99 34
8 55 55
9 89 89
10 144 144

If we utilize this property, Fibonacci right shift F (n) >>F k is approximately
calculated by the following equation:

a0a1a2 . . . ap >>F k =
p∑
i=0

aiFi >>F k =
p∑
i=0

ai
∥∥bφi

∥∥ >>F k

≈
p∑
i=0

aibφ
i >>F k =

pP
i=0

aibφ
i

φk =
p∑
i=0

aibφ
i−k ≈

p∑
i=0

ai
∥∥bφi−k

∥∥ =

p∑
i=0

aiFi−k =
p−k∑
i=−k

ai−kFi =
p−k∑
i=0

ai−kFi =akak+1ak+1 . . . ap.

The shift operation result is not calculated precisely due to the fact that we
ignore twice rounds. We can simply rewrite the approximate computation of the
Fibonacci right shift as follows:

V (F (n) >>F k) ≈
∥∥∥∥
V (F (n))

φk

∥∥∥∥

The maximum error of the estimation is 1; by experiments we found, when
the estimation misses, it is overestimated; therefore, the correct value is less
by 1. To check if the estimation is correct we compare the estimation with a
range in the Encoding-Interval table. If the check fails, we simply subtract the 1
value and receive the correct right shift value. In other words, this estimation
decreases the linear complexity of the table scan to at most two attempts.

Example 1. First, let us consider V (F (n)) = n = 265; F (n) = 001010100001.
We calculate the estimation of the 8-th Fibonacci right shift as follows:

V (F (265) >>F 8) ≈
∥∥∥∥

265
φ8

∥∥∥∥ =
∥∥∥∥

265
1.61808

∥∥∥∥ =
∥∥∥∥

265
46.9787

∥∥∥∥ = ‖5.4493‖ = 5

78 Jǐŕı Walder, Michal Krátký, Jan Platoš

Table 3 shows some lines of the Encoding-Interval table for the 8-th Fibonacci
right shift. After checking the 5-th line of the table we see that the value lies in
the interval < 233; 287 >; therefore, V (0001) = 5 is the correct value of the 8-th
Fibonacci right shift.

Second, let us consider V (F (n)) = n = 280; F (n) = 000001010001. We
calculate the estimation:

V (F (280) >>F k) ≈
∥∥∥∥

280
46.9787

∥∥∥∥ = ‖5.9601‖ = 6

After checking the interval in the 6-th line of the Encoding-Interval table we
see that the value not lies in the interval < 288; 321 >; therefore, the estimation
is not correct and the correct value is less by 1. The correct value of the 8-th
Fibonacci right shift of 280 is V (0001) = 5.

Table 3. Examples of the Encoding-Interval table for the 8-th and 16-th Fibonacci
right shifts

n F (n) L(F (n)) k nmin nmax n F (n) L(F (n)) k nmin nmax

1 1 1 8 55 88 1 1 1 16 2,584 4,180
2 2 2 8 89 143 2 2 2 16 4,181 6,764
3 4 3 8 144 198 3 4 3 16 6,765 9,348
4 5 3 8 199 232 4 5 3 16 9,349 10,945
5 8 4 8 233 287 5 8 4 16 10,946 13,529
6 9 4 8 288 321 6 9 4 16 13,530 15,126
7 10 4 8 322 376 7 10 4 16 15,127 17,710

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

27 73 7 8 1,275 1,308 27 73 7 16 59,898 61,494

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

46 149 8 8 2,173 2,206 46 149 8 16 102,085 103,681

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

3.2 Fast Fibonacci Encoding Algorithm

The fast encoding algorithm is shown in Algorithm 2. This algorithm utilizes the
previously proposed Encoding-Interval table denoted by EIT . Due to the fact
that the bits of the Fibonacci code are stored in the reverse order we need to write
the bits of segments in the reverse order as well. Encoded segments or their parts
are stored in a specific position of the result Fn by the SetV alueOfSegment
function.

In Algorithm 2, n is encoded by Fibonacci coding; the result is stored in
the Fn, the length is stored in the LFn. Short numbers with the code lower
than F8 are directly encoded by the Encoding-Interval table (see Lines 3–5).
For larger numbers we first need to find the maximal k of the Fibonacci right

Fast Fibonacci Encoding Algorithm 79

shift (see Line 7). After the number is separated with k-Fibonacci right shift, it
is encoded by the Encoding-Interval table and stored into the highest segment
with position k/8 (see Lines 8–10). In Line 11, we subtract the minimal range
of the encoded segment from the n. In Lines 12–20, all other segments except
the lower one are separated by Fibonacci right shifts and they are encoded by
the Encoding-Interval table. The length of the encoded number is increased by
the segment size in Line 19. The lowest segment is encoded in Line 21. Finally,
in Lines 23–24, the delimiter is put at the end of the encoded number.

input : n, a positive integer
output: Fn, number encoded by Fibonacci code of order 2 with the LFn

length

Fn ← 0 ;1

k ← 8 ;2

if n < Fk then3

LFn ← EIT[k][Number].LFn;4

SetValueOfSegment(Fn,0,EIT[k][Number].Fn);5

else6

while n < Fk+8 do k ← k +8;7

n ← n >>F k;8

LFn ← 8+ EIT[k].LFn;9

SetValueOfSegment(Fn,k/8,EIT[k][n].Fn);10

n ← n −EIT[k][n].Nmin;11

while k > 8 do12

k ← k −8;13

if n ≥Fk then14

n ← n >>F k;15

n ← n − EIT[k][n].Nmin;16

SetValueOfSegment(Fn,k/8,EIT[k][n].Fn);17

end18

LFn ←LFn +8;19

end20

SetValueOfSegment(Fn,0,EIT[k][Number].Fn);21

end22

SetBit(Fn,LFn,1);23

LFn ←LFn +1;24

Algorithm 2: Fast encoding algorithm for the Fibonacci code of order 2

Example 2. Encoding of the number 17327 is depicted in Figure 1. The value
of the Fibonacci code stored in all segments is V (F (17327)) = 17327. Encoding
of the highest segment is depicted in Figure 2(a). After the 16-th Fibonacci
right shift of the value F (17327), i.e. F (17327) >>F 16, we obtain the shifted
Fibonacci code F (7). The value after the shift is depicted in Line 3. It represents
the Segment 2 value. We directly access the line 7 of the Encoding-Interval table

80 Jǐŕı Walder, Michal Krátký, Jan Platoš

by the 16-th Fibonacci right shift and we directly find the code F (7) = 10 with
the length L(F (7)) = 4. The result is in the range 〈15127; 17710〉. The lower
bound of the range is depicted in Line 2. The value of Segments 0 and 1 is
obtained by subtracting the lower bound of the range from the V (F (17327))
number, i.e Segments 0 and 1 stores V (F (17327))− 15127 = V (F (2200)). This
encoding is carried out in Lines 8–11 of Algorithm 2.

1 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1

F()17327

0 0 0 0 01 0 1

F F(17327) >> 16= (7)F

Segment 1

10

LINE 1

LINE 2

LINE 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

F()15127

F()7

Segment 0

F()2200

Segment 2

(a)

1 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1

Segment 2

F(2)200

1 0 1 0 1 0 0 1

F F(2200) >> 8= (46)F

Segment 1

149

LINE 1

LINE 2

LINE 3

0 0 0 0 0 0 0 0 1 0 10 1 0 1 0

F()2173

F()46

Segment 0

F()27

(b)

Fig. 1. Example of Fast Fibonacci encoding

Further encoding is depicted in Figure 2(b). The value of the Fibonacci code
stored in Segments 0 and 1 is V (F (2200)) = 2200. After the 8-th Fibonacci
right shift of the value F (2200), i.e. F (2200) >>F 8, we obtain the shifted
Fibonacci code F (46). The value after the shift is depicted in Line 3. It rep-
resents the separated value from Segment 1. We directly access the line 46 of
the Encoding-Interval table by the 8-th Fibonacci right shift and we directly
find the code F (46) = 149 with the length L(F (46)) = 8. The result is in the
range 〈2173; 2206〉. The lower bound of the range is depicted in Line 2. The
value of Segment 0 is obtained by subtracting the lower bound of the range from
V (F (2200)) number, i.e Segment 0 includes V (F (2200)) − 2173 = V (F (27)).
This encoding is carried out in Lines 12–20 of Algorithm 2.

Fast Fibonacci Encoding Algorithm 81

The last Segment 0 with the value V (F (27)) is directly encoded into F (27) =
73 with the length L(F (27)) = 7 in Line 21 of Algorithm 2. We access the line
27 of the Encoding-Interval table for any shift to obtain this value, because we
do not need any following subtraction.

Finally, the 1-bit delimiter is added in position 8+8+L(F (7))+1 = 8+8+4 =
12 of the encoded number (see Lines 23–24 of Algorithm 2).

4 Experimental Results

The proposed Fast Fibonacci encoding algorithm has been tested and compared
with the conventional algorithm. The algorithms’ performance has been tested
for various test collections. The tests were performed on a PC with dual core
Intel 2.4GHz, 3 GB RAM using Windows 7 32-bit.

The test collections used in experiments have the same size: 10, 000, 000 num-
bers. The proposed algorithm is universal and it may be applied for arbitrary
numbers > 0. However, we worked with numbers ≤ 4, 294, 967, 295, it means the
maximal value is the value of the 32 bit-length binary number. Tested collections
are as follows:

– 8-bit – a collection of random numbers ranging from 1 to 255
– 16-bit – a collection of random numbers ranging from 256 to 65,535
– 24-bit – a collection of random numbers ranging from 65,536 to 16,777,215
– 32-bit – a collection of random numbers ranging from 16,777,216 to

4,294,967,295
– ALL - a collection of random numbers ranging from 1 to 4,294,967,295

Table 4. Fast Fibonacci encoding times and speedup ratios for different random col-
lections for conventional and fast algorithms with different segment sizes

Algorithm Conventional Fast S = 8 Fast S = 16
/ Time Time Speedup Time Speedup

Collection [ms] [ms] [times] [ms] [times]

8-bit 1,327 553 2.4 248 5.4
16-bit 2,399 889 2.7 547 4.4
24-bit 3,538 1,375 2.6 865 4.1
32-bit 4,539 1,829 2.5 992 4.6
ALL 4,547 1,808 2.5 992 4.6

Avg. 3,270 1,291 2.5 729 4.6

We performed tests for segment sizes S = 8 and S = 16. We ran each test 10
times and calculated average values. Results of all tests are depicted in Table 4
and Figure 2. The Fast Fibonacci encoding algorithm is approximately 2.6×
faster than the conventional approach for the segment size S = 8 and 4.6×

82 Jǐŕı Walder, Michal Krátký, Jan Platoš

faster for the segment size S = 16. The encoding times linearly increase with the
bit-length of encoded numbers but the speedup ratio is not influenced by this
increasing.

8-bit 16-bit 24-bit 32-bit ALL Avg
0

1,000

2,000

3,000

4,000

5,000

Encoding Times

Conventional Fast S=8 Fast S=16

[m
s]

(a)

8-bit 16-bit 24-bit 32-bit ALL Avg
0.0

1.0

2.0

3.0

4.0

5.0

6.0

Speedup Ratio

Speedup Ratio
S=8

Speedup Ratio
S=16

[ti
m

es
]

(b)

Fig. 2. (a) Encoding times for random collections and conventional and fast algorithms.
(b) Speedup ratios between conventional and fast algorithms for random collections.

5 Conclusion

In this paper, the fast encoding algorithm for the Fibonacci code of order 2
is introduced. We introduced the effective implementation of Fibonacci right
shift which is utilized by the encoding algorithm for separating integers into
segments. The segments are directly translated into the Fibonacci code by the
Encoding-Interval table. The improvement depends on the segment size used for
the separation of the encoded numbers. For the segment size S = 8 (it means
one byte), the Fast Fibonacci encoding is up-to 2.6× more efficient than the
conventional algorithm. For the larger segment of two bytes in size (it means S =
16), the proposed algorithm is up-to 4.6× more efficient than the conventional
algorithm. In our future work, we want to develop fast encoding algorithms for
other universal codes like Elias-delta [5], Fibonacci code of order 3 [1], and so
on.

References

1. A. Apostolico and A. Fraenkel. Robust Transmission of Unbounded Strings Using
Fibonacci Representations. IEEE Transactions on Information Theory, 33(2):238–
245, 1987.

2. R. Bača, J. Walder, M. Pawlas, and M. Krátký. Benchmarking the Compres-
sion of XML Node Streams. In Proceedings of the BenchmarX 2010 International
Workshop, DASFAA, Accepted. Springer-Verlag, 2010.

3. T. C. Bell and I. H. Witten. Text Compression. Prentice Hall, 1990.

Fast Fibonacci Encoding Algorithm 83

4. R. A. Dunlap. The Golden Ratio and Fibonacci Numbers. World Scientific Pub-
lishing Co. Pte. Ltd., 1997.

5. P. Elias. Universal Codeword Sets and Representations of the Integers. IEEE
Transactions on Information Theory, IT-21(2):194–203, 1975.

6. J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing Relations and Indexes.
In Proceedings of the 14th International Conference on Data Engineering, ICDE
1998, page 370, Los Alamitos, CA, USA, 1998. IEEE Computer Society.

7. S. T. Klein. Fast Decoding of Fibonacci Encoded Texts. In Proceedings of the
International Data Compression Conference, DCC’07, page 388, Washington, DC,
USA, 2007. IEEE Computer Society.

8. S. T. Klein and M. K. Ben-Nissan. Using Fibonacci Compression Codes as Al-
ternatives to Dense Codes. In Proceedings of the International Data Compression
Conference, DCC’08, pages 472–481, Washington, DC, USA, 2008. IEEE Com-
puter Society.

9. S. T. Klein and M. K. Ben-Nissan. On the Usefulness of Fibonacci Compression
Codes. Accepted in Computer Journal, 2009, 2009.

10. Leonardo of Pisa (known as Fibonacci). Liber Abaci. 1202.
11. M. Livio. The Golden Ratio: The Story of Phi, the World’s Most Astonishing

Number. Broadway, January 2003.
12. H. Plantinga. An Asymmetric, Semi-adaptive Text Compression Algorithm. In

Proceedings of the International Data Compression Conference, DCC 1994. IEEE
Computer Society, 1994.

13. D. Salomon. Data Compression The Complete Reference. Third Edition, Springer–
Verlag, New York, 2004.

14. D. Salomon. Variable-length Codes for Data Compression. Springer-Verlag, 2007.
15. H. Samet. Data Structures for Quadtree Approximation and Compression. Com-

munications of the ACM archive, 28(9):973–993, September 1985.
16. J. Walder, M. Krátký, and R. Bača. Benchmarking Coding Algorithms for the

R-tree Compression. In Proceedings of the Dateso 2009 Annual International
Workshop on Databases, Texts, Specifications and Objects, pages 32–43. CEUR
Workshop Proceedings, Volume: 471, 2009.

17. J. Walder, M. Krátký, R. Bača, J. Platoš, and V. Snášel. Fast Decoding Algorithms
for Variable-Lengths Codes. Submitted in Information Science, January, 2010.

18. I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes, Compressing and
Indexing Documents and Images, 2nd edition. Morgan Kaufmann, 1999.

