Reverse-engineering of XML Schemas:
A Survey”

Jakub Klimek and Martin Necasky

XML Research Group, Department of Software Engineering
Faculty of Mathematics and Physics, Charles University in Prague
Malostranské nameésti 25, 118 00 Praha 1
The Czech Republic
{klimek, necasky}@ksi.mff.cuni.cz

Abstract. As approaches to conceptual modeling of XML data become
more popular, a need arises to reverse-engineer existing schemas to the
conceptual models. They make the management of XML schemas easier
as well as provide means for accomplishing integration of various XML
data sources. Some methods for reverse-engineering of XML schemas
have been proposed and in this paper, they are compared using various
criteria such as used XML schema languages, level of user involvement,
number of XML schemas that can be covered by the conceptual model
or support for consecutive XML schema evolution. They are also eval-
uated according to their potential to be used as parts of a system for
management, evolution and integration of XML as a whole.

Keywords: XML, schema, reverse-engineering, conceptual modeling

1 Introduction

Today, XML [27] is a technology used in a wide variety of scenarios, from a
message format used by web services [7] to storage of data in databases [4]. As the
number of possible usages of XML grows, so does the need of easy management
of large numbers of XML data sources and their integration. There we can use
conceptual modeling of XML data. It allows a domain expert to model the
problem domain independently of the implementation (XML in our case) and
then create corresponding XML schemas, which are used to describe a structure
of XML documents.

A common situation today is that a company uses several XML formats
for various purposes and has these formats described by an XML schema. To
ease the process of managing those formats and schemas as they evolve in time,
the company can use a conceptual model such as [1,2,15, 16,19, 23], to which
the schemas would be connected. A problem usually arises when there is a new

* This work was supported in part by the Czech Science Foundation (GACR), grant
number P202/10/0573.

J. Pokorny, V. Snésel, K. Richta (Eds.): Dateso 2010, pp. 96-107, ISBN 978-80-7378-116-3.

Reverse-engineering of XML Schemas: A Survey 97

format that should be connected to the conceptual model, as most of the con-
ceptual models do not support this operation well enough. During the process of
connecting the new format to the conceptual model, the model may need to be
extended, if the format contains a concept that was not covered by the model.
A special case of this problem is, when the company does not have a conceptual
model at all, and wants to create it from the schemas which they already have
(they extend an empty model).

Therefore, an important aspect of the approaches used for conceptual mod-
eling of XML data is if and how we can create the model from existing XML
schemas (or connect a new schema to an existing model) and once we have it,
if we can use it for the management of evolution of our set of schemas. The
process of creating a conceptual model from existing XML schemas is what we
call Reverse-engineering of XML schemas.

In this paper, we compare and evaluate approaches for reverse-engineering
of XML schemas according to various criteria, including their usefulness as a
method that can be integrated into a system for management of evolution of
XML schemas.

1.1 Outline

The rest of this paper is structured as follows. In section 2, an introduction to
the frequently used techniques in this area is given. In section 3 we introduce
our framework for evolution and integration of XML schemas, against which the
approaches will be evaluated. Section 4 contains a description of our comparison
criteria. In section 5, we describe approaches to the problem, which reverse-
engineer XML schemas to various user-friendlier models. In section 6, approaches
to reverse-engineering to ontologies are described. In section 7 we summarize our
findings and section 8 concludes.

2 Terms

In this section we provide an introduction to basic techniques used widely in the
area of reverse-engineering of XML schemas.

2.1 XML schemas

In this paper, by XML schema language we mean one of the XML schema
languages such as DTD [27], XML Schema [28], Relax NG [6], Schematron [12]
etc. We state this because sometimes an XML schema gets confused with the
actual XML Schema language.

2.2 Model-Driven Architecture

Model-Driven Architecture (MDA) [17] is a general approach to modeling soft-
ware systems and can be profitably applied to data modeling as well. MDA

98 Jakub Klimek, Martin Necasky

distinguishes several types of models that are used for modeling at different
levels of abstraction. For this paper, two types of models are important. A
Platform-Independent Model (PIM) allows modeling data at the conceptual level.
A PIM diagram is abstracted from a representation of the data in concrete data
models such as relational or XML. A Platform-Specific Model (PSM) models
how the data is represented in a target data model. For each target data model
(such as XML), we need a special PSM that is able to capture its implementation
details. A PSM diagram then models a representation of the problem domain in
this particular target data model, it provides a mapping between the conceptual
diagram and a target data model schema.

2.3 UML class diagrams

A large number of approaches to reverse-engineering use UML class diagrams
as a PIM. Basically, it consists of classes representing concepts, associations
representing relations and attributes of classes, representing properties of the
concepts. For a more detailed description see [21, 22].

2.4 Schema matching

Most of the reverse engineering approaches use some methods of schema match-
ing. They include string comparisons, data type compatibility measurements,
structural similarity measurements and linguistic resources like thesauri and
dictionaries. These methods are surveyed in detail in [26, 10]. There is one ma-
jor difference between XML schema matching and reverse-engineering of XML
schemas to conceptual models. XML schema matching usually works with two
different XML schemas (written in XML schema languages) and the goal is to
find mappings of components of one schema to the components of the second
schema. On the other hand, reverse-engineering of XML schemas works with
one XML schema and optionally a conceptual model. The goal is either to cre-
ate the conceptual model when there is none, or to find appropriate mappings
of the XML schema components to the components of the model, which can be
written in e.g. UML, and therefore is of a whole different type.

3 Framework for evolution and integration of
XML schemas

In this section, we introduce our framework for evolution and integration of
XML schemas. It comprises six levels, each representing a different view of an
XML system and its evolution. The framework is depicted in Figure 1. The lowest
level, called extensional level, represents XML documents. Its parent level, called
operational level, represents operations over XML documents, i.e. XML queries.
The level above is called schema level and represents XML schemas that describe
the structure of the XML documents.

Reverse-engineering of XML Schemas: A Survey 99

Ontology
Level

Ontology

PIM diagram
PSM diagram i

Platform-Independent
Level

Platform-Specific

PSM diagram n

PSM diagram 1

Level

Schema XML schema 1 XML schemai XML schema n

Level (DTD, XML Schema, Relax NG, ...)

Operational XML queries XML queries XML queries
Level

Extensional XML XML XML
Level documents documents documents

Fig. 1. Six-level XML evolution and integration framework

The platform-independent and platform-specific levels follow MDA [17] which
is based on modeling the problem domain on different levels of abstraction.
The platform-independent level represents the whole problem domain. It con-
sists of a conceptual model that specifies the problem domain independently
of its representation in the XML formats below. We call the conceptual model
a platform-independent model (PIM) of the problem domain. The level below,
called platform-specific level, represents mappings of the problem domain to par-
ticular XML formats. For each XML format it comprises a model of mapping
of a selected part of the PIM to XML element and attribute declarations. We
call this model platform-specific model (PSM) of the selected XML format. Re-
cently, a number of approaches translating XML schemas to an ontology have
appeared. The ontology level is the topmost in our framework.

In our framework, components in documents on individual levels can be for-
mally binded with components in documents on the neighboring levels. These
bindings can then be used for evolution of the conceptual model, XML schemas,
XML documents and queries. They provide means for automatic detection of all
the places on all the levels where a single change has an impact.

4 Comparison criteria

We will firstly introduce several criteria which we will later use to compare
current approaches to reverse-engineering of XML schemas. In particular, we
will focus on the following criteria:

1. Target model - on what level of our framework does the target model of
the reverse-engineering method belong. This criterion is important, because
lots of methods only visualize the XML schema in another model (e.g. UML

100 Jakub Klimek, Martin Necasky

class diagrams) and therefore their target is on the platform-specific level
(it is a PSM in our framework). A true conceptual model on the platform-
independent level (a PIM in our framework) should be independent of the
target implementation completely. If it is a conceptual model bent for a
specific implementation, it is in fact a PSM. Recently, some approaches to
mapping an XML schema directly to an ontology (the top level of our frame-
work) have appeared. This criterion distinguishes among these three types
of target models.

2. Number of schemas supported by the model - whether the method is limited
to only one schema, or whether it can reverse-engineer multiple schemas to
one model. This is also very important, because to be able to manage a set
of XML schemas, it is not enough to have a separate model for each schema.
We need all the schemas to be related to one model.

3. XML schema languages supported - DTD, XML Schema, Relax NG, Schema-
tron, etc. As can be seen from our framework, the conceptual model can be
and should be independent of the actual XML schema language used on the
schema level, because the target data model (which a PSM should represent)
is XML itself, not a specific XML schema language.

4. Mapping to an existing model - whether the method can map a schema to
an already existing model or whether it can only generate a new model.
This criterion is paramount for evaluating the possibility of integrating an
approach to a bigger system for evolution and integration of XML schemas.
If it only can create a new model for each input, it cannot be used if we
already have the model and only want to add a new XML schema to the
system.

5. Level of user involvement - methods can be automatic or semi-automatic (re-
lying on human intervention). It is impossible to infer a conceptual diagram
automatically, as so far only a human can determine if two objects represent
the same concept. And because we need an exact and reliable match, if we
want to use an approach as a part of a system for integration of XML data,
we can not rely on an automatic translation (mapping) and we need the user
to at least confirm a match.

6. Evolution support - whether the approach is a part of a system that also
supports evolving the schema once it is integrated into the system (when the
system changes). This criterion indicates, whether the method is developed
by itself, or if it already is a part of a system that also helps with the
evolution of the mapped schemas (e.g. by preserving the bindings between
levels of our framework)

5 Approaches to mapping to user-friendly models

In this section we evaluate different approaches to reverse-engineering of XML
schemas to various more user-friendly models.

Reverse-engineering of XML Schemas: A Survey 101

5.1 Yang Weidong et al.

In [31], there is an algorithm for automatic generation of UML class diagrams
(PIMs in our framework) from DTDs according to MDA using a DTD graph
as a PSM. The authors also claim that they can generate UML class diagrams
from XSDs, but the prototype implementation is not freely available, so it can-
not be verified. The main drawback of this approach is that it only serves as
an automatic translator from DTD to UML meant to make the schema more
understandable to people who do not know DTD or XML Schema.

This approach does not support mapping of multiple XML schemas to the
PIM and it does not preserve any mappings between the PIM and the PSM nor
between the PSM and the DTD. It is automatic, limited to DTD only and it
cannot map a schema to an existing model. The bright side is that it actually
uses both PIM and PSM correctly.

5.2 Mikael R. Jensen et al.

In [13], another method of automatic conversion of DTDs to UML class diagrams
is presented. Again, it is meant for easier browsing of XML data available on the
Internet and to ease the work of a data integrator. In contrast with the previous
method, the UML diagrams reflect the structure of the DTD an therefore are
only on the PSM level.

This approach does not support mapping of multiple XML schemas and it
does not preserve any mappings between the PSM and the DTD. It is automatic,
limited to DTD only and it cannot map a schema to an existing model.

5.3 DIXSE framework

In [25], a semi-automatic method of deriving a semantic model from several
DTDs is presented. By default, for each element of every DTD a new element
is created in the model. This process is done automatically. If the user wants to
create a more meaningful model (e.g. wants all Address elements to be mapped
to one element of the model), a rule written in their DIXml language extending
the element in the DTD must be created manually. The model is a PSM as it
still preserves the DTD structure. It uses the Telos [18] metamodeling language.

This approach supports semi-automatic mapping of multiple schemas to a
conceptual model, but it does not preserve any mappings between the PSM and
the DTDs and it is limited to DTD only. It can map a new DTD to an existing
model.

5.4 Xyleme

In [24], a project called Xyleme is described. Its focus is to provide a unified view
of a large number of heterogeneous XML documents described by DTDs. This en-
ables the user to perform queries on one unified model (called an abstract DTD),

102 Jakub Klimek, Martin Necasky

to which all the other DTDs describing the XML documents are mapped au-
tomatically. The methods for discovery of mappings are mainly language based
(thesauri, discovery of synonyms, abbreviations, etc.). A semi-automatic pro-
totype implementation called SAMAG was used to evaluate the approach. In
SAMAG, a user needs to validate each syntactic relationship detected.

This approach supports semi-automatic mapping of multiple schemas to a
model which is a PSM. It preserves no mapping between the PSM and the
DTDs. It is limited to DTD only.

5.5 XTM - XML Tree Model

In [9], a conceptual model for XML called XTM - XML Tree Model is proposed,
including an algorithm for reverse-engineering of XML Schema into XTM. It
also has a strong theoretical background. However, it is still only a PSM in our
framework.

This approach automatically visualizes one schema at a time, is limited to
XML Schema and does not maintain any mappings between the PSM and the
schemas.

5.6 Necasky

In [20], a complex approach to the process of reverse engineering of XML schemas
to a conceptual model is presented. The model follows MDA as it uses UML class
diagrams as a PIM and their extension as PSMs. It is further described in [19].
Because the model has two levels, the process is divided into two parts. The
first part is an automatic translation of an XML schema to a PSM. The PSMs
are, however, independent of any specific XML schema language; the approach
is presented using XML Schema. The second part is a semi-automatic algorithm
for the reconstruction of mappings between the PSM and a PIM, but it has
some drawbacks. The most problematic one is the computational cost which is
up to m™, where m is a maximum number of outgoing PIM associations from one
PIM class and n is the number of PIM classes in the model. Therefore in practice,
the algorithm will not work if the PIM diagram contains a bigger number of
associations. Nevertheless, the algorithm uses maximum of information that we
can get from a PSM and thus can offer the best results. An implementation in an
experimental stage is available in the development version of XCase [14], which
is a tool implementing the conceptual model and its evolution.

This approach supports semi-automatic reverse-engineering to PSMs and to a
PIM. It supports multiple schemas, is independent of any specific XML schema
language and it can also map to an existing conceptual model. It maintains
mappings between the PIM and the PSM and therefore support further schema
evolution.

Reverse-engineering of XML Schemas: A Survey 103

6 Approaches to mapping to ontologies

Recently, a number of methods of reverse-engineering of XML schemas to on-
tologies have appeared. The main difference between a PIM and an ontology is
that ontologies are more expressive, as the relations they capture can be more
complex and they may even involve logical formulae. A frequent language for
ontologies is OWL [30].

6.1 Canonic Conceptual Models (CCMs)

In [8], a method for integration of XML schemas into an ontology is presented.
At first, each input DTD is semi-automatically transformed into a so called CCM
- Canonic Conceptual Model. It combines the ER [5] and ORM [11] models. A
default transformation is made and a user is then allowed to make adjustments
where needed. The CCMs are PSMs in our framework. Then, each CCM is in-
tegrated (again semi-automatically - user has to verify/adjust) to form the final
ontology. The mappings between the individual CCM components and the com-
ponents of the ontology are preserved. Although the authors call it an ontology,
it is in fact more of a conceptual diagram - a PIM in our framework, because
it still is a CCM, only independent of the XML structure. This method only
provides a unified view of the integrated data so far. No implementation was
mentioned.

This approach supports semi-automatic mapping of multiple DTDs to corre-
sponding PSMs and to a PIM. It is restricted to DTD only. It preserves mappings
between PSMs and a PIM.

6.2 Xiao et al.

In [32], an algorithm is proposed to match given XML document elements to
given ontology concepts to achieve an integrated view of multiple XML docu-
ments, when matched to the same ontology. It is based on automatic structural
matching of a DTD tree to an ontology tree. However, a precondition is that
a domain expert has provided a table of synonyms, i.e. a list of semantically
matching strings from the DTD and from the ontology (which seems to be a
strong precondition).

This in fact semi-automatic approach maps multiple DTDs, it is limited to
DTD only and it does not preserve any mappings between the DTDs and the
ontology. It can only map to an existing ontology.

6.3 Bedini et al.

In [3], a general architecture of building ontologies from XML schemas is pre-
sented. However, no specific methods are suggested, only a sequence of tasks
that a tool for ontology building should follow and also a set of rules according
to which concepts and their relations can be extracted from a XML Schema.

104 Jakub Klimek, Martin Necasky

The general architecture takes the need for consecutive schema evolution into
account. A semi-automatic prototype implementation called Janus is presented
briefly. It requires human assistance for merging of similar concepts and it does
not preserve any mappings between the schemas and the ontology.

This approach is semi-automatic, it is limited to XML schema and it does
not preserve any mappings between the schemas and the ontology. It also only
creates new ontologies.

6.4 DTD20WL

In [29], a method of automatic translation of DTD to OWL ontology is suggested.
In addition, this method transforms the actual XML documents into OWL in-
dividuals. The authors suggest that the whole web should be transformed this
way. This method is pure translation of one DTD to one OWL ontology with no
support for schema evolution nor conceptual modeling.

This approach is automatic, it is limited to DTD and it can only map one
DTD to one new ontology, not preserving any mappings.

7 Summary

In this section, a brief summary of evaluated approaches and the comparison
criteria is given.

Model|Schemas|Languages|Automatic| Maps to |Evolution
5.1|| PSM One DTD Yes New No
5.2|| PSM One DTD Yes New No
5.3|| PSM | Multiple DTD No New, Existing No
5.4|| PSM | Multiple DTD Yes New, Existing No
5.5 PSM One XSD Yes New No
5.6|| PIM | Multiple Any* No New, Existing Yes
6.1|| PIM | Multiple DTD No New, Existing Yes
6.2 @) Multiple DTD No Existing No
6.3| O Multiple XSD No New No
6.4 (0] One DTD Yes New No

@ This method is not limited to any XML schema language. Currently implemented
for XML Schema
Table 1. Overview of approaches according to various criteria

Let us review the comparison criteria used (the columns in Table 1 correspond
to them):

1. Whether the target of the approach is a PIM, PSM or an ontology

Reverse-engineering of XML Schemas: A Survey 105

2. Whether the approach is limited to only one schema or whether it can handle

multiple schemas

Which XML schema languages can the approach handle

4. Whether the method is a pure automatic translation or whether the process
is semi-automatic - a user is involved

5. Whether the method creates a new target model or whether it can use an
existing one

6. Whether the method preserves mappings between the schemas and the target
model, which can be used for consecutive schema evolution

@

The best suitable method for our intention of creating a system for management
of XML schema evolution and integration is 5.6. However, it has some issues with
computational complexity, which need to be resolved before its implementation.

8 Conclusion

In this paper, we have compared and evaluated several approaches for reverse-
engineering of XML schemas according to given comparison criteria. Among
them, only one was well suited for being a part of a larger system for evolution
and integration of XML schemas. Also, this survey showed a severe lack of sup-
port for newer XML schema languages like Relax NG or Schematron in the area
of conceptual modeling of XML and reverse-engineering of XML schemas.

References

1. R. Al-Kamha, D. W. Embley, and S. W. Liddle. Augmenting Traditional Concep-
tual Models to Accommodate XML Structural Constructs. In Proceedings of 26th
International Conference on Conceptual Modeling, pages 518-533, Auckland, New
Zealand, Nov. 2007. Springer.

2. A. Badia. Conceptual Modeling for Semistructured Data. In Proceedings of the 3rd
International Conference on Web Information Systems Engineering Workshops,
pages 170-177, Singapore, Dec. 2002. IEEE Computer Society.

3. I. Bedini, G. Gardarin, and B. Nguyen. Deriving Ontologies from XML Schema.
CoRR, abs/1001.4901, 2010.

4. R. Bourret. XML and Databases. September 2005. http://www.rpbourret.com/
xml/XMLAndDatabases.htm.

5. P. Chen. The Entity-Relationship Model-Toward a Unified View of Data. ACM
Transactions on Database Systems, 1(1):9-36, Mar. 1976.

6. J. Clark and M. Makoto. RELAX NG Specification. Oasis, December 2001. http:
//www.oasis-open.org/committees/relax-ng/spec-20011203.html.

7. D. Booth, C. K. Liu. Web Services Description Language (WSDL) Version 2.0
Part 0: Primer. W3C, June 2007. http://www.w3.org/TR/wsd120-primer/.

8. R. dos Santos Mello and C. A. Heuser. A Bottom-Up Approach for Integration of
XML Sources. In Workshop on Information Integration on the Web, pages 118-124,
2001.

9. J. Fong, S. K. Cheung, and H. Shiu. The XML Tree Model - toward an XML
conceptual schema reversed from XML Schema Definition. Data Knowl. Eng.,
64(3):624-661, 2008.

106

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Jakub Klimek, Martin Necasky

H. Hai, Do. Schema Matching and Mapping-based Data Integration: Architecture,
Approaches and Fvaluation. VDM Verlag, Saarbriicken, Germany, Germany, 2007.
T. Halpin and T. Morgan. Information Modeling and Relational Databases. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

ISO. Information Technology Document Schema Definition Languages (DSDL)
Part 8: Rule-based Validation Schematron. ISO/IEC 19757-3, feb 2005.

M. R. Jensen, T. H. Mgller, and T. B. Pedersen. Converting XML Data to UML
Diagrams For Conceptual Data Integration. In In: Ist International Workshop on
Data Integration over the Web (DIWeb) at 13th Conference on Advanced Informa-
tion Systems Engineering (CAISEQ1), 2001.

J. Klimek, L. Kopenec, P. Loupal, and J. Maly. XCase - A Tool for Conceptual
XML Data Modeling. In Advances in Databases and Information Systems, volume
5968/2010 of Lecture Notes in Computer Science, pages 96-103. Springer Berlin /
Heidelberg, March 2010.

B. Loscio, A. Salgado, and L. Galvao. Conceptual Modeling of XML Schemas. In
Proceedings of the Fifth ACM CIKM International Workshop on Web Information
and Data Management, pages 102—105, New Orleans, USA, Nov. 2003.

M. Mani. Erex: A conceptual model for xml. In Proceedings of the Second Inter-
national XML Database Symposium, pages 128-142, Toronto, Canada, Aug. 2004.
J. Miller and J. Mukerji. MDA Guide Version 1.0.1. Object Management Group,
2003. http://www.omg.org/docs/omg/03-06-01.pdf.

J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos: representing
knowledge about information systems. ACM Trans. Inf. Syst., 8(4):325-362, 1990.
M. Necasky. Conceptual Modeling for XML, volume 99 of Dissertations in Database
and Information Systems Series. I10S Press/AKA Verlag, January 2009.

M. Necasky. Reverse Engineering of XML Schemas to Conceptual Diagrams. In
Proceedings of The Sixth Asia-Pacific Conference on Conceptual Modelling, pages
117-128, Wellington, New Zealand, January 2009. Australian Computer Society.
Object Management Group. UML Infrastructure Specification 2.1.2, nov 2007.
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/.

Object Management Group. UML Superstructure Specification 2.1.2, nov 2007.
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF /.

G. Psaila. ERX: A Conceptual Model for XML Documents. In Proceedings of the
2000 ACM Symposium on Applied Computing, pages 898-903, Como, Italy, Mar.
2000. ACM.

C. Reynaud, J.-P. Sirot, and D. Vodislav. Semantic integration of xml hetero-
geneous data sources. In IDEAS ’01: Proceedings of the International Database
Engineering € Applications Symposium, pages 199-208, Washington, DC, USA,
2001. IEEE Computer Society.

P. Rodriguez-Gianolli and J. Mylopoulos. A Semantic Approach to XML-based
Data Integration. In ER ’01: Proceedings of the 20th International Conference on
Conceptual Modeling, pages 117-132, London, UK, 2001. Springer-Verlag.

P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. Jour-
nal on Data Semantics, 4:146-171, 2005.

T. Bray and J. Paoli and C. M. Sperberg-McQueen and E. Maler and F. Yergeau.
Extensible Markup Language (XML) 1.0 (Fourth Edition). W3C, September 2006.
http://www.w3.org/TR/REC-xml/.

H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part
1: Structures (Second Edition). W3C, October 2004. http://www.w3.org/TR/
xmlschema-1/.

29.

30.

31.

32.

Reverse-engineering of XML Schemas: A Survey 107

P. T. T. Thuy, Y.-K. Lee, and S. Lee. DTD20WL: Automatic Transforming XML
Documents into OWL Ontology. In ICIS ’09: Proceedings of the 2nd International
Conference on Interaction Sciences, pages 125-131, New York, NY, USA, 2009.
ACM.

W3C OWL Working Group. OWL 2 Web Ontology Language. W3C, October
2009. http://www.w3.org/TR/owl2-overview/.

Y. Weidong, G. Ning, and S. Baile. Reverse Engineering XML. Computer and
Computational Sciences, International Multi-Symposiums on, 2:447-454, 2006.

L. Xiao, L. Zhang, G. Huang, and B. Shi. Automatic Mapping from XML Doc-
uments to Ontologies. In CIT ’04: Proceedings of the The Fourth International
Conference on Computer and Information Technology, pages 321-325, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

