
Modeling and Verification of Priority
Assignment in Real-Time Databases Using

Uppaal?

Martin Kot

Center for Applied Cybernetics, Department of Computer Science, FEI,
VSB - Technical University of Ostrava,

17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic
martin.kot@vsb.cz

Modeling and Verification of Priority
Assignment in Real-Time Databases Using

Uppaal⋆

Martin Kot

Center for Applied Cybernetics, Department of Computer Science, FEI,
VSB - Technical University of Ostrava,

17. listopadu 15, 708 33, Ostrava-Poruba, Czech Republic
martin.kot@vsb.cz

Abstract. Real-time database management systems (RTDBMS) are re-
cently subject of an intensive research. Model checking algorithms and
verification tools are of great concern as well. In this paper we show some
possibilities of using a verification tool Uppaal on some variants of pri-
ority assignment algorithms. We present some possible models of such
algorithms expressed as nets of timed automata, which are a modeling
language of Uppaal.

Keywords: real-time database systems, priority assignment, timed automata, model

checking, verification, verification tool, Uppaal

1 Introduction

Many real-time applications need to store some data in a database. It is possible
to use traditional database management systems (DBMS). But they are not able
to guarantee any bounds on a response time. This is the reason why so-called
real-time database management systems (RTDBMS) emerged (e.g. [1, 6]).

Formal verification is of great interest recently and finds its way quickly from
theoretical papers into a real live. It can prove that a system (or more exactly
a model of a system) has a desired behavior. The difference between testing
and formal verification is that during testing only some possible computations
are chosen. Formal verification can prove correctness of all possible computa-
tions. A drawback of formal verification is that for models with high descriptive
power are almost all problems undecidable. It is important to find a model with
an appropriate descriptive power to capture a behavior of a system, yet with
algorithmically decidable verification problems.

There are two main approaches to fully automated verification – equivalence
checking and model checking. Using equivalence checking, two models of systems
(usually model of specification and model of implementation) are compared using
⋆ Author acknowledges the support by the Czech Ministry of Education, Grant No.

1M0567.

J. Pokorný, V. Snášel, K. Richta (Eds.): Dateso 2010, pp. 147–154, ISBN 978-80-7378-116-3.



148 Martin Kot

some behavioral equivalence. In this paper we consider the other approach – so
called model checking (see e.g. [4, 9]). This form of verification uses a model of a
system in some formalism and a property expressed usually in the form of formula
in some temporal logic. Model checking algorithm checks whether the property
holds for the model of a system. There are quite many automated verification
tools which implement model checking algorithms (see e.g. [11] for overview).
Those tools use different modeling languages or formalisms and different logics.

The idea of our research is to explore possibilities of using existing verification
tools on RTDBMS. To our best knowledge, there are only rare attempts of
automated formal verification of real-time database system. In fact we know
about one paper ([10]) only where authors suggested a new pessimistic protocol
and verified it using Uppaal. They presented two small models covering only
their protocol.

There is not any verification tool intended directly for real-time database
systems. We have chosen the tool Uppaal because it is designed for real-time
systems. But, it is supposed to be used on so-called reactive systems, which are
quite different from database systems. So we need to find some possibilities how
to deal with it. Big problem of verification tools is so called state space explosion.
Uppaal is not able to manage too detailed models. On the other hand, too simple
models can not catch important properties of a real system. So we need to find
a suitable level of abstraction.

One of the most important and crucial parts of all database management
systems allowing concurrent access to data records is concurrency control. Some
of protocols used for concurrency control were modeled and verified using Uppaal
in [7, 8].

In this paper, we will concentrate on other important part of real-time
database systems – priority assignment. There are many parameters that can
be used for determination of priority of database transaction. Some of them are
criticality, deadline, amount of resources already used by transaction etc. There
were several algorithms presented for this task. In this paper we will consider
two of them presented in [1] – First Come First Serve (Section 4) and Earliest
Deadline (Section 5). The nature of this paper should be mainly proof of concept.
There are not any new informations found about described algorithms or any
errors in them discovered. But some general possibilities of modeling using nets
of timed automata are shown which can be used for verification and comparison
of, e.g., newly designed algorithms in the future.

Before we will discuss concrete models of algorithms, we will shortly describe
the tool Uppaal in the Section 2 and talk some general possibilities and assump-
tions over in Section 3.

2 Verification tool Uppaal

Uppaal ([3]) is a verification tool for real-time systems. It is jointly developed
by Uppsala University and Aalborg University. It is designed to verify systems
that can be modeled as networks of timed automata extended with some further



Modeling and Verification of Priority Assignment . . . 149

features such as integer variables, structured data types, user defined functions,
channel synchronization and so on.

A timed automaton is a finite-state automaton extended with clock variables.
A dense-time model, where clock variables have real number values and all clocks
progress synchronously, is used. In Uppaal, several such automata working in
parallel form a network of timed automata. An automaton has locations and
edges. Each location has an optional name and invariant. An invariant is a
conjunction of side-effect free expressions of the form x < e or x ≤ e where x is
a clock variable and e evaluates to an integer. Each automaton has exactly one
initial location.

Particular automata in the network synchronize using channels and values
can be passed between them using shared (global) variables. A state of the system
is defined by the locations of all automata and the values of clocks and discrete
variables. The state can be changed in two ways - passing of time (increasing
values of all clocks by the same amount) and firing an edge of some automaton
(possibly synchronizing with another automaton or other automata). Some loca-
tions may be marked as committed. If at least one automaton is in a committed
location, time passing is not possible, and the next change of the state must
involve an outgoing edge of at least one of the committed locations.

Each edge may have a guard, a synchronization and an assignment. Guard
is a side-effect free expression that evaluates to a boolean. The guard must
be satisfied when the edge is fired. It can contain not only clocks, constants
and logical and comparison operators but also integer and boolean variables
and (side-effect free) calls of user defined functions. Synchronization label is of
the form Expr! or Expr? where Expr evaluates to a channel. An edge with
c! synchronizes with another edge (of another automaton in the network) with
label c?. Both edges have to satisfy all firing conditions before synchronization.
Sometimes we say that automaton firing an edge labeled by c! sends a message
c to the automaton firing an edge labeled by c?. There are urgent channels as
well (synchronization through such a channel have to be done in the same time
instant when it is enabled) and broadcast channels (any number of c? labeled
edges are synchronized with one c! labeled edge). An assignment is a comma
separated list of expressions with a side-effect. It is used to reset clocks and set
values of variables.

Uppaal has some other useful features. Templates are automata with param-
eters. These parameters are substituted with given arguments in the process dec-
laration. This enables easy construction of several alike automata. Moreover, we
can use bounded integer variables (with defined minimal and maximal value), ar-
rays and user defined functions. These are defined in declaration sections. There
is one global declaration section where channels, constants, user data types etc.
are specified. Each automaton template has own declaration section, where local
clocks, variables and functions are specified. And finally, there is a system dec-
laration section, where global variables are declared and automata are created
using templates.



150 Martin Kot

Uppaal’s query language for requirement specification is based on CTL (Com-
putational Tree Logic, [5]). We do not present any formulas in this paper hence
details about query laguage are omitted due to space restrictions.

The simulation and formal verification are possible in Uppaal. The simulation
can be random or user assisted. It is more suitable for the user of the tool
to see if a model is behaving like he want and like it corresponds to the real
system. Formal verification should confirm that the system has desired properties
expressed using the query language. There are many options and settings for
verification algorithm in Uppaal. For example we can change representation of
reachable states in memory or the order of search in the state space (breadth
first, depth first, random depth first search). Some of the options lead to less
memory consumption, some of them speed up the verification. But improvement
in one of these two characteristic leads to a degradation of the other usually.
For more exact definitions of modeling and query languages and verification
possibilities of Uppaal see [3].

3 General comments and assumptions

In real-time database systems we consider usually transaction processing. Each
transaction incoming to a system is assigned a priority. Resources are than ap-
portioned according to priorities to transactions that are processed concurrently.
The number of concurrently processed transactions in system is usually bounded
– it is controlled by overload management policy. Incoming transactions have
usually a deadline. This can be hard (transaction exceeding deadline becomes
nearly useless and can be aborted for the sake of other transactions meeting
their deadlines) or soft (the value of transaction exceeding deadline decreases,
the priority can be lowered and transaction is processed in the time when there
are not any transaction possibly meeting deadlines). In this paper we consider
hard deadlines.

Scheduling and computation time assignment is strongly connected with pri-
orities. Hence we will discuss this also in the following sections. Other aspects
as, e.g., concurrency control will be omitted in order that the suggested models
are still manageable by Uppaal.

There are many possibilities how to model transaction arrival. For example,
there can be special automaton serving as generator of transactions. The models
described in this paper are designed for comparison of two different algorithms.
Hence we have decided to define incoming transactions statically as an array
inc_trans which elements are structures of release_time (representing incom-
ing time of transaction since beginning), deadline_time(deadline since begin-
ning), operations (number of database operations), received_time (initially
equals zero, it represents computation time already used by this transaction).
For simplicity we do not consider exact database records and we even consider
that all database operations need the same computational time given by constant
OP_TIME. Both model can be simulated over this array to compare them (number
of aborted transactions etc.) We can also automatically check queries expressed



Modeling and Verification of Priority Assignment . . . 151

as formulae of temporal logic and become some other useful informations about
modeled algorithms.

4 First Come First Serve

This policy assigns the highest priority to the transaction with the earliest re-
lease time. Often, release time equals arrival time. This algorithm is not very
suitable for real-time database systems because it does not make use of deadline
information. It can give more computation time to older transaction instead a
newer transaction with more urgent deadline.

We consider that all computation time is assigned to the oldest transaction in
a system until it finishes or reaches its deadline. Hence we will need just one copy
of automaton depicted on Figure 1 atop. This automaton represents successively
all transaction processed by a modeled system.

The state Inactive represents situation when there is not any processed
transaction. Constant TRANSACTIONS contains the overall number of transactions
defined in the input array, variable act_trans counts processed transactions.
Clock variable time represents time from the beginning while clock variable
op_time measures the time of performance of one database operation. If actual
transaction ends successfully (number of performed operations op_done reaches
the number of operations specified for this transaction), the automaton gets
through the state Done to Inactive and it is prepared for representation of next
transaction. If the transaction reaches its deadline before successful finish, the
abort is modeled by the state Abort, it is counted and the automaton goes to
the state Inactive once again.

The state Waiting is intended for the situation when there are more trans-
actions in the input sequence but release time (representing time of arrival in
the real system) is not passed yet. If all transactions from the input sequence
are processed, automaton goes to the state End and a run is deadlocked. It is
the only possible deadlock situation of this model (this has been checked using
verification possibility of Uppaal).

5 Earliest Deadline

Earliest Deadline is algorithm which gives the highest priority to transaction
with the earliest deadline. A disadvantage of this policy is that it can give high
priority and hence a big amount of resources to a transaction which is about to
miss its deadline anyway.

Assigned priorities can be used in several different ways for distribution of re-
sources. One way is that a transaction with the highest priority gets all resources
until it finishes or exceeds its deadline and it is aborted. To show some other
general modeling possibilities, we have chosen some other way. We consider sev-
eral concurrently processed transactions and scheduler distributes computation
time between all of them. Transactions with higher priority get more time but
no transaction is skipped. All automata representing concurrent transactions are



152 Martin Kot

instances of the same template depicted on Figure 1 down. The number of those
instances can be set by a constant PAR_TRANS.

Waiting
inc_trans[act_trans].release_time>=time

End

Abort

Done

Operation
op_time<=OP_TIME

Active

Inactive

act_trans<TRANSACTIONS &&
inc_trans[act_trans].deadline_time<=time

act_trans<TRANSACTIONS && inc_trans[act_trans].release_time<=time
deadline=inc_trans[act_trans].deadline_time,
op_done=0, op_plan=inc_trans[act_trans].operations

act_trans>=
TRANSACTIONS

inc_trans[act_trans].release_time<=time
deadline=inc_trans[act_trans].deadline_time,
op_done=0, op_plan=inc_trans[act_trans].operations

act_trans<
TRANSACTIONS &&
inc_trans[act_trans].release_time>time

op_time==OP_TIME
op_done++

op_done<op_plan &&
time<=deadline

op_time=0

op_done == op_plan

act_trans++, aborted_trans++

time>deadline

act_trans++

Waiting
inc_trans[cor_trans[trans_id]].release_time>=time

End

Abort

Done Operation

op_time<=OP_TIME

Sleep
time<=deadline

Inactive

start_notif!
cor_trans[trans_id]=act_trans++

act_trans<TRANSACTIONS && inc_trans[act_trans].release_time<=time &&
inc_trans[act_trans].deadline_time>=time
deadline=inc_trans[act_trans].deadline_time, calc_trans=act_trans,
op_done=0, active_trans[trans_id]=true, op_plan=inc_trans[act_trans].operations

time<=deadlinetime>=deadline

preempt?
inc_trans[cor_trans[trans_id]].received_time=op_done

act_trans<TRANSACTIONS &&
inc_trans[act_trans].deadline_time<=time

act_trans++

op_done == op_plan
abort_notif!
active_trans[trans_id]=false

time>=deadline
abort_notif!
active_trans[trans_id]=false

time<=deadline
activate[trans_id]?

op_time=0

op_time>=OP_TIME && time<=deadline
op_done++

op_done<op_plan && time<=deadline
op_time=0

act_trans>=TRANSACTIONS

inc_trans[cor_trans[trans_id]].release_time<=time
start_notif!
deadline=inc_trans[cor_trans[trans_id]].deadline_time, op_done=0, active_trans[trans_id]=true,
calc_trans=cor_trans[trans_id], op_plan=inc_trans[cor_trans[trans_id]].operations

act_trans<TRANSACTIONS &&
inc_trans[act_trans].release_time>time

cor_trans[trans_id]=act_trans++

aborted_trans++,
cor_trans[trans_id]=-1

time>=deadline
active_trans[trans_id]=false

cor_trans[trans_id]=-1

Fig. 1. Transaction automata for FCFS algorithm (atop) and Earliest Deadline algo-
rithm (down)

Distribution of computation time is controlled by Scheduler Automaton de-
picted on Figure 2 atop. Priorities to transactions are assigned using Priority
Assignment Automaton depicted on Figure 2 down.

The basic behavior of Transaction automata is the same as in the case of
First Come First Serve algorithm. The main modification is the state Sleep and
its adjacent edges. It represents the situation when this transaction is processed
but actually has not assigned resources. An indication of assigned resources is
received from Scheduler automaton through the channel activate[trans_id].
trans_id is unique identifier of each Transaction automaton and activate is



Modeling and Verification of Priority Assignment . . . 153

act_time<=
priorities[tr]+1

!is_active()

abort_notif?
iter++

iter==PAR_TRANS

iter<PAR_TRANS &&
!active_trans[tr]
iter++

act_time>=priorities[tr]+1
preempt!

iter++
iter<PAR_TRANS
tr=priority_list[iter]

!is_active()

iter==PAR_TRANS

iter<PAR_TRANS && active_trans[tr]
activate[tr]!
act_time=0

is_active()
iter=0,
tr=priority_list[0]

start_notif?

calculate()

time < inc_trans[calc_trans].deadline_time - 16
prior=1

time < inc_trans[calc_trans].deadline_time - 12 && time >= inc_trans[calc_trans].deadline_time - 16
prior=2

time >= inc_trans[calc_trans].deadline_time - 12
prior=3start_notif?

Fig. 2. Earliest Deadline algorithm - Scheduler automaton (atop) and Priority Assign-
ment automaton (down)

array of channels. Taking the resources away is announced through the channel
preempt. There are two more channels – abort_notif informs Scheduler au-
tomaton that this transaction is aborted and resources are free and start_notif
is broadcast channel that informs Scheduler about active transaction and si-
multaneously asks Priority Assignment to compute priority for new transaction
(identification of this transaction is shared using global variable calc_trans).

There are two axillary arrays. active_trans contains for each Transaction
automaton a flag if it actually represents some transaction, cor_trans contains
for each Transaction automaton identification of actually represented transaction
from input array.

Scheduler automaton waits in the initial state until it is notified about new
transaction. Then it takes iteratively identifications of Transaction automata
representing transaction according the priority from the array priority_list
which is maintained sorted by Priority Assignment automaton. Each transaction
automaton is activated for the time corresponding to its priority (this can be
chosen in different ways, in this paper it is directly priority, just for technical
reasons increased by one). After all active Transaction automata take a turn, the
whole process is repeated again from the automaton representing transaction
with the highest priority. Function is_active is axillary, it returns true if there
is at least one true in the array active_trans.

Priority Assignment automaton assigns priorities 1, 2 or 3. The highest pri-
ority goes to transactions which have at most 12 time units until deadline, pri-
ority 2 to transactions with 12 to 16 time units before deadline and priority 1
to all other. Those values were chosen without any real meaning. It should be
clear how to add more values of priority and change intervals for them. Func-
tion calculate() sorts identifications of Transaction automata in the array
priority_list according to priorities of transactions they represent.



154 Martin Kot

6 Conclusion

In the previous sections, several timed automata were shown. They form models
of two variants of algorithms for priority assignment used in (real-time) database
management systems. Of course, this were not the only possible models. The pur-
pose was to show that some important aspects of the real-time database system,
such as a priority assignment, can be modeled using such a relatively simple
model as nets of timed automata are. The models can be extended in many
different ways to capture more behavior of those policies and thus allow many
properties to be described as a formula in the logic of Uppaal and then checked
using its verification algorithms. Some properties even can not be expressed us-
ing Uppaal’s modification of CTL. Automata can be modified to bypass this
imperfection, but it can demand a special modification for each query and it
also can increase reachable state space. Another possible solution to this prob-
lem is to try some other verification tool with other query language which can
be our future work.

References

1. Abbott, R. K., Garcia-Molina, H.: Scheduling real-time transactions: a performance
evaluation. ACM Transactions on Database Systems (TODS), Volume 17 , Issue 3,
pages 513 – 560, ACM, September 1992.

2. Alur, R., Dill, D.L.: Automata for modeling real-time systems. Proc. of Int. Collo-
quium on Algorithms, Languages, and Programming, volume 443 of LNCS, pages
322-335, 1990.

3. Behrmann, G., David, A., Larsen, K. G.: A Tutorial on Uppaal. Available on-
line at http://www.it.uu.se/research/group/darts/papers/texts/new-tutorial.pdf
(March 15, 2010)

4. Berard, B., Bidoit, M., Petit, A., Laroussinie, F., Petrucci, L., Schnoebelen, P.:
Systems and Software Verification, Model-Checking Techniques and Tools. ISBN
978-3540415237, Springer, 2001.

5. Henzinger, T.A.: Symbolic model checking for real-time systems. Information and
computation, 111:193-244, 1994.

6. Kao, B., Garcia-Molina, H.: An Overview of Real-Time Database Systems. Advances
in Real-Time Systems, pages 463-486, Prentice-Hall, Inc., 1995.

7. Kot, M.: Modeling selected real-time database concurrency control protocols in Up-
paal. Innovations in Systems and Software Engineering, Volume 5, Number 2, pages
129-138, ISSN 1614-5046 (Print), ISSN 1614-5054 (Online), Springer, June 2009.

8. Kot, M.: Modeling Real-Time Database Concurrency Control Protocol Two-Phase-
Locking in Uppaal. Proceedings of the International Multiconference on Computer
Science and Information Technology, Volume 3, pages 673-678, ISBN 978-83-60810-
14-9, ISSN 1896-7094, IEEE Computer Society Press, 2008.

9. McMillan, K. L.: Symbolic Model Checking. ISBN 978-0792393801, Springer, 1993.
10. Nyström, D., Nolin, M., Tesanovic, A., Norström, Ch., Hansson, J.: Pessimistic

Concurrency-Control and Versioning to Support Database Pointers in Real-Time
Databases. Proc. of the 16th Euromicro Conference on Real-Time Systems, pages
261-270, IEEE Computer Society, 2004.

11. ParaDiSe (Parallel & Distributed Systems Laboratory): Yahoda verification tools
database. Available on-line at http://anna.fi.muni.cz/yahoda/ (March 15, 2010)


