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1   Problem and Motivation 

As the semantic web grows in popularity and enters the mainstream of computer 

technology, RDF(Resource Description Framework) datasets are becoming larger and 

more complex.  As datasets grow larger and more datasets are linked together, 

scalability becomes more important.  As more complex ontologies are developed, 
there is growing need for efficient queries that handle inference.  In areas such as 

research, it is vital to be able to perform queries that retrieve not just facts but also 

inferred knowledge and uncertain information.    

Currently, scalability and performance issues limit the semantic web from reaching 

its full potential.  The primary goal of RDFVector is to improve the performance of 

queries against large RDF datasets, including queries that involve inferred knowledge 

and probabilistic reasoning.  RDFVector is a  new persistent data model using bit 

vectors that is highly efficient.  This design allows us to store inferred knowledge 

with no penalty.  Queries become simpler and more efficient.   

2   Proposed Approach  

Figure 1 provides a high level diagram of our architecture.  Double boxes indicate 

tables.  The process flow is clearly indicated by the directional arrows.  The solid 

arrows indicate actions that can change data, and the dashed arrows query data.  

The add and delete actions operate against the triples table.  The triples table calls 
the inference engine to add or delete inferred triples. After determining triples to add 

or delete, the inference engine calls the triples table to perform the action. This cycle 

demonstrates the recursive nature of our inference solution.   

One can see from this diagram that three tables provide the core RDFKB schema: 

the triples table, PSTable and POTable.  There is a single one way arrow connecting 

them showing that all updates to the bit vectors are triggered by the triples table.  The 

query engine  supports the user's queries and utilizes the bit vector tables to execute 

the queries efficiently.  



 

 

Fig. 1. Architectural Overview of RDFVector 

At this point we would like to define our bit vector tables in more detail.   The 
POTable includes four columns: Property, Object, SubjectBitBector and BitCount.  

The SubjectBitVector has a 1 representing every subject that appears with this 

property and object in a triple in the dataset.  Each URI is dictionary-encoded to a 

unique identification number that represent the index into the bit vectors.  For 

example, all subjects matching <?s type text> can  be retrieved from a single tuple in 

the POTable and returned as a single bit vector, indexed by the identification 

numbers.  Joins can be performed as and operations against these bit vectors.  The 

BitCount is simply the number of on bits in the vector.  We use this information to 

determine selectivity factors during query optimization.  It also important to note that 

we keep the vector compressed.  As the vectors are quite sparse, this substantially 

reduces memory and storage requirements.  Similarily, the PSTable includes property, 
subject, ObjectBitVector, and bitCount. 

Our design is to execute inference at addition time rather than query time.  

Consider the triple: <Professor0 type AssociateProfessor>. The LUBM ontology 

file[5] will allow us to infer four additional triples:<Professor0 type Professor>, 

<Professor0 type Faculty>, <Professor0 type Employee>, <Professor0 type 

Person>.  Our strategy is to store all inferred triples in the database. Inference rules 

register with the system and are called when triples are added, so that inferred 

knowledge can be added as well.  Thus, all inferred triples are stored in the database 

and available to queries.  There are 21 subclasses of Person in the LUBM ontology.  

Thus, to query all persons using a schema such as vertical partitioning or RDF-3X 

requires 21 subqueries and 20 unions.  Our solution is both simpler and more 
efficient; we can query all persons by retrieving a single type from the POTable.  No 

unions or subqueries are required.  Most database schemata pay a query performance 

penalty based on the size of the dataset. Because RDFVector already includes bits in 

the vectors for every possible combination of known subject, objects, and properties, 

there is no such penalty.  
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3   Evaluation Methodology 

The goal of RDFVector is efficiency and scalability.  Therefore, we evaluate our 

solution by testing the performance of queries against standardized datasets, and we 

compare this performance to the current state of the art solutions.  We test using hot 

and cold runs, and, for comparison, we utilize source code from the existing research 
projects or accepted evaluation research such as [3].   

We also execute experiments to test tradeoffs including storage space and memory 

consumption.  For additions and deletions, we use cross validation to select and test 

subsets of the dataset, and we measure the time to add or delete the selected triples.  

4    Query Evaluation and Performance Results 

We have implemented RDFVector using the MonetDB[7] database and tested it on 

a single machine.  Our current implementation includes support for inference, for 

additions and for deletions.  We implemented and evaluated experiments with two 

benchmarks: the Lehigh University Benchmark(LUBM) [5] and the Barton dataset[6]. 

All of our tests were performed on a Dell M6400 laptop with 8GB RAM.  

The LUBM dataset is a synthetic dataset, which allowed us to vary the number of 

triples in the dataset from 1 to 44 million triples to test scalability. We tested 11 

LUBM queries against vertical partitioning and triple store solutions.  RDFVector 

achieved the best performance in all 11 test cases.  The performance improvement 

grew as the dataset size was increased, demonstrating scalability.  RDFVector 
improved performance by over 80.0% in every query for the 44 million triples dataset. 

The Barton dataset is an RDF representation of the MIT library catalog. We tested 

with all 12 queries defined in [3], and compared our results with triple store (PSO and 

SPO ordered), vertical partitioning[1] and RDF-3X[4]. RDFVector achieved the best 

performance for all 12 queries during cold runs and for 11 out of 12 queries during 

hot runs.    Table 1 summarizes our results for the Barton dataset. 

Table 1. Average query times for Barton dataset 

9 of the 11 LUBM test cases and 3 of the 12 Barton Dataset queries involve 

inferencing, and RDFVector returned the greatest performance improvement in these 

tests.  In all of these instances, we implemented inference in the other solution by 

backward chaining.  However, we also tried materializing inference in RDF-3X (the 

next fastest solution) and this actually reduced its performance.  This shows that a 

triple store pays a query performance penalty for increasing the dataset to add inferred 

triples, and RDFVector does not.  Furthermore, RDFVector was also faster in the tests 

not involving inference.  

 RDFVector RDF-3X VP PSO SPO 

Average(hot) 1.02 1.76 3.53 3.28 4.12 

Geo. Mean(hot) 0.72 0.97 2.01 2.21 3.21 

Average(cold) 1.54 4.10 4.68 4.51 5.68 

Geo. Mean(cold) 1.08 3.24 3.41 3.67 5.07 



 

We also tested the four trade-offs we were able to identify: storage space, memory 

consumption, time to add triples, time to delete triples.  Using vector compression, the 

size of the Barton Dataset was 3.4GB.  The maximum memory consumption was 

3.54G to perform all the tests in this paper. The time to add 1 million triples to LUBM 

was 71 seconds, and the time to delete 1 million triples was 26.7 seconds. 

5   Related Work  

In this section, we examine related research and products that provide RDF storage 

and querying.   

Vertical partitioning[1] is a schema using column store relational databases.  
Vertical partitioning creates a two column table for each property, sorted by subject.  

Vertical partitioning is similar to the PSTable, and provides subject-subject merge 

joins. 

RDF-3X[4] uses a triple store schema combined with indexes, histograms and 

query optimization. RDF-3X uses its own persistence mechanism, and does not 

materialize inference.     

Hexastore[2] is a main memory sextuple indexing structure for RDF datasets.  

RDFKB implements 2 of these indices with our bit vector tables.  By providing 

secondary indexing on each table and the triples table, we emulate the other four 

indices.  

Jena[8] allows inferred triples to be forward chained and data to be persisted in a 

relational database.  However, Jena defines the schema for persistence so it is 
restricted to a triple store schema.  Furthermore, Jena will require inference to be 

reprocessed in the event of updates to the dataset.   

BitMat[11] is similar to our solution in that it uses compressed bit vectors and 

performs join operations using bit operations. BitMat combines these vectors into a 

complete in-memory bit matrix.  BitMat cannot support additions and deletions 

without recreating the entire bit matrix.  Their architecture requires upfront 

knowledge of the set of common subject and object URIs in order to generate the 

correct matrix indices necessary to perform subject-object joins.  Therefore, additions 

cannot be supported because if a URI is added as a subject and object, the bit matrix 

would have to be recreated.  Additionally, BitMat provides persistence by storing an 

image of its memory.  BitMat is able to load this image fairly efficiently, but load 
time is still large enough that RDFKB will always achieve better performance time on 

cold runs.   

For uncertainty reasoning, we have relied on the final report from [9], studying all 

of the different solutions and use cases described in this collaborative effort. 

6    Future Work 

The first area for future work is uncertainty reasoning.  Existing research has 

proposed ontology definitions that include the probability that the inference applies. 



 

We will add thresholds that allow vectors to be materialized with probability (1 in the 

vector will mean the triple is known with probability>=threshold). We plan to 

calculated all inferred triples, and probabilities at add time and stored, and support 

queries that select or rank by probability. 

A second area for future work is cloud computing. In RDFVector, a significant 

portion of query time is spent accessing bit vectors. Once all the bit vectors have been 
retrieved, the remaining steps of the query plan, such as joins, can be performed in 

main memory through simple bit operations. Hadoop[10] could be used to distribute 

the bit vectors reads across a grid of computers, as each vector can be read separately. 

Join operations would be performed during the MapReduce processing.   

7   Conclusion 

We have proposed a solution for querying RDF datasets that is efficient and scalable. 

Our bit vector solution is novel and contributes significantly to the field.  RDFVector 

stores inferred triples without a performance penalty. This enables simple inference 

queries with exceptional performance.  Our experimental results show that our 

solution consistently outperforms vertical partitioning, triple store and RDF-3X. We 

tested 23 different queries on two large dataset benchmarks. The degree of 

performance improvement increases with the size of the dataset, showing that our 

solution is scalable. Inference queries provide even greater performance improvement, 

showing the viability of our inference solution.  

Migrating to a cloud computing environment will further improve our scalability.  
Adding uncertainty reasoning will enable RDFVector to retrieve more information 

than available from state of the art RDF storage solutions. 
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