

RDFVector: An Efficient and

Scalable Schema for Semantic Web

Knowledge Bases

James P. McGlothlin

The University of Texas at Dallas
Richardson, TX, USA

jpmcglothlin@utdallas.edu

1 Problem and Motivation

As the semantic web grows in popularity and enters the mainstream of computer

technology, RDF(Resource Description Framework) datasets are becoming larger and

more complex. As datasets grow larger and more datasets are linked together,

scalability becomes more important. As more complex ontologies are developed,
there is growing need for efficient queries that handle inference. In areas such as

research, it is vital to be able to perform queries that retrieve not just facts but also

inferred knowledge and uncertain information.

Currently, scalability and performance issues limit the semantic web from reaching

its full potential. The primary goal of RDFVector is to improve the performance of

queries against large RDF datasets, including queries that involve inferred knowledge

and probabilistic reasoning. RDFVector is a new persistent data model using bit

vectors that is highly efficient. This design allows us to store inferred knowledge

with no penalty. Queries become simpler and more efficient.

2 Proposed Approach

Figure 1 provides a high level diagram of our architecture. Double boxes indicate

tables. The process flow is clearly indicated by the directional arrows. The solid

arrows indicate actions that can change data, and the dashed arrows query data.

The add and delete actions operate against the triples table. The triples table calls
the inference engine to add or delete inferred triples. After determining triples to add

or delete, the inference engine calls the triples table to perform the action. This cycle

demonstrates the recursive nature of our inference solution.

One can see from this diagram that three tables provide the core RDFKB schema:

the triples table, PSTable and POTable. There is a single one way arrow connecting

them showing that all updates to the bit vectors are triggered by the triples table. The

query engine supports the user's queries and utilizes the bit vector tables to execute

the queries efficiently.

Fig. 1. Architectural Overview of RDFVector

At this point we would like to define our bit vector tables in more detail. The
POTable includes four columns: Property, Object, SubjectBitBector and BitCount.

The SubjectBitVector has a 1 representing every subject that appears with this

property and object in a triple in the dataset. Each URI is dictionary-encoded to a

unique identification number that represent the index into the bit vectors. For

example, all subjects matching <?s type text> can be retrieved from a single tuple in

the POTable and returned as a single bit vector, indexed by the identification

numbers. Joins can be performed as and operations against these bit vectors. The

BitCount is simply the number of on bits in the vector. We use this information to

determine selectivity factors during query optimization. It also important to note that

we keep the vector compressed. As the vectors are quite sparse, this substantially

reduces memory and storage requirements. Similarily, the PSTable includes property,
subject, ObjectBitVector, and bitCount.

Our design is to execute inference at addition time rather than query time.

Consider the triple: <Professor0 type AssociateProfessor>. The LUBM ontology

file[5] will allow us to infer four additional triples:<Professor0 type Professor>,

<Professor0 type Faculty>, <Professor0 type Employee>, <Professor0 type

Person>. Our strategy is to store all inferred triples in the database. Inference rules

register with the system and are called when triples are added, so that inferred

knowledge can be added as well. Thus, all inferred triples are stored in the database

and available to queries. There are 21 subclasses of Person in the LUBM ontology.

Thus, to query all persons using a schema such as vertical partitioning or RDF-3X

requires 21 subqueries and 20 unions. Our solution is both simpler and more
efficient; we can query all persons by retrieving a single type from the POTable. No

unions or subqueries are required. Most database schemata pay a query performance

penalty based on the size of the dataset. Because RDFVector already includes bits in

the vectors for every possible combination of known subject, objects, and properties,

there is no such penalty.

User

Add

Delete
Query

Triples

Inference
Engine

Inference Rules

Query

Engine

POTable

PSTable

Ontology

3 Evaluation Methodology

The goal of RDFVector is efficiency and scalability. Therefore, we evaluate our

solution by testing the performance of queries against standardized datasets, and we

compare this performance to the current state of the art solutions. We test using hot

and cold runs, and, for comparison, we utilize source code from the existing research
projects or accepted evaluation research such as [3].

We also execute experiments to test tradeoffs including storage space and memory

consumption. For additions and deletions, we use cross validation to select and test

subsets of the dataset, and we measure the time to add or delete the selected triples.

4 Query Evaluation and Performance Results

We have implemented RDFVector using the MonetDB[7] database and tested it on

a single machine. Our current implementation includes support for inference, for

additions and for deletions. We implemented and evaluated experiments with two

benchmarks: the Lehigh University Benchmark(LUBM) [5] and the Barton dataset[6].

All of our tests were performed on a Dell M6400 laptop with 8GB RAM.

The LUBM dataset is a synthetic dataset, which allowed us to vary the number of

triples in the dataset from 1 to 44 million triples to test scalability. We tested 11

LUBM queries against vertical partitioning and triple store solutions. RDFVector

achieved the best performance in all 11 test cases. The performance improvement

grew as the dataset size was increased, demonstrating scalability. RDFVector
improved performance by over 80.0% in every query for the 44 million triples dataset.

The Barton dataset is an RDF representation of the MIT library catalog. We tested

with all 12 queries defined in [3], and compared our results with triple store (PSO and

SPO ordered), vertical partitioning[1] and RDF-3X[4]. RDFVector achieved the best

performance for all 12 queries during cold runs and for 11 out of 12 queries during

hot runs. Table 1 summarizes our results for the Barton dataset.

Table 1. Average query times for Barton dataset

9 of the 11 LUBM test cases and 3 of the 12 Barton Dataset queries involve

inferencing, and RDFVector returned the greatest performance improvement in these

tests. In all of these instances, we implemented inference in the other solution by

backward chaining. However, we also tried materializing inference in RDF-3X (the

next fastest solution) and this actually reduced its performance. This shows that a

triple store pays a query performance penalty for increasing the dataset to add inferred

triples, and RDFVector does not. Furthermore, RDFVector was also faster in the tests

not involving inference.

 RDFVector RDF-3X VP PSO SPO

Average(hot) 1.02 1.76 3.53 3.28 4.12

Geo. Mean(hot) 0.72 0.97 2.01 2.21 3.21

Average(cold) 1.54 4.10 4.68 4.51 5.68

Geo. Mean(cold) 1.08 3.24 3.41 3.67 5.07

We also tested the four trade-offs we were able to identify: storage space, memory

consumption, time to add triples, time to delete triples. Using vector compression, the

size of the Barton Dataset was 3.4GB. The maximum memory consumption was

3.54G to perform all the tests in this paper. The time to add 1 million triples to LUBM

was 71 seconds, and the time to delete 1 million triples was 26.7 seconds.

5 Related Work

In this section, we examine related research and products that provide RDF storage

and querying.

Vertical partitioning[1] is a schema using column store relational databases.
Vertical partitioning creates a two column table for each property, sorted by subject.

Vertical partitioning is similar to the PSTable, and provides subject-subject merge

joins.

RDF-3X[4] uses a triple store schema combined with indexes, histograms and

query optimization. RDF-3X uses its own persistence mechanism, and does not

materialize inference.

Hexastore[2] is a main memory sextuple indexing structure for RDF datasets.

RDFKB implements 2 of these indices with our bit vector tables. By providing

secondary indexing on each table and the triples table, we emulate the other four

indices.

Jena[8] allows inferred triples to be forward chained and data to be persisted in a

relational database. However, Jena defines the schema for persistence so it is
restricted to a triple store schema. Furthermore, Jena will require inference to be

reprocessed in the event of updates to the dataset.

BitMat[11] is similar to our solution in that it uses compressed bit vectors and

performs join operations using bit operations. BitMat combines these vectors into a

complete in-memory bit matrix. BitMat cannot support additions and deletions

without recreating the entire bit matrix. Their architecture requires upfront

knowledge of the set of common subject and object URIs in order to generate the

correct matrix indices necessary to perform subject-object joins. Therefore, additions

cannot be supported because if a URI is added as a subject and object, the bit matrix

would have to be recreated. Additionally, BitMat provides persistence by storing an

image of its memory. BitMat is able to load this image fairly efficiently, but load
time is still large enough that RDFKB will always achieve better performance time on

cold runs.

For uncertainty reasoning, we have relied on the final report from [9], studying all

of the different solutions and use cases described in this collaborative effort.

6 Future Work

The first area for future work is uncertainty reasoning. Existing research has

proposed ontology definitions that include the probability that the inference applies.

We will add thresholds that allow vectors to be materialized with probability (1 in the

vector will mean the triple is known with probability>=threshold). We plan to

calculated all inferred triples, and probabilities at add time and stored, and support

queries that select or rank by probability.

A second area for future work is cloud computing. In RDFVector, a significant

portion of query time is spent accessing bit vectors. Once all the bit vectors have been
retrieved, the remaining steps of the query plan, such as joins, can be performed in

main memory through simple bit operations. Hadoop[10] could be used to distribute

the bit vectors reads across a grid of computers, as each vector can be read separately.

Join operations would be performed during the MapReduce processing.

7 Conclusion

We have proposed a solution for querying RDF datasets that is efficient and scalable.

Our bit vector solution is novel and contributes significantly to the field. RDFVector

stores inferred triples without a performance penalty. This enables simple inference

queries with exceptional performance. Our experimental results show that our

solution consistently outperforms vertical partitioning, triple store and RDF-3X. We

tested 23 different queries on two large dataset benchmarks. The degree of

performance improvement increases with the size of the dataset, showing that our

solution is scalable. Inference queries provide even greater performance improvement,

showing the viability of our inference solution.

Migrating to a cloud computing environment will further improve our scalability.
Adding uncertainty reasoning will enable RDFVector to retrieve more information

than available from state of the art RDF storage solutions.

8 References

1. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable Semantic Web Data

Management Using Vertical Partitioning. In VLDB(2007) 411-422
2. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data

management. PVLDB(2008) 1008-1019
3. Sidirourgos, L., Goncalves, R., Kersten, M.L., Nes, N., Manegold, S.: Column-store support

for RDF data management: not all swans are white. PVLDB(2008) 1553-1563
4. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. PVLDB(2008) 647-659
5. Lehigh University Benchmark (LUBM), http://swat.cse.lehigh.edu/projects/lubm
6. The Barton dataset, http://simile.mit.edu/wiki/Dataset:_Barton
7. MonetDB, http://monetdb.cwi.nl

8. Jena – A Semantic Web Framework for Java, http://jena.sourceforge.net
9. W3C Uncertainty Reasoning Incubator Group , http://www.w3.org/2005/Incubator/urw3
10. Hadoop, http://hadoop.apache.org
11. Atre, M., Hendler, J.A.: BitMat: A Main-memory Bit-matrix of RDF Triples. In

ISWC(2009).
12. Costa, P.C.G.D., Laskey, K.B., Laskey, K.J.: PR-OWL: A Bayesian Ontology Language for

the Semantic Web. In URSW (LNCS Vol.)(2008) 88-107

