
Socio-Intentional Architectures for Multi-Agent
Systems: the Mobile Robot Control case

Paolo Giorgini1 Manuel Kolp2 John Mylopoulos3

1 Department of Information and Communication Technology - University of Trento,
via Sommarive, 14, I-38100, Trento, Italy, tel.: 39-0461-88 2052, pgiorgini@science.unitn.it

2IAG - Information Systems Research Unit - University of Louvain, 1 Place des Doyens,
B-1348 Louvain-La-Neuve, Belgium, tel.: 32-10 47 83 95, kolp@isys.ucl.ac.be

3 Department of Computer Science - University of Toronto, 6 King’s College Road
M5S 3H5, Toronto, Canada, tel.: 1-416-978 5180, jm@cs.toronto.edu

Abstract. This paper proposes architectural styles for multi-agent systems
(MAS) which adopt concepts from organization theory and strategic alliances.
These styles are socio-intentional in the sense that they consist of actors who
have goals to fulfil and social dependencies describing their obligations. They
are represented in i*, a framework designed to model social and intentional
primitives and formalized in terms of Formal Tropos. Each proposed style is
evaluated with respect to a set of agent software qualities, such as predictability,
adaptability and openness. The use of the styles is illustrated and contrasted
with a software architecture for mobile robots reported in the literature.

1 Introduction

System architectures describe software system at a macroscopic level in terms of a
manageable number of subsystems/components/modules inter-related through data
and control dependencies. The design of software architectures has been the focus of
considerable research for the past decade which has resulted in a collection of well-
understood architectural styles and a methodology for evaluating their effectiveness
with respect to particular software qualities. Examples of styles are pipes-and-filters,
event-based, layered and the like [Gar93]. Examples of software qualities include
maintainability, modifiability, portability, etc. [Bas98]. Multi-Agent System (MAS)
architectures can be considered as organizations (see e.g., [Fer98, Fox81, Mal88])
composed of autonomous and proactive agents that interact and cooperate with one
another in order to achieve common or private goals. Since the fundamental concepts
of multi-agent systems are intentional and social, rather than implementation-oriented,
we turn to theories which study social and intentional structures for motivation and
insights. But, what kind of social theory should we turn to? There are theories that
study group psychology, communities and social networks. Such theories study social
and intentional structure as an emergent property of a social context. Instead, we are
interested in socio-intentional structures that emerge from a design process. For this,
we turn to organizational theory and strategic alliances for guidance. The purpose of
this paper is to present further work on the development of a set of architectural styles
for multi-agent systems motivated by these theories. This paper builds on earlier work

reported in [Kol01]. The styles are modeled using the strategic dependency model of
i* [Yu95], and they are further specified in Formal Tropos [Fux01a]. To illustrate
these styles, we use a case study comparing socio-intentional with conventional
software architectural styles for mobile robot control software.

This research is being conducted within the context of the Tropos project [Cas01,
Gio01]. Tropos adopts ideas from MAS technologies, mostly to define the detailed
design and implementation phases, and ideas from requirements engineering, where
agents/actors and goals have been used heavily for early requirements analysis
[Dar93, Yu95]. In particular, Tropos is founded on Eric Yu’s i* modeling framework
which offers actors (agents, roles, or positions), goals, and actor dependencies as
primitive concepts for modeling an application during early requirements analysis.
The key premise of the project is that actors and goals can be used as fundamental
concepts for analysis and design during all phases of software development, not just
requirements analysis.

Section 2 presents samples of socio-intentional structures that have been identified
from organizational theory and strategic alliances and offers some specifications in
Formal Tropos. Section 3 introduces the mobile robot control case study, identifies
relevant software qualities for mobile robots and reports on earlier work that use
conventional architectures. It then applies the socio-intentional structures proposed
here and compares these with some conventional architectural solutions with respect
to identified qualities. Finally, Section 4 discusses related work, and Section 5
summarizes the results of the paper and points to further work.

2 Socio-Intentional Structures

Organization theory (e.g., [Min92, Sco98]) and strategic alliances (e.g., [Gom96,
Seg96,Yos95]) study alternatives to model (business) organizations. An
organizational style represents a possible social way to structure the stakeholders –
individuals, physical or social systems – of an organization in order to meet its
strategic goals and intentions.

The structure of an organization defines the social roles of the various components
(actors), their responsibilities for tasks and goals, the way in which the resources are
allocated, and the strategies that must be adopted. Moreover, the structure defines how
to coordinate the activities of the various actors and how they depend on each other.
Social dependencies can involve both actors of the organization and actors of the
environment in which the organization is located (e.g., partners, competitors, clients,
etc.).

An organizational style offers also a set of design parameters that can be selected
and turned in order to influence the division of labor and the coordinating
mechanisms, thereby affecting how the organization functions. Design parameters
include, among others, tasks assignment, standardization, supervision and control.
The organization designer can use these parameters in order to deal with, so called,
situational or contingency factors, namely organizational states or conditions that are
associated with the use of certain design parameters. Contingency factors can involve
age and size of the organization, the technical system it uses, and various aspects of
the environment, such as stability, complexity, diversity, and hostility.

We propose a catalogue of socio-intentional structures adopting (some of) the
styles offered in organization theory and strategic alliances for designing multi-agent
architectures. In the following we present briefly some of these styles using the
strategic dependency model of i*.

A strategic dependency model is a graph, where each node represents an actor (an
agent, position, or role within an organization) and each link between two actors
indicates that one actor depends on another for a goal to be fulfilled, a task to be
carried out, or a resource to be made available. We call the depending actor of a
dependency the depender and the actor who is depended upon the dependee. The
object around which the dependency centers (goal, task or resource) is called the
dependum. The model distinguishes among four types of dependencies – goal-, task-,
resource-, and softgoal-dependency – based on the type of freedom that is allowed in
the relationship between depender and dependee. Softgoals are distinguished from
goals because they do not have a formal definition, and are amenable to a different
(more qualitative) kind of analysis [Chu00].

Apex

Standardize

Strategic
Management

Agency
Middle

Supervise

Operational
Core

Service
Non−operational

Logistics SupportControl
Structure
Techno−

Fig. 1. Structure-in-5

For instance, in Figure 1, the Technostructure, Middle Agency and Support actors
depend on the Apex for strategic management. Since the goal Strategic Management
does not have a precise description, it is represented as a softgoal (cloudy shape). The
Middle Agency depends on the Technostructure and Support respectively through goal
dependencies Control and Logistics represented as oval-shaped icons. The
Operational Core is related to the Technostructure and Support actors through the
Standardize task dependency and the Non-operational Service resource dependency,
respectively.

The structure-in-5 (Figure 1) is a typical organizational style. At the base level,

the Operational Core takes care of the basic tasks — the input, processing, output
and direct support procedures — associated with running the organization. At the top

lies the Apex, composed of strategic executive actors. Below it, sit the
Technostructure, Middle Agency and Support actors, who are in charge of
control/standardization, management and logistics procedures, respectively. The
Technostructure component carries out the tasks of standardizing the behavior of
other components, in addition to applying analytical procedures to help the
organization adapt to its environment. Actors joining the apex to the operational core
make up the Middle Agency. The Support component assists the operational core for
non-operational services that are outside the flow of operational tasks and procedures.

To specify the structure and formal properties of the style, we use Formal Tropos
[Fux01a] which offers the primitive concepts of i* augmented with a rich
specification language inspired by KAOS [Dar93]. Formal Tropos offers a textual
notation for i* models and allows one to describe dynamic constraints among the
different elements of the specification in a first order linear-time temporal logic.
Moreover, Formal Tropos has a precise semantics which makes Tropos specifications
amenable to formal analysis.

For example, in the following, we focus on the Operational Core specification with
respect to the performance of basic tasks. The following specification says that each
basic task must be performed within a precise time period that depends on the type of
the task. For instance, providing raw materials is a task that must be performed before
the production process begins.

Entity BasicTask
 Attribute constant taskType: TaskType, resourceNeed: Resource, performed: Boolean,

timePeriod: Time, output: OutputType
Entity Resource
 Attribute constant resourceType:ResourceType
Actor OperationalCore
 Attribute optional resource: Resource
 Goal PerformBasicTasks
 Mode achieve
 Fulfillment definition
 ∀ task:BasicTask (Perform(self,task) ^ TimePerforming(task)≤ task.time)

[each basic task in the organization will be performed by the Operational Core within the
allotted time period for that type of task]

The joint venture style (Figure 2a) is a more decentralized style that involves an
agreement between two or more principal partners in order to obtain the benefits
derived from operating at a larger scale and reusing the experience and knowledge of
the partners. Each principal partner can manage and control itself on a local
dimension and interact directly with other principal partners to exchange, provide and
receive services, data and knowledge. However, the strategic operation and
coordination is delegated to a Joint Management actor, who coordinates tasks and
manages the sharing of knowledge and resources.

Resource
Exchange

Contractual
Agreement

Support

Business
Processes

Strategic
Decision
Making

Corporate

Operational

Coordination

Management
Joint

Activities

Knowledge
Sharing

Partner_1 Partner_2

Partner_3 Partner_n

Start Bid
at the lowest

price

Run
Auction

Bidder_1 Bidder_2

Bid Higher No Higher
Bid

Bidder_n

Auctioneer

Issuer

Best

Bid
PossibleService/

Product

Fig. 2. Joint Venture (a) and Bidding (b)

The bidding style (Figure 2b) is founded on competition mechanisms and actors

behave as if they were taking part in an auction. The Auctioneer actor runs the whole
show. It advertises the auction issued by the auction Issuer, receives bids from bidder
actors and ensure communication and feedback with the auction Issuer. The auction
Issuer is responsible for issuing the bidding.

The vertical integration style (Figure 3a) merges, backward or forward, several
actors engaged in achieving or realizing related goals or tasks at different stages of a
production process. An Organizer merges and synchronizes interactions/dependences
between participants, who act as intermediaries. Figure 3a presents a vertical
integration style for the domain of goods distribution. Provider is expected to supply
quality products, Wholesaler is responsible for ensuring their massive exposure, while
Retailer takes care of the direct delivery to the Consumers.

The hierarchical contracting style (Figure 3b) identifies coordinating mechanisms
that combine arm’s-length agreement features with aspects of pyramidal authority.
Coordination here uses mechanisms with arm’s-length (i.e., high independence)
characteristics involving a variety of negotiators, mediators and observers. These
work at different levels and handle conditional clauses, monitor and manage possible
contingencies, negotiate and resolve conflicts and finally deliberate and take
decisions. Hierarchical relationships, from the executive apex to the arm’s-length
contractors (top to bottom) restrict autonomy and underlie a cooperative venture
between the contracting parties. Such, admittedly complex, contracting arrangements
can be used to manage conditions of complexity and uncertainty deployed in high-
cost-high-gain (high-risk) applications.

For a more detailed presentation of organizational styles (takeover, hierarchical
contracting, bidding, arm’s-length, pyramid, flat structure, co-optation, …) we have
defined, see [Fux01].

Wholesaler

Provider

Consumer

Organizer

Products

Market
Evaluation

Supply

Retailer

Acquire

Detect
Products

Products

Products Products

Products
Deliver

Massive
Supply

Directives

Direct Access

Quality Wide Access
to Market

to Consumer

Interest in

Controller

Negociator Deliberator

Routing Brokering

Observer

Executive

Mediator

Conflict
Solving

Contractor_1 Contractor_2 Contractor_3 Contractor_n

Authority
Strategic
Decisions

Coordinate

Monitoring Matching

Raw
Data

Fig. 3. Vertical Integration (a) and Hierarchical Contracting (b)

3 Architectures for Mobile Robot Control

In this section we apply our socio-intentional architectures to design the architecture
of a simple mobile robot control software and compare them to conventional
architectural solutions.

The problem focuses on embedded real-time systems. Mobile robot control
systems must deal with external sensors and actuators and must respond in time
commensurate with the activities of the system in its environment.

Consider the following activities [Sha96] an office delivery mobile robot typically
has to accomplish: acquiring the input provided by sensors, controlling the motion of
its wheels and other moveable part, planning its future path. In addition, a number of
factors complicate the tasks: obstacles may block the robot’s path, sensor inputs may
be imperfect, the robot may run out of power, mechanical limitations may restrict the
accuracy with which the robot moves, the robot may manipulate hazardous materials,
unpredictable events may leave little time for responding.

3.1 Agent Software Qualities

With respect to the activities and factors enumerated above, the following agent
software qualities can be stated for an office delivery mobile robot’s architecture
[Sha96].

SQ1 - Coordinativity. Agents must be able to coordinate with other agents to
achieve a common purpose or simply their local goals.

A mobile robot has to coordinate the actions it deliberately undertakes to achieve
its designated objective (e.g., collect a sample of objects) with the reactions forced on
it by the environment (e.g., avoid an obstacle).

SQ2 - Predictability. Agents can have a high degree of autonomy in the way they
undertake action and communication in their domains. It can be then difficult to
predict individual characteristics as part of determining the behavior of the system at
large.

For a mobile robot, never will all the circumstances of the robot's operation be fully
predictable. The architecture must provide the framework in which the robot can act
even when faced with incomplete or unreliable information (e.g., contradictory sensor
readings).

SQ3 – Failability-Tolerance. A failure of one agent does not necessarily imply a
failure of the whole system. The system then needs to check the completeness and the
accuracy of data, information and transactions. To prevent system failure, different
agents can, for instance, implement replicated capabilities.

The architecture must prevent the failure of the robot’s operation and its
environment. Local problems like reduced power supply, dangerous vapors, or
unexpectedly opening doors should not necessarily imply the failure of the mission.

SQ4 - Adaptability. Agents must to adapt to modifications in their environment.
They may allow changes to the component’s communication protocol, dynamic
introduction of a new kind of component previously unknown or manipulations of
existing agents.

Application development for mobile robots frequently requires experimentation
and reconfiguration. Moreover, changes in robot assignments may require regular
modification.

3.2 Conventional Architectures

For sample classical solutions, due to lack of space, we only examine three major
conventional architectures - the layered architecture [Sim97], control loops [Loz90]
and task trees [Sim92] - that have been implemented on mobile robots.

Layered Architecture. A classical layered architecture is depicted in Figure 4a. At
the lowest level, reside the robot control routines (motors, joints, ...). Levels 2 and 3
deal with the input from the real world. They perform sensor interpretation (the
analysis of the data from one sensor) and sensor integration (the combined analysis of
different sensor inputs). Level 4 is concerned with maintaining the robot's model of
the world. Level 5 manages the navigation of the robot. The next two levels, 6 and 7,
schedule and plan the robot's actions. Dealing with problems and replanning is also
part of level 7 responsibilities. The top level provides the user interface and overall
supervisory functions.

Control loop. A controller component initiates the robot actions. Since mobile
robots have responsibilities with respect to their operational environment, the
controller also monitors the consequences of the robot actions adjusting the future
plans based on the return information (Figure 4b).

Task Trees. The architecture is based on hierarchies of tasks. Parent tasks initiate
child tasks. For instance the task Gather Object initiates the tasks Go to Position,
Grab Object, Lift Object, the task Go to Position initiates Move Left and Move
Forward and so on. The software designer can define temporal dependencies between
pairs of tasks. An example is: "Grab Object must complete before Lift Object starts."
These features permit the specification of selective concurrency.

Supervisor

Global Planning

Control

Navigation

Real-World Modeling

Sensor Integration

Sensor Interpretation

Robot Control

Environment

Actuators Sensors

Environment

Controller

Active Robot Components

Fig 4. Mobile robot layered [Sim97] (a) and control loop [Loz90] (b) architectures

3.3 Socio-Intentional Architectures

We are currently developing and testing socio-intentional architectures for a miniature
office delivery robot (See Figure 5) using the Lego Mindstorms Robotics Invention
Systems [Leg02] and the Legolog programming platform based on the Golog Planner
[Leg00]. Currently, we are testing two architectures working with abstractions
reminiscent of those encountered in the layered architecture: the structure-in-5 and the
joint-venture.

Structure-in-5. Figure 6 depicts a structure-in-5 robot architecture in i*. The
control routines component is the operational core managing the robot motors, joints,
etc. Planning/Scheduling is the technostructure component scheduling and planning
the robot’s actions. The real world interpreter is the support component composed of
two sub-components: Real world sensor accepts the raw input from multiple sensors
and integrates it into a coherent interpretation while World Model is concerned with

maintaining the robot’s model of the world and monitoring the environment for
landmarks. Navigation is the middle agency component, the central intermediate
module managing the navigation of the robot. Finally, the user-level control is the
human-oriented strategic apex providing the user interface and overall supervisory
functions.

Fig. 5. Legolog Socio-Intentional Architectures for Lego Mindstorms Robots in Action

Joint Venture. Following the style depicted in Figure 2a, the robot architecture is
organized around a central joint manager assuming the overall supervisor/coordinator
role for the other agent components: a high level path planner, a module that monitors
the environment for landmarks, a low level path planner, a motor controller and a
perception subsystem that receives sensors data and interprets it. As said in Section 2,
each of these agent components can also interact directly with each other.

Planning/
Scheduling

Coordination

Control
Routines

User-level
Control

Navigation

Feedback

Real world
Sensor

World

World Inputs
Handle Real

Real World
Interpretor

DirectPilot

Real-time
Navigation

Adjustments

Human
Control

Model

Synchronize

Assignation
Mission

Mission
Configuration

Parameters

Fig 6. A structure-in-5 mobile robot architecture.

3.4 Evaluation

We evaluate each of the five styles – control loop, layered architecture, task trees,
structure-in-5 and joint-venture described in Sections 3.2 and 3.3 with respect to the
four agent software quality attributes identified in Section 3.1. Table 1 summarizes
the strengths and weaknesses of the five reviewed architectures.

Table 1. Strengths and Weaknesses of Robot Architectural Solutions

Coordinativity. The simplicity of the control loop is a drawback when dealing

with complex tasks since it gives no leverage for decomposing the software into more
precise cooperative agent components.

The layered architecture style suggests that services and requests are passed
between adjacent agent layers. However, information exchange is actually not always
straight-forward. Commands and transactions may often need to skip intermediate
layers to establish direct communication and coordinate behavior.

A task tree permits a clear-cut separation of action and reaction. It also allows
incorporation of concurrent agents in its model that can proceed at the same time to.
Unfortunately, components have little interaction with each other.

Unlike the previous architectures, the structure-in-5 separates the data (sensor
control, interpreted results, world model) from control (motor control, navigation,
scheduling, planning and user-level control). The architecture improves coordinativity
among components by differentiating both hierarchies – data is implemented by the
support component, while control is implemented by the operational core,
technostructure, middle agency and strategic apex – as shown in Figure 7.

In the joint venture, each partner component interacts via the joint manager for
strategic decisions. Components indicate their interest, and the joint manager returns
them such strategic information immediately or mediates the request to some other
partner component.

Predictability. The control loop only reduces the unpredictable through iteration.
Actions and reactions eliminate possibilities at each turn. Unfortunately, more subtle
steps are needed, the architecture offers no framework for delegating them to separate
agent components.

In the layered architecture, the existence of abstraction layers addresses the need
for managing unpredictability. What is uncertain at the lowest level become clear with
the added knowledge in the higher layers.

 Loop Layers Task Tree S-in-5 Joint-Vent.

Coordinativity - - +- ++ ++

Predictability +- + +- + ++

Failability-Tol. + +- + + +

Adaptability +- +- + + +-

How task trees address predictability is less clear. If imponderables exist, a
tentative task tree can be built, to be adapted by exception handlers when the
assumptions it is based on turn out to be erroneous.

Like in the layered architecture, the existence of different abstraction levels in the
structure-in-5 addresses the need for managing unpredictability. Besides, contrary to
the layered architecture, higher levels are more abstract than lower levels: lower levels
only involve resources and task dependencies while higher ones propose intentional
(goals and softgoals) relationships.

In the joint-venture, the central position and role of the joint manager is a means
for resolving conflicts and prevent unpredictability in the robot’s world view and
sensor data interpretation.

Failability-Tolerance. In the control loop, it is supported in the sense that its
simplicity makes duplication of components and behavior easy and reduces the
chance of errors creeping into the system.

In the layered architecture, failability-tolerance could be served, when the robot
architect strives not do something, by incorporating many checks and balances at
different levels into the system. Again the drawback is that control commands and
transactions may often need to skip intermediate layers to check the system behavior.

In the task trees, exception, wiretapping and monitoring features can be integrated
to take into account the needs for integrity, reliability and completeness of data.

In the structure-in-5, checks and control mechanisms can be integrated at different
abstractions levels assuming redundancy from different perspectives. Contrary to the
layered architecture, checks and controls are not restricted to adjacent layers. Besides,
since the structure-in-5 permits to separate the data and control hierarchies, integrity
of these two hierarchies can also be verified independently.

The jointure venture, through its joint manager, proposes a central message
server/controller. Like in the task trees, exception mechanism, wiretapping
supervising or monitoring can be supported by the joint manager to guarantee non-
failability, reliability and completeness.

Adaptability. In the control loop, the robot components are separated from each
other and can be replaced or added independently. Unfortunately, precise
manipulation has to take place inside the components, at a level detail the architecture
does not show.

In the layered architecture, the interdependencies between layers prevent the
addition of new components or deletion of existing ones. The fragile relationships
between the layers can become more difficult to decipher with change.

Task trees, through the use of implicit invocation, make incremental development
and replacement of component straightforward: it is often sufficient to register new
components, no existing one feels the impact.

The structure-in-5 separates independently each typical component of the robot
architecture isolating them from each other and allowing dynamic manipulation. The
structure-in-5 is restricted to no more than 5 major components then, as in the control
loop, more refined tuning has to take place inside the components.

In the joint venture, manipulation of partner components can be done easily by
registering new components to the joint manager. However, since partners can also
communicate directly with each other, existing dependencies should be updated as
well. The joint manager cannot be removed due to its central position.

To cope with these quality attributes and select the appropriate structure, more
refined analysis and decomposition can be done with frameworks like KAOS [Dar93]
or the NFR framework [Chu00]. In the NFR framework, we go through a means-ends
refining the identified quality attributes to sub-attributes that are more precise and
evaluate social structures against them, as shown partially in Figure 5.

Other Styles

... ...

... ...!

!

! Completness
Reliability

Coordinativity

Redundancy

Participability

+

Failability-Tolerance Other Quality Attributes

Claim
["External Agents

can spoof
the system"]

Joint Venture Structure in 5

Distributivity

+

++

+

+

-
+

-

++

+

Commonality

Fig. 7. Partial Evaluation for Organizational Styles

The evaluation results in contribution relationships from the social structures to the
quality attributes, labeled “+”, “++”, “-”, “--” that mean respectively partially
satisfied, satisfied, partially denied and denied. Design rationale is represented by
claims drawn as dashed clouds. They make it possible for domain characteristics such
as priorities to be considered and properly reflected into the decision making process.
Exclamation marks are used to mark priority attributes while a check-mark “33”
indicates an accepted attribute and a cross “±±” labels a denied attribute.

Relationships types (AND, OR, ++, +, -, and --) between quality attributes are
formalized to offer a tractable proof procedure. Attributes can be labeled as Satisfied
(S), Partially Satisfied (PS), Denied (D), or Partially Denied (PD), and are not
required to be logically exclusive since they may be contradictory. Table 2 shows
propagation rules for ++, +, -, and -- relationships with respect to satisfiability (S) and
partial satisfiability (PS). A dual table can be given for the deniability and the partial
deniability.

 ++ + - --

S S PS PD D

PS PS PS PD PD

Table 2. Propagation rules for S and PS

Under the assumption that D < PD < PS < S, we use min-value and max-value
functions respectively for AND and OR relationships.

We are currently working on two different approaches. The first is a logic approach
in which S, PS, PD, and D are four truth values and each node can assume the values
S (or PS) and D (or PD) (conflicts are allowed; e.g., a node can be satisfied and
partially denied). For each type of relationship the propagation rules are defined by a

set of axioms. The second approach uses a numerical interval to define the degree of
satisfiability and deniability of a node. Here, we are working in two different
directions: one is based on the probability theory and the other on the Dempster-
Shafer theory (see, e.g, [Par94]).

The layered architecture gives precise indications as to the components expected in

a robot. The other two classical architectures (control loop and task trees) define no
functional components and concentrate on the dynamics. The organizational styles
(Structure-in-5 and Joint Venture) focus on how to organize components expected in a
robot but also on the intentional and social dependencies governing these components.
Exhaustive evaluations are difficult to be established at that point. But, considering
preliminary results we can deduce in Table 1, from the discussion in the present
section, we can argue that the Structure-in-5 and the Joint-Venture, since they are
patterns governed by organizational characteristics, fit better systems and applications
that need open and cooperative components like the mobile robot example.

5 Related Work

Other research work on multi-agent systems offers contributions on using
organization concepts such as agent (or agency), group, role, goals, tasks,
relationships (or dependencies) to model and design system architectures.

For instance, Aalaadin [Fer98] presents a model based on two level of abstraction.
The concrete level includes concepts such as agent, group and role which are used to
describe the actual multi-agent system. The methodological level defines all possible
roles, valid interactions, and structures of groups and organizations. The model
describes an organization in terms of its structure, and independently of the way its
agents actually behave. Different types of organizational behavioral requirement
patterns have been defined and formalized using concepts such as groups and roles
within groups and (inter-group and intra-group) role interactions.

In our work the concepts Aalaadin uses in the concrete level are contained in the
concept of actor. An actor can be a single or a composite agent, a position covered by
an agent, and a role covered by one or more agents. Unlike ours, Aalaadin’s proposal
does not include goals in the description of an organization. Moreover, in Aalaadin’s
work these descriptions include details (e.g., interaction languages and protocols)
which we deal with at a later stage of design, typically called detailed design.

On a different point of comparison, Aalaadin uses rules, structures and patterns to
capture respectively how the organization is expected to work, which kind of structure
fits given requirements, and whether reuse of patterns is possible. In our framework,
some rules are captured by social dependencies in terms of which one defines the
obligations of actors towards other actors. Moreover, other rules can be captured
during detailed design instead of earlier phases, i.e., early and late requirements, or
architectural design (see [Bas98]).

6 Conclusions

Designers rely on styles, patterns, or idioms, to describe the architectures of their
choice. We propose that MAS can be conceived as organizations of agents that
interact to achieve common goals. This paper proposes a catalogue of architectural
styles designing MAS architectures as socio-intentional architectures, i.e, at a macro-
and micro-level. The proposed styles adopt concepts from organization theory and
strategic alliances literature. The paper also includes an evaluation of software
qualities that are relevant to these styles. A standard case study (the mobile robot case
control) illustrates and compares them with respect to conventional architectures.

Future research directions include formalizing precisely the socio-intentional
structures that have been identified, as well as the sense in which a particular model is
an instance of such a style and pattern. We also propose to relate them to social or
agent patterns (e.g, the broker, matchmaker, embassy, facilitator, …) and lower-level
architectural components involving (software) components, ports, connectors,
interfaces, libraries and configurations [Fux01, Kol01]. We are still working on
contrasting our structures to conventional styles [Sha96] and patterns [Gam95]
proposed in the software engineering literature. To this end, as mentioned in the
paper, we are defining algorithms to propagate evidences of satisfaction and denial of
each conventional or social structure with respect to a set of non-functional
requirements.

References

[Bas98] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice, Reading,
Addison-Wesley, 1998.

[Cas01] J. Castro, M. Kolp, and J. Mylopoulos. “A Requirements-Driven Development
Methodology”, In Proc. of the 13th Int. Conf. on Advanced Information Systems
Engineering (CAiSE’01), Interlaken, Switzerland, June 2001, pp. 108-123.

[Chu00] L. K. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements in
Software Engineering, Kluwer Publishing, 2000.

[Dar93] A. Dardenne, A. van Lamsweerde, and S. Fickas. “Goal–directed Requirements
Acquisition”, Science of Computer Programming, 20, 1993, pp. 3-50.

[Fer98] J. Ferber and O. Gutknecht.“A meta-model for the analysis and design of organizations
in multi-agent systems”. In Proc. of the 3rd Int. Conf. on Multi-Agent Systems (ICMAS’98),
June, 1998.

[Fox81] M.S. Fox. “An organizational view of distributed systems”. In IEEE Transactions on
Systems, Man, and Cybernetics, 11(1):70-80, January 1981.

[Fux01] A. Fuxman, P. Giorgini, M. Kolp, and J. Mylopoulos. “Information systems as social
structures”. In Proc. of the 2nd Int. Conf. on Formal Ontologies for Information Systems
(FOIS’01), Ogunquit, USA, October 2001.

[Fux01a] A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso. “Model Checking Early
Requirements Specification in Tropos”. In Proc. of the 5th Int. Symposium on Requirements
Engineering (RE’01), Toronto, Canada, Aug. 2001.

[Gam95] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley, 1995.

[Gar93] D. Garlan and M. Shaw. “An Introduction to Software Architectures”, in Advances in
Software Engineering and Knowledge Engineering, volume I, World Scientific, 1993.

[Gio01] P. Giorgini, A. Perini, J. Mylopoulos, F. Giunchiglia and P. Bresciani. “Agent-Oriented
Software Development: A Case Study”. In Proc. of the 13th Int. Conference on Software
Engineering & Knowledge Engineering (SEKE01), Buenos Aires, Argentina, June 2001.

 [Gom96] B. Gomes-Casseres. The alliance revolution : the new shape of business rivalry,
Harvard University Press, 1996.

[Kol01] M. Kolp, P. Giorgini, and J. Mylopoulos. “An Organizational Perspective on Multi-
agent Architectures”. In Proc. of the Eighth International Workshop on Agent Theories,
architectures, and languages (ATAL’01), Seattle, USA, August 2001.

[Leg00] Legolog. At http:// www.cs.toronto.edu/cogrobo/Legolog, 2000.
[Leg02] Lego Mindstorms Robotics Invention System. At http://mindstorms.lego.com, 2002.
[Loz90] T. Lozano-Perez. Preface to Autonomous Robot Vehicles. Cox, L.J. and Wilfong G.T.,

eds, Springer Verlag, 1990.
[Mal88] T.W. Malone. “Organizing Information Processing Systems: Parallels Between Human

Organizations and Computer Systems”. In W. Zachry, S. Robertson and J. Black, eds.
Cognition, Cooperation and Computation, Ablex, 1988.

[Min92] H. Mintzberg. Structure in fives : designing effective organizations, Prentice-Hall,
1992.

[Par94]S. Parsons, “Some qualitative approaches to applying the Dempster-Shafer theory”. In
Information and Decision technologies, 19 (1994), pp 321- 337.

[Sco98] W. Richard Scott. Organizations: rational, natural, and open systems, Prentice Hall,
1998.

[Seg96] L. Segil. Intelligent business alliances: how to profit using today's most important
strategic tool, Times Business, 1996.

[Sh96] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline, Prentice Hall, 1996.

[Sim92] R. Simmons. “Concurrent Planning and Execution for Autonomous Robots”. In IEEE
Control Systems, n• 1, 1992. pp. 49-56.

[Sim98] R. Simmons, R. Goodwin, K. Haigh, S. Koenig, and J. O'Sullivan. “A modular
architecture for office delivery robots”. In Proc. of the 1st Int. Conf. on Autonomous Agents,
(Agents ’97), Marina del Rey. CA, Feb 1997, pp.245 - 252.

[Yos95] M.Y. Yoshino and U. Srinivasa Rangan. Strategic alliances : an entrepreneurial
approach to globalization, Harvard Business School Press, 1995.

[Yu95] E. Yu. Modelling Strategic Relationships for Process Reengineering, Ph.D. thesis,
Department of Computer Science, University of Toronto, Canada, 1995.

