VLE Design Characteristics:
An Expert Study

Saarland University
Chair of Management Information Systems
Daniel Mueller,
Stefan Strohmeier.
Agenda

- VLE & Design Characteristics
- Expert Study
- Implications
- Conclusions/Call for Further Research
Agenda

VLE & Design Characteristics

Expert Study

Implications

Conclusions/Call for Further Research
Virtual Learning Environments: Definition

- Virtual Learning Environments (VLE) can be understood as
 - electronic Information Systems (IS)
 - for the administrative and didactical support of learning processes
 - in vocational settings
 - by systematically providing corporate learners adequate
 - learning materials and
 - corresponding collaboration facilities so as to develop intended qualifications [8, 42, 49].
Virtual Learning Environments: Benefits

- VLE show the following benefits for corporate settings, among others:
 - efficiency,
 - individuality,
 - ubiquity,
 - convenience,
 - timeliness,
 - cost efficiency and
 - task orientation of VLE-based learning [15, 20, 41].

- Such advantages may also explain the ever increasing adoption of VLE in corporate training and development [15, 19, 48].
Virtual Learning Environments: How to Ensure VLE Success?

- The profit of applying VLE strongly depends on their appropriate development,
- implementation and
- (permanent) improvement

as this will ascertain VLE success [13, 29, 61].
VLE Design Characteristics: Definition

- VLE design characteristics are understood as
 - a set of properties inherent to VLE
 - by which they can be
 - developed,
 - implemented and
 - permanently improved [6, 7, 18, 45]
 - and which are
 - conceptually assumed or
 - empirically verified
to have a positive impact on system success.
Agenda

- VLE & Design Characteristics
- Expert Study
- Implications
- Conclusions/Call for Further Research
Expert Study: Foundation

- Expert studies are employed to gain insights in topical domains which are
 - theoretically not, or at least
 - not well developed.
- In certain respects, this applies to research into VLE design characteristics.
 - reason why: no completely developed theory of VLE design which allows for a direct elicitation of design characteristics.
- However, alternative foundations may be found in more general theories of the area of
 - general IS design or [e.g. 14, 35],
 - general IS success [e.g. 7, 45].
 These IS success theories can also be used to found design characteristic research.
Expert Study: Foundation

- The IS Success Model (ISSM) [6, 7, 40] presents general success relevant IS characteristics.
- Basically, the ISSM offers two major groups of success predictors:
 - system quality and
 - information quality [6, 7].
- The ISSM clarifies that system-related and information-related design characteristics constitute essential groups of VLE design characteristics.
- Being a general theory, the ISSM does not provide more detailed information about VLE design characteristics.
- It is hence the task of the expert study to ascertain
 - system as well as
 - information-related design characteristics of VLE empirically.
A plethora of over thirty different design characteristics could be identified.

- **Problem:** increasing number of design characteristics.
- **Hence, future research should strive for a limited set of major design characteristics.**

All identified design characteristics could be classified as either system-related or information-related.

- **Problem:** dissent concerning more concrete design characteristics.
- **Problem:** heterogeneity adds to the problem of the mere number, since it is still unclear which concrete design characteristics actually are relevant for success.
- **Hence, it is necessary to validate design characteristics to attain a set of resilient characteristics.**
Expert Study: Literature Review

- The design characteristics are of rather different granularities.

 Basically,

 - very general, coarse-granular characteristics such as “information quality”.

 - rather medium-granular characteristics (e.g. "personalization“, "clear terminology").

 - no fine-granular, detailed, i.e. very specific design characteristics.

 - granularity of design characteristics evidently is of major importance since expressiveness and usability increase with granularity.

 - to warrant general validity the expert study may have to get by with a medium granularity.

- Prevalent lack of explicit definitions of design characteristics.

 - The expert study mandatorily has to elaborate thorough and explicit definitions of design characteristics.
In summary, previous research suggests a set of design characteristics which is
- of limited congruence,
- of different granularity, and
- frequently unclear in meaning.

This clearly justifies the necessity of an expert study.

However, instead of just adding a further unconnected study, the current state of knowledge is to be used as a base to
- contrast, but also
- enrich the expert study and thereby integrate it with previous work.
The Delphi method was applied to ascertain success relevant system-, information-related characteristics of VLE [11, 12, 13, 22].

The Delphi methods supports practical forecasting, practical decisions, systematical analysis of complex and multifaceted scientific topics that are not directly and easily accessible via quantitative research approaches [11].

A two-phased approach was chosen to elicit design characteristics systematically

Phase 1: inquiry, categorization, definition of design characteristics.
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anh Vu, N.-N.</td>
<td>University of Leicester, UK</td>
<td>Computer Scientist</td>
</tr>
<tr>
<td>Christina, H.</td>
<td>IMC, Germany</td>
<td>Pedagogue</td>
</tr>
<tr>
<td>Dominique, V.</td>
<td>OUNL, the Netherlands</td>
<td>Pedagogue</td>
</tr>
<tr>
<td>Effie L.</td>
<td>University of Leicester, UK</td>
<td>Psychologist</td>
</tr>
<tr>
<td>Elisabetta, P.</td>
<td>Giunti Labs, Italy</td>
<td>Computer Scientist</td>
</tr>
<tr>
<td>Jad, N.</td>
<td>WUW, Austria</td>
<td>Computer Scientist</td>
</tr>
<tr>
<td>Kai, H.</td>
<td>TU Darmstadt, Germany</td>
<td>Computer Scientist</td>
</tr>
<tr>
<td>Luis, de la F.</td>
<td>UC3M, Spain</td>
<td>Computer Scientist</td>
</tr>
<tr>
<td>Marvin, S.</td>
<td>DFKI, Germany</td>
<td>Computer Scientist</td>
</tr>
<tr>
<td>Milos, K.</td>
<td>OUNL, the Netherlands</td>
<td>Computer Scientist</td>
</tr>
<tr>
<td>Patrick, P.</td>
<td>IMC, Germany</td>
<td>Computer Scientist</td>
</tr>
<tr>
<td>Susanne, N.</td>
<td>University of Vienna, Austria</td>
<td>Pedagogue</td>
</tr>
<tr>
<td>Volker, Z.</td>
<td>IMC, Germany</td>
<td>Management, and Business Informatics Specialist</td>
</tr>
</tbody>
</table>
Expert Study: Method

- The Delphi method was applied to ascertain success relevant system-, information-related characteristics of VLE [11, 12, 13, 22].
- The Delphi methods supports practical forecasting, practical decisions, systematical analysis of complex and multifaceted scientific topics that are not directly and easily accessible via quantitative research approaches [11].
- A two-phased approach was chosen to elicit design characteristics systematically
 - *Phase 1*: inquiry, categorization, definition of design characteristics.
 - *Phase 2*: adjustment and ranking of design characteristics.
<table>
<thead>
<tr>
<th>VLE Design Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliable</td>
<td>A1: 3.08 (1.44)</td>
</tr>
<tr>
<td>Secure</td>
<td>A2: 4.38 (3.52)</td>
</tr>
<tr>
<td>Learning-Process-Supportive</td>
<td>A3: 4.46 (3.13)</td>
</tr>
<tr>
<td>Interactive</td>
<td>A4: 4.77 (3.11)</td>
</tr>
<tr>
<td>Appealing</td>
<td>A5: 5.08 (2.25)</td>
</tr>
<tr>
<td>Transparent</td>
<td>A6: 5.15 (2.79)</td>
</tr>
<tr>
<td>Structured</td>
<td>A7: 5.92 (2.22)</td>
</tr>
<tr>
<td>Standard-Supportive</td>
<td>A8: 6.46 (2.79)</td>
</tr>
<tr>
<td>Accessible</td>
<td>A9: 6.85 (2.15)</td>
</tr>
<tr>
<td>Platform-Independent</td>
<td>A10: 7.62 (2.90)</td>
</tr>
</tbody>
</table>
Expert Study: Results

<table>
<thead>
<tr>
<th>VLE·Design·Characteristic</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B·Information-Related</td>
<td></td>
</tr>
<tr>
<td>Understandable</td>
<td>B1·2.23·(1.48)</td>
</tr>
<tr>
<td>Consistent</td>
<td>B2·2.92·(1.66)</td>
</tr>
<tr>
<td>Credible</td>
<td>B3·3.23·(1.30)</td>
</tr>
<tr>
<td>Challenging</td>
<td>B4·3.54·(1.51)</td>
</tr>
<tr>
<td>Multimodal</td>
<td>B5·4.00·(1.78)</td>
</tr>
<tr>
<td>Enjoyable</td>
<td>B6·4.58·(1.44)</td>
</tr>
<tr>
<td>Design Characteristic</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>A - System Related</td>
<td></td>
</tr>
<tr>
<td>Transparent</td>
<td>VLE are transparent, if they allow the learners to keep an eye on their own and/or other learners’ learning history (i.e., completed and/or passed learning activities of a unit of learning) and current status in the learning process.</td>
</tr>
<tr>
<td>Standard-Supportive</td>
<td>VLE are standard-supportive, if they facilitate learning materials which are compiled based on approved eLearning standards such as IMS Learning Design [17], or SCORM [1] as these eLearning standards enable learning materials to be widely shared across VLE which also support these standards.</td>
</tr>
</tbody>
</table>
Expert Study: Results

<table>
<thead>
<tr>
<th>Design Characteristic</th>
<th>Definition</th>
<th>Source</th>
<th>Exemplary Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consistent</td>
<td>The information provided by VLE is consistent, if the learning materials themselves are without contradictions, coherent and presented in a logical order.</td>
<td>literature review</td>
<td>“The use of terms throughout the (E-library) is consistent.” [16]</td>
</tr>
<tr>
<td>Credible</td>
<td>The information provided by VLE is credible, if they originate from a trustworthy source (e.g. teacher, certified and/or reputable organizations, etc.).</td>
<td>expert study</td>
<td>“Sequencing of learning objects, tasks, and assessments.”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>“[…] how much one trust the credibility of the material (i.e. it does not convey wrong concepts)”</td>
</tr>
</tbody>
</table>

B. Information-Related
Implications

- *Researchers* should deliberate theoretical foundations (e.g. amalgamations of TAM and the ISSM).
- *Researchers* should aim at increasing specificity of design characteristics without losing general validity (working out the facets).
- *Researchers* should taken into account interdependencies of design characteristics.
- *Researchers* should further elaborate
 - whether different design characteristics contribute rather individually and independently to VLE success or
 - whether whole bundles or entire configurations of design characteristic are triggering success.
- *Researchers* should apply pre-prototypes and experiments for evaluation purposes [5, 36].
Implications

- **Practitioners** could be equipped with comprehensive (check-)lists for either managing the
 - development,
 - implementation or
 - improvement of VLE.

- **Practitioners** should
 - refine and customize such (check-)lists towards individual corporate settings.
 - consider the (check-)list that may lead to practical HRIS
 - development-
 - implementation- and
 - improvement-processes to foster HRIS success.
Agenda

- VLE & Design Characteristics
- Expert Study
- Implications
- Conclusions/Call for Further Research
Conclusions/Call for Further Research

- A comprehensive literature review and an initial expert study were carried out yielding a systematic list of well-defined
 - system- and
 - information-related design characteristics of VLE.
- This hopefully will stimulate future research, especially quantitative studies which
 - evaluate and deepen the insights offered,
 - instruct future practical development, selection and evaluation projects,
 while both streams may finally contribute to improved VLE which support better corporate training and development endeavors.
Thank you for your attention!

Saarland University
Chair of Management Information Systems
Daniel Mueller,
Stefan Strohmeier.