
A Multi-Context System Computing Modalities

Tarek R. Besold1 and Bernhard Schiemann2

1 University of Erlangen-Nuremberg,
Chair of Computer Science 8: Artificial Intelligence,

D-91058 Erlangen, Germany
sntabeso@i8.informatik.uni-erlangen.de

2 Bernhard.Schiemann@googlemail.com

Abstract. The system description presents the conception and a pro-
totypical implementation of a multi-context system, used for computing
and implementing temporal modalities within given data without the
use of modal operators. Instead, an external constraint based rule sys-
tem is used for computing the corresponding temporal relations, making
use of the way a multi-context system works for transporting the needed
information between contexts and knowledge bases.

1 Point of Departure and Problem Statement

Introducing new modalities should involve no more fuss than intro-
ducing a new predicate. [1]

The above quotation, taken from John McCarthy’s paper “Modality, Si! Modal
Logic, No!”, addresses a point quite well-known to description logicians and peo-
ple working with systems for knowledge representation, based on DL. Real world
applications often demand for the use of modalities (e.g. to express statements
about time), or using McCarthy again:

In particular, human-level AI requires that programs be able to in-
troduce modalities when this is appropriate, e.g. have function taking
modalities as values. [1]

Nevertheless, allowing for the unrestricted use of modal operators within a de-
scription logic framework (given the not very probable case that this may be pos-
sible), major problems concerning decidability, completeness and computability
arise. Even if only some modal operators shall be incorporated into a standard
DL framework (as e.g. SHOIN (D), corresponding to the widely used OWL DL

V1.0 language, or SROIQ(D) for OWL DL V2.0), a large part of the “pleasant”
properties of the original formalism gets lost.

Thus, we decided to build a working and applicable implementation of modal-
ities (in the following we will use time as an example modality) without the use
of modal operators, thereby following the basic idea lined out in McCarthy’s
paper. We managed to do so by using concepts from the field of multi-context
systems (MCS), mainly based on the results presented in [2] and [3].

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

439

2 Attempt at a Solution

The idea underlying our solution to the stated problem is the following: Knowl-
edge bases in DL normally contain definitions of concepts, roles and instances,
stated in present tense. For formal reconstruction purposes within many differ-
ent domains, e.g. cultural heritage, descriptions of instances which are situated
in the past would be needed. But modal logical extensions of DL often carry
– besides the problem of (un)decidability – new operators (e.g. “Until”) with
them. In many cases, a description not relying on the use of modal operators
would be sufficient. Moreover, the modellers wouldn’t have to learn how to use
the new operators properly.

In order to enhance the widely used DL SHOIN (D) (OWL DL V1.0) with
these kind of descriptions, in a reference ontology for cultural heritage (ECRM)
Allen’s time relations ([4]) are added as descriptions (as already demanded by the
CIDOC-CRM3). Having done so, the descriptions are contained, but a mecha-
nism performing calculations on this modalities is still missing. This mechanism
may be introduced by means of an external module, a constraint based rule
system (CBRS).

3 Mode of Operation

Given a DL knowledge base, the functionality of our system may basically be
sketched as follows:

1. Extend the concrete knowledge base: Collect time describing features within
the DL descriptions and state them explicitly.

2. Transfer the collection of time describing features to a constraint based rule
system (CBRS), already containing abstract rules which model Allen’s time
relations.

3. Generate a model by means of the CBRS and afterwards extract the newly
calculated, concrete time relations from the model.

4. Inject the extracted concrete time relations into the DL knowledge base.

Thus the result of the external calculations in the CBRS may be used for the
proper reasoning within the DL knowledge base. Moreover, this allows – besides
of the possibility of the description of the instances in the past – for an automatic
sorting of the time descriptions on a timeline given by Allen’s relations.

Furthermore, the approach is very flexible, as the means for calculations and
computation may be extended: The descriptions in the ontology may be ex-
panded with more relations, given the corresponding bridge rules to the CBRS.
Thereby, the limitations of the description are not caused by the restrictions

3
CIDOC, the Committee on Documentation of the International Council of Muse-
ums, is a working group focusing on the documentation requirements and standards
of museums, archives, and similar organizations. CIDOC has defined a Conceptual
Reference Model, the CIDOC-CRM, which provides a formal and extensible ontol-
ogy for cultural heritage information.

440 A Multi-Context System Computing Modalities

from the SHOIN (D) language, but are given according to the configurable exter-
nal logic. As this logic may be configured and extended stepwise, exactly those
modalities needed for a concrete formal reconstruction may be implemented.
Hence, in place of making necessary an entire extension of DL, constructed
around one modal operator or another, our approach allows for the incremental
construction of a TimeDL.

This extension may be transferred to other formal reconstructions wit relative
ease, and can also be applied to other DLs. Only the quite simple DL S is needed
when describing Allen’s temporal relations. Thus re-usability within other DLs,
build upon S (as e.g. SROIQ , corresponding to OWL DL V2.0) may easily be
reached.

Further independence between the extension and the underlying knowledge
representation formalism has been obtained.

4 (Very) Short Introduction to Multi-Context Systems

Here we restate the key definitions given in [2]. First, the concept of logic4 is
defined in terms of input-output conditions.

Definition 1. A logic L = (KBL,BSL,ACCL) is composed of the following
components:

1. KBL is the set of well-formed knowledge bases of L. We assume each element
of KBL is a set.

2. BSL is the set of possible belief sets,
3. ACCL : KBL 7→ 2BSL is a function describing the “semantics” of the logic

by assigning to each element of KBL a set of acceptable sets of beliefs.

Given several logics, bridge rules are used to translate between the logics.

Definition 2. Let L = {L1, . . . , Ln} be a set of logics. An Lk -bridge rule over
L, 1 ≤ k ≤ n, containing m conditions, is of the form

s← (r1 : p1), . . . , (rj : pj),not(rj+1 : pj+1), . . . ,not(rm : pm) (1)

where j ≤ m, 1 ≤ rk ≤ n, pk is an element of some belief set of Lrk
and s

is a syntactically valid element of a knowledge base from KBk,
5 and for each

kb ∈ KBk : kb ∪ {s} ∈ KBk.

A configuration of logics and bridge rules comprises a multi-context system.

4 As in the following, no information containing satisfiability or inference rules within
the corresponding logics will be given, also the denomination ”pre-logic” would be
justifiable. For the sake of consistency we will keep the original naming calling it a
”logic”.

5 In contrast to [2] where a similar constraint concerning the nature of s is imposed
only implicitly.

Tarek Richard Besold and Bernhard Schiemann. 441

Definition 3. A multi-context system M = (C1, . . . , Cn) consists of a collection
of contexts Ci = (Li, kbi, bri), where Li = (KBi,BSi,ACCi) is a logic, kbi a
knowledge base (an element of KBi), and bri is a set of Li-bridge rules over
{L1, . . . , Ln}.

A belief state is the combination of the belief sets of all contexts of the MCS.

Definition 4. Let M = (C1, . . . , Cn) be a MCS. A belief state is a sequence
S = (S1, . . . , Sn) such that each Si is an element of BSi.

We say a bridge rule r of form (1) is applicable in a belief state S = (S1, . . . , Sn)
iff for 1 ≤ i ≤ j : pi ∈ Sri

and for j + 1 ≤ k ≤ m : pk 6∈ Srk
. A belief state

is an equilibrium if the consequences of all applicable bridge rules are given,
hence each context has an acceptable belief set given the belief sets of the other
contexts.

Definition 5. A belief state S = (S1, . . . , Sn) of M is an equilibrium iff, for
1 ≤ i ≤ n, the following condition holds:

Si ∈ ACCi(kbi ∪ {head(r)|r ∈ bri applicable in S}).6

Now, we moreover introduce “bridge rule models” as a possibility to expatiate
on the actual reasoning by signalizing explicitly which bridge rules within an
MCS are active with respect to a given belief state (for further details vide [5]).

Definition 6. Let Br be a set of n bridge rules of an MCS. A bridge rule model
is an assignment Br 7→ {0, 1}n that represents for each bridge rule in Br whether
it is active (i.e. the bridge rule is applied, and the element in its head is added
to the respective target knowledge base) or not.

Proposition 1. For each equilibrium there is exactly one bridge rule model.

Proof. Given an MCS and an equilibrium belief state. Then for every bridge
rule we can decide whether or not its prerequisites are satisfied. Hence, for each
position in the bridge rule model we can decide whether the value is 0 or 1.

5 MCS and Museum Data Completion and Consistency

The now presented MCS, implementing the algorithm for finding the equilibria
of an MCS from [3], has been developed in cooperation with part of the team of
the WissKI research project7.

6 Please note that, if r is a bridge rule of the form a← . . ., then head(r) = a
7 Research project “WissKI - Wissenschaftliche KommunikationsInfrastruktur”, fund-

ing provided by the German Research Council (DFG). The project is being carried
out at the Chair for Computer Science 8: Artificial Intelligence of the University of
Erlangen-Nuremberg, together with collaborators from the GNM Nuremberg and the
ZFMK Bonn. For a presentation of the project vide [6] and http://www.wiss-ki.eu.

442 A Multi-Context System Computing Modalities

The WissKI project’s main purpose is to extend the the current conception of
wiki-style media to a medium of science communication and scientific interaction.
Amongst its main goals are therefore to enable semantic content analysis by
means of CIDOC-CRM (ISO 21127) (e.g. vide [7] and [8]). One of the tools
under development in the project is a semantics enhanced content management
system (CMS+S), in which we integrated a special form of an MCS in order to
obtain additional temporal reasoning functionality for the semantic analysis.8

We accomplished this by using a form of inference fusion: Starting from a DL
based initial representation of data, we transfer parts of it (containing temporal
information) to another formalism. Then, we use smodels9 as a reasoner in order
to obtain additional results (in concrete for – if possible – establishing an ordering
within the expressed time statements), and finally combine the results of the
reasoner and the original data into another enhanced DL representation.

The scenario where the MCS comes into play within the CMS+S may be
sketched as follows: We are given a CIDOC-CRM conform file (OWL/DL for-
mat, vide [10]) containing information from the context of master pieces of gold-
smith art (vide [11]), which also contains – in the form of free text – temporal
information about persons and events. An already implemented software tool
preprocesses the free text for the MCS: It parses the free text parts, identi-
fies, and then returns place names, person names and time specifications (again
vide [11]). Our MCS takes the time specifications (represented as time intervals
using Turtle file format10) as inputs, creates bridge rules for the transport of all
the given statements to a representation suitable for reasoning with smodels,11

and afterwards uses smodels and given constraints on temporal reasoning in or-
der to create a linear ordering of the given time statements (the ordering of the
intervals is established according to [4]). If a linear ordering can be established
(if this cannot be done the set of time statements is inconsistent), after ordering
the time statements, again bridge rules are created to transport the ordering
information to a knowledge base in OWL/DL format, using the CIDOC-CRM

8 The implementation of the CIDOC-CRM the WissKI project is working on is based
on a logical formalism equivalent to a SHOIN (D) DL. Therefore, temporal reasoning
is not supported by the used logical formalism itself.

9 An implementation of the stable model semantics for logic programs, vide e.g. [9].
10 For details concerning the Turtle file format vide e. g. [12]. A typical Tur-

tle triplet encountered in the implementation example contains as first string
an identifier, the second string states a property of the corresponding ob-
ject, and the third string explicitely states a value, related to this prop-
erty, in XSD time data format: http://wiss-ki.eu/ns/tmp/gen e61 2 N65566

http://www8.informatik.uni-erlangen.de/IMMD8/Services/cidoc-crm/erlangen

-crm 090330 5 0 1 TQ.owl#has primitiveTime ‘‘2009-06-22’’
11 By this not only extracting the information from the initial context and adding it

to a context suitable for reasoning with smodels, but also performing a translation
between the OWL/DL language and a suitable representation for lparse (vide [13])
input at the same time, as the segmentation of bridge rules in a head part and a
body part – without a constraint restricting the formal languages used in both parts
to be the same – allows for this kind of use.

Tarek Richard Besold and Bernhard Schiemann. 443

time relations12 to reproduce the ordering found. Afterwards, the results may be
merged with the original CIDOC-CRM conform file and another reasoner may
be used (e.g. RACER13 on the given data) in two ways: to check the consistency
of the enhanced knowledge base, or for data completion purposes taking into
account the newly obtained time information.

The MCS just described is of special form, we call it a “linear multi-context
system”, as the information is passed through it in a linear way. The basic
principle may be sketched as follows: The parser/tagger software tool creates a
Turtle format representation of the time statements, this is kb1 in context C1.
Then, as all information from kb1 has to be transported to the smodels context’s
knowledge base kb2 ∈ C2, the bridge rules from kb1 to kb2 may automatically be
created given kb1. The reasoning part is done in kb2 when the import has been
completed. Afterwards, all obtained information concerning time relations has to
be transported to the OWL/DL representation in context C3 (containing kb3),
the bridge rules may automatically be created, completely covering all corre-
sponding elements of kb2.

14 When the transport to kb3 has been completed, the
work of the MCS is mainly done, the fusion of kb3 with the original OWL/DL
base in the narrower sense is not part of the MCS. Now the mode of operation of
the linear MCS shall be discussed in more detail. Given the Turtle triplets – con-
taining information concerning person names, place names and time statements
– the parser/tagger returns as output of his free text analysis, the MCS has to
identify and extract the time information by simple structural filtering (due to
the chosen output format of the parser/tagger, a strictly syntactical discrimina-
tion of the different types of statements is possible, e.g. via the use of regular
expressions). The results of this process are written to kb1, the knowledge base
of C1. Now, the bridge rules for the transport of the time interval information
from kb1 to kb2 (knowledge base of C2) have to be created and added to br2.
The bridge rules only have one condition (the element of kb1 which shall be
transported): “f(a) ← (1 : a)”, where a ∈ kb1, f(a) ∈ kb2 and f(·) a function
returning as result a “translation” of a to the smodels formalism. Patterns of the
bridge rules requiring generation are given in form of generic bridge rules within

12 Allen’s temporal relations between time intervals are implemented by CIDOC-CRM
properties P114 to P120, vide [7].

13 Vide e.g. [14].
14 One might be tempted to think about generating all the bridge rules already ini-

tially, before starting the MCS procedure, and not dynamically during processing.
Unfortunately, this would raise major problems: As no information concerning the
ordering within the time statements (computed within kb2) is ab initio available, in
br3 we would have to create a bridge rule for every possible relation between two
time intervals for every tuple of time intervals that may have been transported from
kb1 to kb2. This would yield thirteen bridge rules for every tuple, out of which only
one may in fact be activated in the final equilibrium bridge rule model. Therefore,
the number of bridge rule models which (according to [3]) have to be tested for rep-
resenting the equilibrium of the MCS would be multiplied, substantially worsening
the performance of the entire MCS.

444 A Multi-Context System Computing Modalities

Fig. 1. A sketch of the design of the linear MCS.

br2.
15 For every interval from kb1, starting time point and ending time point are

transported. Having built all bridge rules according to the generic prototypes,
we may apply them all at once, as a complete transfer of knowledge from kb1

to kb2 shall be performed (the bridge rules have been constructed accordingly).
Now, kb2 is populated with all the temporal information concerning time in-
tervals obtained from the free texts. But kb2 contains constraints depicting the
relations between time intervals that Allen proposed. A reasoner call over kb2 is
performed. The result is again used for bridge rule generation: For each state-
ment indicating the relation between two time intervals, a bridge rule has to
be created, transferring this statement to the third context C3, adding the cor-
responding CIDOC-CRM statementin OWL/DL format to the knowledge base
kb3. Again, generic bridge rules from br3 prototypically indicate which bridge
rules have to be created.16 When all of the mentioned bridge rules have been
added to br3, for the same reason as above they may again all be applied at a
time. Finally, kb3 – now containing all the statements concerning the ordering
relations amongst the time intervals – is merged with the initial CIDOC-CRM
knowledge base (which contains the free texts the parser/tagger originally used),
or a single OWL file containing the interval information may be produced.

6 Used Technical Infrastructure

For the implementation of the just sketched MCS we made use of a proof-of-
concept MCS Software Framework developed as part of one of the authors’

15 E.g. day(X, Y) ← (1 : day(X, Y)), indicating that for every element from kb1,
unifyable with day(X, Y) (X an identifier for the temporal entity, Y a numeric value
indicating the day’s date within the month) a bridge rule shall be generated mapping
it to its corresponding element of kb2.

16 E.g. “P114.is equal in time to(X, Y)← 2 : is equal in time to(X, Y)” (X, Y vari-
ables for identifiers of time intervals), would create for every fitting element in kb2,
a bridge rule mapping it to its corresponding P114 CIDOC-CRM statement in kb3.

Tarek Richard Besold and Bernhard Schiemann. 445

master’s thesis. A detailled overview of the concrete MCS implementation is
given in [5]. Therefore, in the following we only want to give an overview of the
main technical characteristics of the system used:

As programming language we used Scala17 (e. g. vide [15]), a general pur-
pose programming language. The advantages of Scala, apart from allowing
for both object-oriented and functional programming, are its full interoperabil-
ity with native Java code (Java may be directly called from Scala and vice
versa), the full byte code compatibility - making possible the full use of existing
Java libraries or application code - and the possibility to run Scala programs
on the widespread Java VM.

Moreover, as previously mentioned, we made use of the lparse/smodels com-
bination as implementation of the stable model semantics for logic programmes,
which are both freely available to the scientific community. Both, the lparse
front-end and smodels itself, are at some points called as external components
by the MCS framework.

For the smodels reasoning, we set up a constraint based implementation of
Allen’s Interval Algebra, allowing smodels to compute an Allen-like ordering
within the time intervals whenever possible (vide Figure 2).

The modality computing MCS has then been integrated into the already
existing WissKI software system,18 placing it in a line with the aforementioned
parser/tagger used for performing the free text analysis and production of the
MCS’s input Turtle triplets. Having computed the linear ordering within the
time intervals, the output of the MCS is being merged with the remaining data
in OWL/DL format, serving data enrichment and completion purposes.

7 Why Use an MCS – Enhanced Scenarios

Up to now, critics of this approach may question why to use an MCS for this
purpose, because as seen from some angles a more or less elaborately written
script might provide almost the same functionality. But the scenario just shown
is only the first step of evolution of this kind when using an MCS: We conceive by
far more complex systems, not being linear, but containing at least one feedback
loop from C3 to C1, e.g. testing the fusion of C3 and the original OWL/DL base
for consistency, and modifying the knowledge base kb1 ∈ C1 if any inconsistency
is detected. Performing a run of the MCS excluding in a systematical manner
elements from kb1 from being promoted to kb2, we might possibly identify the
causes for the inconsistency.

17 We compiled the MCS framework implementation with “Scala version 2.7.5

final (Java Hotspot(TM) Client VM, Java 1.6.0 15)”.
18 For more details again vide e.g. http://www.wiss-ki.eu.

446 A Multi-Context System Computing Modalities

. . .

month leq(X, Y) : −month(X, A), month(Y, B), A ≤ B, X 6= Y.

month leq(X, Y) : −not month(X,), month(Y, B), starting time primitive(, X).

month leq(Y, X) : −not month(X,), month(Y, B), ending time primitive(, X).

month eq(X, Y) : −month(X, A), month(Y, B), A = B, X 6= Y.

. . .

before(X, Y) : −year leq(X, Y), not year eq(X, Y).

before(X, Y) : −year eq(X, Y), month leq(X, Y), not month eq(X, Y).

before(X, Y) : −year eq(X, Y), month eq(X, Y), day leq(X, Y),

not day eq(X, Y).

. . .

before(X, Y) : −year eq(X, Y), month eq(X, Y), day eq(X, Y),

hour eq(X, Y), minute eq(X, Y), second eq(X, Y),

millisecond leq(X, Y), not millisecond eq(X, Y).

time primitive(Y) : −starting time primitive(X, Y), year(Y, Z).

time primitive(Y) : −ending time primitive(X, Y), year(Y, Z).

equal(X, Y) : −not before(X, Y), not before(Y, X), time primitive(X),

time primitive(Y), X 6= Y.

inconsistent(X) : −starting time primitive(X, A), ending time primitive(X, B),

before(B, A).

: −inconsistent(X).

finishes(X, Y) : −X 6= Y, starting time primitive(X, A),

ending time primitive(X, B), starting time primitive(Y, C),

ending time primitive(Y, D), equal(B, D), before(C, A),

not inconsistent(X), not inconsistent(Y).

is finished by(X, Y) : −X 6= Y, starting time primitive(X, A),

ending time primitive(X, B), starting time primitive(Y, C),

ending time primitive(Y, D), equal(B, D), before(A, C),

not inconsistent(X), not inconsistent(Y).

. . .

occurs during(X, Y) : −X 6= Y, starting time primitive(X, A),

ending time primitive(X, B), starting time primitive(Y, C),

ending time primitive(Y, D), before(C, A), before(B, D),

not inconsistent(X), not inconsistent(Y).

. . .

Fig. 2. Parts of a constraint base for computing Allen’s time interval relations.

Tarek Richard Besold and Bernhard Schiemann. 447

Input:
tagger output : List[String] (containing strings with data triplets in Turtle
format),
MCS = (C1, C2, C3) (kb2 : List[String] containing the smodels constraint rules
for temporal reasoning, br2 : List[String] and br3 : List[String] each containing
generic bridge rules,
kb1 : List[String] = kb3 : List[String] = br1 : List[String] = ∅).

Output:
MCS output : List[String] (containing the relations between time intervals).

br model : List[List[Int]] ← {}
kb buffer : List[String] ← {}
kb1 ← extractT imeInformation(tagger output)
for generic br ∈ br2 do

for element ∈ kb1 do
if matchesPattern(element, generic br) then

br2 ← br2 ∪ instantiateBR(element, generic br)
br model(C2) ← br model(C2) ∪ {{1}}

removeFrom(generic br, br2)

setAllV aluesToZero(br model(C1)), setAllV aluesToZero(br model(C3))
kb buffer ← extractKB(findEquilibria(MCS, br model), kb2)
for generic br ∈ br3 do

for element ∈ kb buffer do
if matchesPattern(element, generic br) then

br3 ← br2 ∪ instantiateBR(element, generic br)
br model(C3) ← br model(C3) ∪ {{1}}

removeFrom(generic br, br3)

setAllV aluesToZero(br model(C1)), setAllV aluesToZero(br model(C2))
kb buffer ← extractKB(findEquilibria(MCS, br model), kb3)
MCS output ← addHeaderEtc(kb buffer)
return MCS output

Algorithm 1: The linear MCS for the CMS+S.

Example 1. Given an MCS M = (C1, C2, C3), where C1 and C3 are DL contexts,
and C2 is a temporal logic context.19 Moreover, initially kb1 = {david, goli-
ath, abraham, lifetime(abraham, 150−200), lifetime(david, 175−225), life-
time(goliath, 205− 250), is father of(abraham, david), is son of(david, goli-
ath)}.20

Now, assuming that the “is father of(X, Y)” and the “is son of(X, Y)”
relations have properly been modelled (i. e. also stating conditions on the relation
between the lifetimes of father and son, e.g. that the lifetime of the son may not

19 For the sake of readability and to avoid unnecessary complications, in the example
we will not use the Turtle and OWL syntax, but a more intuitive and easily accessible
notation.

20 is father of(X, Y) stating that X is the father of Y , and is son of(X, Y) analo-
gously stating that X is the son of Y .

448 A Multi-Context System Computing Modalities

begin before the lifetime of the father begins), performing a run of the MCS
– analogously to the description of the linear MCS above – we would obtain
an inconsistency in the belief set corresponding to C3, as for the lifetimes of
“david” and “goliath” – according to Allen’s relations between time intervals
– “lifetime(david, 175 − 225) overlaps lifetime(goliath, 205 − 250)” would be
stated. This contradicts the fact that “david” is declared a son of “goliath”.

Excluding the “is son of(david, goliath)” statement from kb1, we would ob-
tain a consistent belief state, stating an equilibrium of the MCS. Thus, “is son

of(david, goliath)” has been identified as possibly causing an inconsistency within
the data and should be reviewed.21

A related application would be a series of MCS calls for data completion pur-
poses, after each complete call using the newly obtained data for another run of
the MCS, until no further augmentation of information may be obtained.

Another but far more sophisticated way of using this type of MCS would
be an application in combination with the symbolic sub-symbolic integration
proposed in [3]: A “modality + sub-symbolic MCS” could e.g. be used to combine
person recognition systems (e.g. based on neural networks) at airports, train
stations and street cameras with databases for train, flight and bus timetables
etc., making possible tracing, tracking and verification of a person’s movement
pattern on a wide-area basis.

8 Future Prospects and Conclusion

To the best of our knowledge, the implemented functionality is quite innovative
and enriches the CMS+S system with a very attractive feature: the possibility
to also perform temporal reasoning. Normally, the underlying description logic
by itself does not offer this possibility, but a special temporal extension to the
DL must be used. With our approach, the original DL may stay untouched, and
moreover the applied “temporal logic” must not be fixed, but may be extended or
modified according to individual needs and thus becomes highly modularisable,
as additional inference rules or entire logic formalisms may be added to the
temporal logic context without modifying the description logic parts of the MCS.

As next step we see an examination of the extendability of the used concept
to other modalities then time, e.g. place or possibility.

Moreover, the implementation of the enhanced functionality sketched in Sect. 7,
offering functionality for the diagnosis of possibly implicit inconsistencies in the
DL knowledge base, as well as for data completion purposes, is one of the main
topics on our agenda.

21 Also the lifetimes of “david” and “goliath” would be possible reasons for the incon-
sistency. Which proposal for the source of error to start with in the reviewing process
has to be decided application specific, or even some kind of “hypothetical reasoning”
handling alternate versions of the knowledge base may be performed (using the cor-
responding bridge rule models as identifiers and basis of the alternate possibilities
of knowledge base evolution).

Tarek Richard Besold and Bernhard Schiemann. 449

9 Acknowledgements

We want to thank G. Goerz, S. Mandl and M. Scholz for their cooperation and
for the valuable discussions concerning the topics adressed in this paper, as well
as the anonymous reviewers for their helpful comments and advice.

References

1. McCarthy, J.: Modality, Si! Modal Logic, No! Studia Logica 59(1) (July 1997)
2. Brewka, G., Eiter, T.: Equilibria in Heterogeneous Nonmonotonic Multi-Context

Systems. In: Proceedings of the National Conference on Artificial Intelligence.
Volume 22., Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;
1999 (2007) 385–390

3. Besold, T.R., Mandl, S.: Integrating Logical and Sub-Symbolic Contexts of Rea-
soning. In Filipa, J., Fred, A., Sharp, B., eds.: Proceedings of ICAART 2010 -
Second International Conference on Agents and Artifcial Intelligence, INSTICC
Press (2010) . For a full version of the paper vide also http://www8.informatik.uni-
erlangen.de/inf8/Publications/bridging mcs original.pdf.

4. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM
26(11) (1983) 832–843

5. Besold, T.R.: Theory and Implementation of Multi-Context Systems Contain-
ing Logical and Sub-Symbolic Contexts of Reasoning. Master’s thesis, Depart-
ment of Mathematics & Department of Computer Science 8: Artificial Intel-
ligence, FAU Erlangen-Nuremberg (2009) . The full thesis is available under
http://www.opus.ub.uni-erlangen.de/opus/volltexte/2010/1587/.

6. Lampe, K.H., Krause, S., Hohmann, G., Schiemann, B.: Wissen vernetzt: Vom
Wandel der Dokumentation in Museen der Natur- und Kulturgeschichte. KI -
Künstliche Intelligenz 4/09, Special Issue on ”Cultural Heritage and A.I.”
(2009)

7. Crofts, N., Doerr, M., Gill, T., Stead, S., Stiff, M.: Definition of the CIDOC
Conceptual Reference Model (Version 4.2.4). (March 2008)

8. Doerr, M.: The CIDOC Conceptual Reference Model: an ontological approach to
semantic interoperability of metadata. AI Magazine Vol. 24(3) (2003) 75–92

9. Simons, P., Niemelá, I., Soininen, T.: Extending and implementing the stable
model semantics. Artif. Intell. 138(1-2) (2002) 181–234

10. Goerz, G., Oischinger, M., Schiemann, B.: An Implementation of the CIDOC
Conceptual Reference Model (4.2.4) in OWL-DL. In: Proceedings of the 2008
Annual Conference of CIDOC - The Digital Curation of Cultural Heritage. (2008)

11. Goerz, G., Scholz, M.: Content Analysis of Museum Documentation with a Trans-
disciplinary Approach. In: Proceedings of the EACL 2009 Workshop on Language
Technology and Resources for Cultural Heritage, Social Sciences, Humanities, and
Education. (2009)

12. Beckett, D., Burners-Lee, T.: Turtle - Terse RDF Triple Language.
http://www.w3.org/TeamSubmission/turtle/ (January 2008)

13. Syrjnen, T.: Lparse 1.0 User’s Manual. (2000)
14. Haarslev, V., Möller, R.: Description of the RACER System and its Applications.

In: Proceedings International Workshop on Description Logics (DL-2001), Stan-
ford, USA, 1.-3. August. (2001) 131–141

15. Odersky, M.: Report on the Programming Language Scala.
http://lampwww.epfl.ch/scala/ (2002)

450 A Multi-Context System Computing Modalities

