
Optimizing Algebraic Tableau Reasoning for SHOQ:

First Experimental Results

Jocelyne Faddoul and Volker Haarslev

Concordia University, Montreal, Canada

{j faddou,haarslev}@cse.concordia.ca

Abstract. In this paper we outline an algebraic tableau algorithm for the DL

SHOQ, which supports more informed reasoning due to the use of semantic

partitioning and integer programming. We introduce novel and adapt known op-

timization techniques and show their effectiveness on the basis of a prototype

reasoner implementing the optimization techniques for the algebraic approach.

Our first set of benchmarks clearly indicates the effectiveness of our approach

and a comparison with the DL reasoners Pellet and HermiT demonstrates a run-

time improvement of several orders of magnitude.

1 Motivation

Nominals play an important role in Description Logics (DLs) as they allow one to

express the notion of identity and enumeration; nominals must be interpreted as sin-

gleton sets. An example for the use of nominals in SHOQ would be Eye Color ≡

Green ⊔ Blue ⊔ Brown ⊔ Black ⊔ Hazel where each color is represented as a nominal.

The cardinality of Eye Color is restricted to have at most 5 instances, i.e., the above-

mentioned nominals. Qualified cardinality restrictions (QCRs) allow one to specify

lower (≥ n R.C) and upper (≤ n R.C) bounds on the number of elements related via a

certain role with additionally specifying qualities on the related elements. Due to the in-

teraction between nominals and QCRs the SHOQ concept ≥6 has color.Eye Color is

unsatisfiable. Each nominal must be interpreted as a set with the cardinality 1 (and thus

can be used to enumerate domain elements), whereas an atomic concept is interpreted

as a set with an unbounded cardinality. Moreover, the quasi-tree model property, which

has always been advantageous for DL tableau methods, does not hold for SHOQ.

Resolution-based reasoning procedures were proposed in [8] and were proven to be

weak in dealing with QCRs containing large numbers. Hypertableaux [9] were recently

studied to minimize non-determinism in DL reasoning with no special treatment for

QCRs. These approaches and standard tableau techniques suffer from the low level

of information about the cardinalities of concepts and the number of role successors

implied by nominals and QCRs (e.g., see the example above) because these algorithms

treat these cardinalities in a blind and uninformed way.

Our early work on performance improvements for reasoning with QCRs for the

DL SHQ was based on a so-called signature calculus [5] and, alternatively, on alge-

braic reasoning [6] (not applicable to Aboxes). Our algebraic approach represents the

knowledge about implied cardinalities as linear inequations. The advantages of such

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

161

an approach have been demonstrated in [4] where an Abox calculus combining tableau

and algebraic reasoning for SHQ is presented that dramatically improves the runtime

performance for reasoning with QCRs. This paper extends this line of research [1, 3, 4]

to SHOQ. This calculus [2] is by no means a simple extension because (i) the quasi-

tree model property is lost, (ii) QCRs cannot be dealt with locally anymore, and (iii)

possible interactions between QCRs and nominals need to be considered globally.

2 The Description Logic SHOQ

Let NC, NR be non-empty and disjoint sets of concept and role names respectively. Let

No ⊆ NC be the set of nominals, and NR+ ⊆ NR the set of transitive role names. An RBox

R is a finite set of role inclusion axioms (RIAs) of the form R ⊑ S , where R, S are role

names in NR. With ⊑∗ we denote the reflexive transitive closure of ⊑ on R. A role name

R is called simple if it is neither transitive nor has a transitive subrole. A TBox T is a

finite set of general concept inclusion axioms (GCIs) of the form C ⊑ D, where C, D

are concepts, and C ≡ D abbreviates {C ⊑ D, D ⊑ C}. The set of SHOQ concepts is

the smallest set such that: (i) A ∈ NC is a concept, and (ii) if C,D are concepts, R ∈ NR,

and S ∈ NR is a simple role then ¬C, (C ⊔ D), (C ⊓ D), (∃R.C), (∀R.C), (≥ nS .C),

(≤ nS .C) with n ∈ N are also concepts. We use ⊤ (⊥) as an abbreviation for A ⊔ ¬A

(A ⊓ ¬A) and ≥ nS (≤ nS) for ≥ nS .⊤ (≤ nS .⊤). We do not consider descriptions of

the form ∃R.C as they can be converted to ≥ 1 R.C, without imposing the simple role

restriction.

We assume a standard Tarski-style interpretation I = (∆I, ·I) such that AI ⊆ ∆I

for A ∈ NC, RI ⊆ ∆I × ∆I for R ∈ NR. Using # to denote the cardinality of a set, we

define the set of R-fillers for a given role name R and an individual s as FIL(R, s) =

{t ∈ ∆I | 〈s, t〉 ∈ RI} and the set of all R-fillers as: FIL(R) =
⋃

s∈∆I FIL(R, s). The

semantics of SHOQ concept descriptions is such that (C ⊓D)I = CI ∩DI, (C ⊔D)I =

CI ∪ DI, (¬C)I = ∆I \ CI, #oI = 1 for all o ∈ No, (∀R.C)I = {s ∈ ∆I | 〈s, t〉 ∈

RI ⇒ t ∈ CI}, (∃R.C)I = {s ∈ ∆I | ∃t : 〈s, t〉 ∈ RI∧ t ∈ CI}, (≥ n S .C)I = {s ∈

∆I | #(FIL(S , s) ∩CI) ≥ n}, (≤ n S .C)I = {s ∈ ∆I | #(FIL(S , s) ∩CI) ≤ n}.

Let KB(T ,R) denote a SHOQ knowledge base consisting of a TBox T and an

RBox R. The KB(T ,R) is said to be consistent iff there exists an interpretation I satis-

fying CI ⊆ DI for each C ⊑ D ∈ T and RI ⊆ S I for each R ⊑ S ∈ R. In this case, I

is said to be a model of KB(T ,R). A concept C is said to be satisfiable w.r.t. KB(T ,R)

iff CI , ∅. I is called a model of C w.r.t. R and T . A SHOQ ABox A is a finite set

of concept membership assertions of the form a : C or role membership assertions of

the form (a, b) : R with a, b two individual names. An Abox A is said to be consistent

w.r.t. KB(T , R) if there exists a model I of T and R such that aI ∈ CI is satisfied for

each a : C in A and (aI, bI) ∈ RI for each (a, b) : R in A. Using nominals, concept

satisfiability and ABox consistency can be reduced to KB consistency. Hence, without

loss of generality we restrict our attention to KB consistency in the following.

We assume all concepts to be in their negation normal form (NNF). We use ¬̇C to

denote the NNF of ¬C and nnf (C) to denote the NNF of C. When checking KB(T ,R)

consistency, the concept axioms in T can be reduced to a single axiom ⊤ ⊑ CT such

that CT abbreviates
�

C⊑D∈T nnf (¬C ⊔ D). A TBox consistency test can be checked by

162 Optimizing Algebraic Tableau Reasoning for SHOQ

testing the consistency of o ⊑ CT with o ∈ No new in T , which means that at least

oI ∈ CT
I and CT

I
, ∅. Moreover, since ⊤I = ∆I then every domain element must

also satisfy CT (every domain element is a member of CT).

3 Algebraic Tableau for SHOQ

Given KB (T ,R), such that we have ⊤ ⊑ CT , we apply a rewriting algorithm (see

[2] for details) to CT which returns C′
T

and extends R with role inclusion axioms.

This rewriting transforms all QCRs of the form ≥ nR.C or ≤ nR.C, where C can be

also equal to ⊤, into unqualified cardinality restrictions of the form ≥ nR′ (≤ nR′) by

using a new role-set difference operator (∀\) and adding universal restrictions using

newly introduced subroles (R′ ⊑ R). Roughly speaking, ≥ n R.C is transformed into

≥ n R′ ⊓∀R′.C with adding R′ ⊑ R to R, and ≤ n R.C into ≤ n R′ ⊓∀R′.C ⊓∀(R\R′).¬̇C

with adding R′ ⊑ R to R. In both cases R′ is always fresh in R, and the transformation

is satisfiability-preserving (see [2] for a proof and more details). The semantics of the

role-set operator is defined such that (∀(R\S).D)I = {s ∈ ∆I | 〈s, t〉 ∈ RI∧〈s, t〉 < S I ⇒

t ∈ DI}.

3.1 Partitioning domain elements

The key technique and major difference between algebraic and standard tableau reason-

ing for SHOQ is the atomic decomposition technique [10] which is used to compute

a partitioning of domain elements into disjoint subsets allowing numerical restrictions

implied by QCRs and nominals to be encoded into sets of inequations.

Let H(R) denote the set of role names for all subroles of R ∈ NR: H(R) = {R′ |R′ ⊑∗
R}. For technical reasons we do not add R to H(R) since R is a superrole for elements

in H(R) and R does not occur in number restrictions anymore after preprocessing. For

every role R′ ∈ H(R), the set of R′-fillers forms a subset of the set of R-fillers (FIL(R′)⊆

FIL(R)). We define R′ to be the complement of R′ w.r.t. H(R), the set of R′-fillers is then

defined as R′-fillers =(FIL(R) \ FIL(R′)). Since we do not have ≥ nR or ≤ nR concept

expressions using role complements, no role complement will be explicitly used. For

ease of presentation, we do not list role complements.

Qualifications on Role fillers: The atomic decomposition must also consider when

FIL(R) intersects with the interpretation of a qualifying concept. A qualifying concept

D is a concept used to impose a qualification, D, on the set of R-fillers for some role

R ∈ NR. Let QC(R) = {D | ∀S .D occurs in CT with R ⊑∗ S ∈ R} be the set of qualifying

concepts for R ∈ NR. Since D ∈ QC(R) could be a complex expression or a nominal, and

for ease of presentation, we assign a unique qualification name q for each D ∈ QC(R).

Let QN be the set of all qualification names assigned, and QC =
⋃

R∈NR
QC(R) be the

set of qualifying concepts in CT . We maintain a mapping between qualification names

and their corresponding concept expressions using a bijection θ : QN → QC; in case a

nominal o ∈ No has been used as a qualifying concept expression then o is also used

as the qualification name and θ(o) = o. Let QN(R) denote the set of qualification names

for a role (R ∈ NR) then QN(R) is defined as QN(R) = {q ∈ QN | θ(q) ∈ QC(R)}.

Jocelyne Faddoul and Volker Haarslev. 163

We define Q¬
C
= {¬̇D |D ∈ QC} as the set of negated qualifying concepts in their

NNF. A mapping ¬̇Q is maintained between QC and Q¬
C

such that given a qualifying

concept D ∈ QC, ¬̇Q(D) = ¬̇D with ¬̇D ∈ Q¬
C

.

Interaction with Nominals: For each nominal o ∈ No, oI can interact with R-fillers

for some R in NR such that (oI ⊆ FIL(R)). Also the same nominal o can interact with

R-fillers and S-fillers for R, S ∈ NR such that R, S do not necessarily share subroles or

superroles in R. This means that R-fillers and S-fillers could interact with each other

due to their common interaction with the same nominal o. These interactions lead to

the following definitions.

Definition 1 (Decomposition Set). Given a role R we define the decomposition set for

R-fillers asDR = H(R)∪QN(R)∪No.DR is a decomposition set since each subset P of

DR defines a unique set of nominals, roles, and/or qualification names that admits an in-

terpretation PI =
⋂

o∈P∩No
oI∩
⋂

i∈No\P
¬iI∩

⋂

R′∈P∩H(R) FIL(R′)∩
⋂

R′′∈(H(R)\P) FIL(R′′)∩
⋂

p∈P∩QN (R) θ(p)I ∩
⋂

q∈(QN (R)\P)(¬̇θ(q))I. For all sets P,Q ⊆ DR with P , Q, it holds by

definition that PI , QI. This makes all PI with P ⊆ DR disjoint with one another and

the set of all P with P ⊆ DR defines a partitioning ofDR.

Definition 2 (Global Partitioning). LetDS = (
⋃

R∈NR
DR∪No)\{¬̇C | {C, ¬̇C} ⊆ QC}

1.

The set P = {P | P ⊆ DS} defines a global partitioning of DS and PI = ∆I because

it includes all possible domain elements which correspond to a nominal and/or a role

filler: PI =
⋃

P⊆DS PI.

3.2 Encoding Numerical Restrictions into Inequations

Given T and a partitioning P for DS, one can reduce the satisfiability of expressions

of the form (≥ nR) and (≤ mR) and the satisfiability of the nominals semantics into

inequation solving based on the following principles.

Mapping Cardinalities to Variables A variable name v is assigned for each par-

tition name P such that v can be mapped to a non-negative integer value n using

σ : V → N with σ(v) denoting the cardinality of PI. Let V be the set of all variable

names and α : V → P be a one-to-one mapping between each partition name P ∈ P

and a variable v ∈ V such that α(v) = P, and if a non-negative integer n is assigned to

v using σ then σ(v) = n = #PI. Given L ⊆ DS, let VL denote the set of variable names

mapped to partitions satisfying LI, VL is defined as

VL =

{v ∈ V | p ∈ α(v) for each p ∈ (L ∩ NR)} ∩

{v ∈ V | oq ∈ α(v) for each oq ∈ (L ∩ (No ∪ QN))} ∩

{v ∈ V | oq < α(v) for each ¬oq ∈ L, oq ∈ (No ∪ QN))}

Encoding Inequations Since the partitions in P are mutually disjoint the cardinal-

ity of a union of partitions is equal to the sum of the cardinalities of the partitions (e.g., if

P1, P2 ∈ P, then #(P1∪P1) = #P1+#P2) and one can encode a cardinality restriction on

a partition’s elements into an inequation using ξ such that ξ(L,≥, n) =
∑

v∈VL
σ(v) ≥ n,

and ξ(L,≤,m) =
∑

v∈VL
σ(v) ≤ m where L ⊆ DS. With SHOQ we distinguish and

encode the following cardinalities: (i) Concepts of the form (≥ nR) and (≤ mR) in the

label of a node x express cardinality bounds n and m, respectively, on the set FIL(R, x)

1 When C and ¬̇C are both used as qualifying concepts, we only include C inDS.

164 Optimizing Algebraic Tableau Reasoning for SHOQ

for some R ∈ NR. These bounds can be reduced into inequations using ξ(L,≥, n) and

ξ(L,≤,m) for L = {R} or L = {R, q}, if additionally, we have ∀S .C such that (R ⊑∗ S)

with C ∈ DS and θ(q) = C. (ii) Nominals represent singleton sets. This cardinal-

ity bound can be encoded into inequations using ξ({o},≥, 1) and ξ({o},≤, 1) for each

nominal o ∈ No. When cardinalities (i) and (ii) are both encoded into inequations, the

interaction between nominals and role fillers is handled while preserving the semantics

of nominals.

Getting a Solution Given a set ξ of inequations, an integer solution defines the

mapping σ for each variable v occurring in ξ to a non-negative integer n denoting

the cardinality of the corresponding partition. For example, assuming σ(va) = 1 and

α(va) = {R1,R2}, this means that the corresponding partition (α(va))I must have 1 el-

ement; #(FIL(R1) ∩ FIL(R2)) = 1. Additionally, by setting the objective function to

minimize the sum of all variables, a minimum number of role fillers is ensured at each

level. A solution σ then defines a distribution of individuals that is consistent with the

numerical restrictions encoded in ξ.

3.3 Tableau Algorithm

The tableau algorithm described in this section relies on an inequation solver working

together with tableau expansion rules to construct a representation of a tableau model

using a compressed completion graph.

Definition 3. [Compressed Completion Graph] A (CCG) is a directed graph G = (V, E,

L,LE,LP), where nodes represent domain elements and the edges between the nodes

represent role relations. Each node x ∈ V is labeled with three labels: L(x), LE(x) and

LP(x), and each edge 〈x, y〉 ∈ E is labeled with a set, L(〈x, y〉) ⊆ NR, of role names.

L(x) denotes a set of concept expressions, L(x) ⊆ clos(T), that the domain element,

ix, represented by x must satisfy. LP(x) denotes a non-atomic partition name (i.e., we

consider the set LP(x) as a name) and is used as a tag for x based on the partition that ix

belongs to. A partition name LP(x) ⊆ DS can include roles, nominals, or qualification

names.

When a role R ∈ NR appears in LP(x) this means that ix belongs to the partition

for R-fillers and can therefore be used as an R-filler. When a nominal o ∈ No appears

in LP(x) this means that ix ∈ oI, and o is added to L(x) when x is created. On the

other hand if a nominal i ∈ No does not appear in LP(x) this means that ix satisfies

the complement of i, ix ∈ (¬i)I and (¬i) is added to L(x) when x is created (see fil-

Rule). When a qualification name q ∈ QN appears in LP(x) this means that ix satisfies

the qualifying concept mapped to q, ix ∈ θ(q)I and θ(q) is added to L(x) when x is

created. As with the nominals case, if a qualification name p ∈ QN does not appear

in LP(x) this means that ix satisfies the complement of the qualifying concept mapped

to p, ix ∈ ¬̇(θ(p))I and ¬̇θ(p) is added to L(x) when x is created (see fil-Rule). Using

LP(x) as a tagging allows for the re-use of nodes instead of creating new ones.

LE(x) denotes a set ξx of inequations that must have a non-negative integer solu-

tion. The set ξx is the encoding of number restrictions and qualifications that must be

satisfied for x. In order to make sure that numerical restrictions local for a node x are

Jocelyne Faddoul and Volker Haarslev. 165

satisfied while the global restrictions carried with nominals are not violated, the in-

equation solver collects all inequations and variable assignment in LE before returning

a distribution. This makes sure that an initial distribution of nominals and/or role fillers

is globally preserved while still satisfying the numerical restrictions (a distribution of

role fillers) at each level.

Definition 4. [Proxy node] A proxy node is a representative for the elements of each

partition. Proxy nodes can be used since partitions are disjoint and all elements within

a partition P satisfy common restrictions (see [2] for proofs).

Let us assume that KB(T ,R) such that T has been preprocessed and rewritten into

C′
T

. To check KB consistency, the algorithm starts with the completion graph G =

({r0}, ∅,L,LE). With LE(ro) =
⋃

o∈No
{ξ(o,≤, 1), ξ(o,≥, 1)} which is an encoding of the

nominal semantics into inequations. The node r0 is artificial and is not considered as part

of the tableau model, it is only used to process the numerical restrictions on nominals

using the inequation solver which returns a distribution for them.

The distribution of nominals is processed by the fil-Rule which is used to generate

individual nodes depending on the solution (σ) returned by the inequation solver. The

fil-Rule rule is fired for every non-empty partition P using σ(v). It generates one proxy

node y as the representative for the m elements assigned to PI by the inequation solver.

In the case of nominals, m is always equal to 1. The node y is tagged with its partition

name using α(v) in LP(y). The set of inequations is accumulated in LE(y). Nominals

and qualifications satisfied by the partition elements are extracted from the partition

name and added to L(y). C′
T

is also added to L(y) to make sure that every node created

by the fil-Rule also satisfies C′
T

.

After at least one nominal is created, G is expanded by applying the expansion rules

given in Fig. 1 until no rules are applicable or a clash occurs. The ⊓-Rule, ⊔-Rule, ∀-

Rule and the ∀+-Rule are similar to the ones in [1, 7]. The ∀\-Rule is used to enforce the

semantics of the role set difference operator ∀\ introduced at preprocessing by making

sure that all R-fillers are labelled. The Z-Rule encodes the numerical restrictions in the

labelL of a node x, for some role R ∈ NR, into a set of inequations maintained inLE(x).

The inequation solver is always active and responsible for finding a non-negative integer

solutionσ or triggering a clash if no solution is possible. If the inequations added by this

rule do not trigger a clash, then the encoded at-least/at-most restriction can be satisfied

by a possible distribution of role fillers. We distinguish two cases.

Case (i): R-fillers of x must also satisfy a qualifying concept C due to a ∀S .C re-

striction on a role S such that R ⊑∗ S and C is either a nominal or a qualifying concept

such that θ−(C) in DS. Then the numerical restriction is encoded on partitions P ∈ P

with PI ⊆ (CI ∩ FIL(R)) which means {R, θ−(C)} ⊆ P.

Case (ii): There exist no qualified restrictions on R-fillers of x due to a ∀ restriction

on a role S such that R ⊑∗ S . In this case the numerical restriction is encoded on

partitions P ∈ P with PI ⊆ FIL(R) which means {R} ⊆ P.

ch-Rule. This rule checks for empty partitions while ensuring completeness of the

algorithm. Given a set of inequations in the label LE(x) of a node x and a variable v

such that α(v) = P and P ∈ P we distinguish between two cases.

(i) PI must be empty (v ≤ 0); this happens when restrictions on elements of this

partition trigger a clash because the signature of P cannot be satisfied. For instance,

166 Optimizing Algebraic Tableau Reasoning for SHOQ

⊓-Rule If C ⊓ D ∈ L(x), and {C,D} * L(x)

Then set L(x) = L(x) ∪ {C,D}.

⊔-Rule If C ⊔ D ∈ L(x), and {C,D} ∩ L(x) = ∅

Then set L(x) = L(x) ∪ {E} with E ∈ {C,D}.

∀-Rule If ∀R.C ∈ L(x) and there exists y such that L(〈x, y〉) ∩ (H(R) ∪ {R}) , ∅, and C < L(y)

Then set L(y) = L(y) ∪ {C}.

∀+-Rule If ∀R.C ∈ L(x) and there exists y such that L(〈x, y〉)∩ (H(S)∪ {S }) , ∅, S ∈ NR+ with

S ⊑∗ R, and ∀S .C < L(y)

Then set L(y) = L(y) ∪ {∀S .C}.

Z-Rule If (Z nR) ∈ L(x) for Z∈ {≤,≥},

Then If ∀S .C ∈ L(x) with R ⊑∗ S and ξ({R, θ−(C)},Z, n) < LE(x)

Then set LE(x) = LE(x) ∪ {ξ({R, θ−(C)},Z, n)}.

Else If ξ({R},Z, n) < LE(x)

Then set LE(x) = LE(x) ∪ {ξ({R},Z, n)}.

ch-Rule If there exists v occurring in LE(x) such that {v ≥ 1, v ≤ 0} ∩ LE(x) = ∅

Then set LE(x) = LE(x) ∪ {V}, V ∈ {v ≥ 1, v ≤ 0}.

e-Rule If (Z nR) ∈ L(x), and there exists y such that R ∈ LP(y) and R < L(〈x, y〉)

Then If ∀S .C ∈ L(x) with R ⊑∗ S and θ−(C) ∈ LP(y), OR ∀S .C < L(x) with R ⊑∗ S

Then set L(〈x, y〉) = L(〈x, y〉) ∪ {R}, and

If LE(x)*LE(y) Then set LE(y) = LE(y) ∪ LE(x).

fil-Rule If there exists v occurring in LE(x) with σ(v) = m and m > 0, and there exists no y

with LP(y) = α(v)

Then 1. create a new node y, 2. set LP(y) = α(v), 3. set LE(y) = LE(x), 4. set L(y) =
⋃

o∈(α(v)∩No) o ∪
⋃

i∈(No\α(v)) ¬i ∪
⋃

q∈(QN∩α(v)) θ(q) ∪
⋃

p∈(QN \(QN∩α(v))) ¬̇Qθ(p) ∪ {C′
T
}

∀\-Rule If ∀(R\S).C ∈ L(x), and there exists y such thatL(〈x, y〉)∩(H(R)∪{R}) , ∅,L(〈x, y〉)∩

(H(S) ∪ {S }) = ∅, and C < L(y)

Then set L(y) = L(y) ∪ {C}.

Fig. 1. Completion rules for SHOQ (in groups of decreasing priority from top to bottom)

if {∀R1.A,∀R2.¬A} ⊆ L(x), vR1R2
≥ 1 ∈ LE(x) and there exists a node y with LP(y) =

{R1,R2} and {R1,R2} ⊆ L(〈x, y〉), the qualifications on R1 and R2-fillers trigger a clash

{A,¬A} ⊆ L(y) and vR1R2
≤ 0 is enforced.

(ii) PI must have at least one element (1 ≤ m ≤ σ(v)); if PI can have at least

one element without causing any logical clash, this means that the signature of P is

satisfiable and we can also have m elements in PI without a clash.

e-Rule. This rule creates the edges between the proxy nodes created by the fil-Rule.

If ≥ nR ∈ L(x) for some R, this means that x must be connected to a number r of R-

fillers such that n ≤ r. If ≤ mR ∈ L(x) then x could be connected to a maximum number

r′ of R-fillers such that r′ ≤ m. If there exists a node y such that R ∈ LP(y), this means

that a distribution of R-fillers has been assigned by the inequation solver such that the

numbers n and m are satisfied and y is a representative for a number p of R-fillers such

that r ≤ p ≤ r′. We distinguish between two cases.

(i): R-fillers of x must also satisfy a qualifying concept C due to a ∀S .C restriction

on a role S such that R ⊑∗ S . In this case, if θ−(C) is also in LP(y) then the partition

represented by y intersects with CI and y is a member of C.

Jocelyne Faddoul and Volker Haarslev. 167

(ii): There exists no qualified restrictions on R-fillers. In this case there is no restric-

tion on the partitions intersecting with R-fillers.

In both cases, an edge can safely be created between x and y such that R ∈ L(〈x, y〉)

and this edge is also a representative for the number p of edges between x and the p

elements represented by y. If S is also in LP(y) this means that the p R-fillers repre-

sented by y are also S -fillers and y is a representative for a partition p ∈ P such that

pI ⊆ FIL(R) ∩ FIL(S). Therefore y can be re-used to connect x or another node y

having ≥ n′S or ≤ m′S , n′ ≤ n and m′ ≥ m, in their label.

Definition 5. [Strategy of Rule Application] Given a node x in the completion graph,

the rules are triggered when applicable based on the following order (listed with de-

creasing priority) in order to ensure completeness of the algorithm (see [2] for details):

1. ⊓-Rule, ⊔-Rule, ∀-Rule, ∀+-Rule, ch-Rule, Z-Rule, e-Rule. These rules can be fired

in arbitrary order. 2. fil-Rule. 3. ∀\-Rule.

Definition 6. [Clash] A node x in (V \ {r0}) is said to contain a clash if: (i) {C,¬C} ⊆

L(x), or (ii) a subset of inequations ξx ⊆ LE(x) does not admit a non-negative integer

solution, this case is decided by the inequation solver.

When no rules are applicable or there is a clash, a completion graph is said to be

complete. When G is complete and clash free it means that a model exists for KB(T ,R)

satisfying the numerical and the logical restrictions; the algorithm returns that KB(T ,R)

is consistent, otherwise it returns that KB(T , R) is inconsistent.

4 Optimizing Algebraic Tableau Reasoning

The main goal for introducing algebraic reasoning to DL is to efficiently handle reason-

ing with QCRs and/or nominals. Although global partitioning of domain elements gives

a worst-case double exponential algorithm (see [2] for proofs), one can exploit its high

level of information to adapt well known and devise new optimization techniques for

improving reasoning with nominals and QCRs. The atomic decomposition technique

allows a more semantically structured model construction algorithm which exhibits a

high level of information on cardinalities implied by QCRs and nominals.

The next two optimization techniques exploit simple interactions between so-called

“told nominals” and QCRs to discard unnecessary partitions and impose some ordering

on applying the ch-Rule for nominal variables.

Discarding Partitions This optimization aims at reducing the number of partitions

and their variables. It does this at the preprocessing level by collecting and analyzing

the following interactions between nominals and QCRs.

(i) We have ≥ nR.C with C ≡ o1⊔· · ·⊔on or C ⊑ o1⊔· · ·⊔on. For example, ≥ 1R.o is

rewritten into ≥ 1R′⊓∀R′.o and this means that the partition for R′-fillers must intersect

with the partition for the nominal o and, therefore, the partitions for R′-fillers that do

not intersect with o can be safely discarded when computing the global partitioning.

(ii) We have ≤ nR.C with C ≡ o1 ⊔ · · · ⊔ on or C ⊑ o1 ⊔ · · · ⊔ on. For example,

≤ 1R.o is rewritten into ≤ 1R′ ⊓ ∀R′.o ⊓ ∀R\R′.¬o and similar to the case with ≥ nR.C

the partitions for R′-fillers that do not intersect with o can be discarded. Additionally,

168 Optimizing Algebraic Tableau Reasoning for SHOQ

the partitions for R-fillers that do not intersect with R′-fillers and intersect with o can

also be discarded.

Variable Preference For each nominal o, only one variable v ∈ Vo can be assigned

≥ 1 by the ch-Rule. This heuristic aims at selecting nominal variables that are more

likely to succeed. It does this similarly to the case of discarding partitions and allows the

ch-Rule to branch on a partition, where nominals intersect with their interacting roles,

before branching on a variable, where these nominals do not intersect with the role

fillers. For example, we have two variables v1 and v2 for a nominal o with α(v1) = {o}

and α(v2) = {o,R′} and R′ is mapped to {o}. The variable-preference heuristic then

directs the ch-Rule to branch on v2 ≥ 1 before branching on v1 ≥ 1.

Skip UnSat ch-Rule This optimization affects the ch-Rule and aims at bypassing

choice points that are known to lead to a clash. For example, if the ch-Rule is applied to a

variable va with o ∈ α(va) for o ∈ No and v ≤ 0 for all v ∈ Vo, this means that branching

on va ≤ 0 will result in a clash because the encoded inequation ξ(o,≥, 1) for o becomes

infeasible. The branch for va ≤ 0 can be safely bypassed. If R ∈ α(va) for some R ∈ NR

and we have v ≤ 0 for all v ∈ VR, then the branch for va ≤ 0 can therefore be safely

bypassed if va occurs in an inequation encoding an at-least restriction. Similarly, the

branch for va ≥ 1 is discarded if assigning va a value ≥ 1 renders the inequation where

va occurs obviously infeasible.

Using noGood Variables A variable v is assigned to be a noGood if v must have the

value zero. This can happen for a partition P where α(v) = P must be empty because no

domain element can be distributed over P without causing a clash. Using the ch-Rule

a semantic split is performed over each partition’s elements; v ≥ 1 is the case when the

restrictions on the partition’s elements can be satisfied, and v ≤ 0 means the restrictions

on the partition’s elements cannot be satisfied.

Skip UnSat OR-Rule This optimization affects the ⊔-Rule and aims at bypassing

choice points that are known to lead to a clash. When the ⊔-Rule is applied to a node

y, the branch adding C to L(y) can be discarded for the following cases: (i) C is a

restriction ≥ nR and all variables mapped to R are noGood variables, then choosing this

disjunct will result in an arithmetic clash. (ii) C is a nominal o and y is assigned to a

partition P intersecting with ¬o ({o} < P). (iii) C is the complement of a nominal, ¬o,

and y is assigned to a partition P intersecting with o ({o} ∈ P).

Dependency Directed Backtracking This is a well known optimization technique

which allows a search algorithm to bypass choice points. We identify three types of

clashes: the logical, OR, and arithmetic clash, and for each type a clash handler is

responsible for setting the next choice point to explore.

Logical Clash Handler If a node y has {C,¬C} ⊆ L(y), y is said to contain a logical

clash. The logical clash handler analyzes the clash sources looking for alternative choice

points where the algorithm can backjump to. If no such alternative choice is found, then

y cannot survive without causing a clash. One can safely assume that the corresponding

partition represented in Lp(y) must be empty and the variable v with LP(y) = α(v)

must be zero. The algorithm can backjump to the ch-Rule choice point where v ≤ 0

and safely bypass the choice points with v ≥ 1. Additionally, if the noGood variable

optimization is turned on, then v is also assigned to be a noGood variable.

Jocelyne Faddoul and Volker Haarslev. 169

OR Clash Handler If we have ¬o ⊔ ¬C ∈ L(y) and we have o,C ∈ LP(y) then the

node y will not survive because all choice points generated by the ⊔-Rule will result in

a clash ({o,¬o} ⊆ L(y) or {C,¬C} ⊆ L(y)). The node y is said to contain an OR-clash

and the variable v with LP(y) = α(v) must be zero. The algorithm can backjump to the

ch-Rule choice point where v ≤ 0 and safely bypass the choice points with v ≥ 1. An

OR-clash can only be detected if the “Skip UnSat” optimization is turned on and the

OR clash handler cannot find alternative choice points because the applicability of the

OR-Rule returns an empty list of choice points, i.e., all choices would clash.

Arithmetic Clash Handler An arithmetic clash is detected when the system of

inequations cannot have a solution. The following arithmetic clashes can be detected

and handled even before running the Simplex procedure (i.e., as soon as inequations are

added by the Z-Rule). Clash A: If there exists a node y ∈ G such that ξ(L,≥,m) ∈ LE(y)

and v ≤ 0 ∈ LE(y) for all v ∈ VL (due to the ch-Rule), then ξ(L,≥,m) is infeasible and

renders ξy infeasible. Clash B: If there exists a node y ∈ G such that ξ(L,Z,m) ∈ LE(y)

and for all v ∈ VL, v has been assigned a value σ(v) (due to a previous distribution

σ) such that
∑

v∈VL
σ(v) does not satisfy m. Clash C: If there exists a node y ∈ G such

that ξ(L,Z,m) ∈ LE(y) and for some vn ∈ VL, the ch-Rule must skip the branch where

vn ≥ 1 because vn is a noGood and branching on vn ≤ 0 triggers a clash of type A. In

all three cases the algorithm can backjump to a branching point for some v ∈ VL where

v ≥ 1 and v has not been assigned to be a noGood.

5 Evaluation: First Experimental Results

Our prototype reasoner HARD (Hybrid Algebraic Reasoner for DL) is implemented

in Java and uses the OWL-API. We integrated the reasoner interfaces of Pellet v.2.0.0

[11] and HermiT v.1.1 [9] into our implementation and run KB consistency tests using

HARD, HermiT, or Pellet. This first evaluation was targeted to test how the algebraic

tableau in combination with the proposed optimizations scales for KBs exhibiting in-

teractions between nominals and QCRs. Unfortunately, there are not many suitable on-

tologies available because QCRs were only recently added to OWL 2 and the ones that

are available do not serve well as benchmarks for HARD because their potential diffi-

culty is not caused by interactions between nominals and QCRs. Furthermore, HARD

was designed as a research prototype to demonstrate the effectiveness of our algebraic

tableau approach and intentionally does not implement most of the optimization tech-

niques implemented by other DL reasoners. It is therefore not the focus of this paper to

evaluate HARD’s performance for real world ontologies due to the overhead necessary

to implement other optimization techniques not related to this line of research.

A typical nominal-QCR interaction occurs when a KB includes axioms of the form

C ≡ o1 ⊔ · · · ⊔ on with o1, . . ., on nominals, and D ⊑ ≥ mR.C or D ⊑ ≤ mR.C with

n,m ≥ 0 in T . Our claim is that these patterns are more likely to occur in real world

ontologies. For example, in a KB used to classify countries based on their spoken

languages one could find axioms of the form SSC ≡ Argentina ⊔ Belize ⊔ Bolivia ⊔

· · · ⊔ Venezuela (SSC stands for Spanish Speaking Countries) and South America ⊑

≥ 11 Includes.SSC ⊓ ≤ 11 Includes.SSC, and Caribbean ⊑ ≥ 3 Includes.SSC where

Argentina, . . . ,Venezuela are all distinct nominals representing unique countries.

170 Optimizing Algebraic Tableau Reasoning for SHOQ

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

R
u

n
ti

m
e

 (
s

e
c

o
n

d
s

)

Number of nominals

HARD v1.1

Hermit v1.1

Pellet v2.0.0

(a) Increasing n in TA (n = m)

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20 25 30

R
u

n
ti

m
e
 (

se
c
o
n

d
s)

Number of nominals

HARD v1.1

Hermit v1.1

Pellet v2.0.0

(b) Increasing n in TB (n = m)

0.1

1

10

100

1000

11 51 101 151 201 251 301 351 401 451 501

R
u

n
ti

m
e

 (
s

e
c

o
n

d
s

)

Value of m in QCR of form >= m R.C

HARD v1.1

Pellet v2.0.0

Hermit v1.1

(c) Increasing m in TB (log-

linear scale)

Fig. 2. Evaluation of HARD with HermiT and Pellet (all runtimes in seconds)

We developed two sets of benchmarks consisting of the simple TBoxes TA and TB

defined below where o1, . . ., on are all disjoint nominals and n and m positive numbers:

TA = {C ≡ o1 ⊔ . . . ⊔ on, D ⊑ ≥ (m+1) R.C},TB = {C ≡ o1 ⊔ . . . ⊔ on, D ⊑ ≥ m R.C}

In a first set of benchmarks we set n = m and increment n by 1. Notice that due

to the nominals semantics and their interaction with FIL(R), TA is inconsistent because

the cardinality of FIL(R) can be at most n while TB is consistent. The results of the

tests are shown in Fig. 2 (the runtimes were computed as the average of 10 independent

runs). For HARD all optimization techniques described above were switched on. In

the case of inconsistent KBs (Fig. 2(a)) one can easily see that HARD outperforms the

other reasoners whose performance quickly degrades even with small values of n. In

the case of consistent KBs (Fig. 2(b)) HARD performs similar to HermiT while Pellet’s

performance degrades. In a second set of tests for consistent KBs the size of m in TB

increases but the number of nominals remains constant; we set n = 5 and increment

m by 50. Fig. 2(c) clearly demonstrates that HARD’s performance remains constant

while the performance of the other reasoners severely degrades as m grows (observe the

logarithmic scale for the runtime).

6 Conclusion and Future Work

We exploited the high level of information of the algebraic method and presented op-

timization techniques related to nominals, QCRs and their interactions. Our first ex-

perimental results show that algebraic reasoning outperforms existing DL reasoning

methods by several orders of magnitude, although we used small examples. One might

argue that these results are based on special case patterns, however, it is clear that such

patterns are inevitable for designing some real world ontologies. It is part of ongoing

work to report on performance improvements in more general cases. We are also work-

ing on extending our calculus to SHOIQ by additionally allowing inverse roles. Our

conjecture is that the worst-case complexity of our calculus might remain unchanged

and, thus, would become worst-case optimal for SHOIQ.

Jocelyne Faddoul and Volker Haarslev. 171

References

1. J. Faddoul, N. Farsinia, V. Haarslev, and R. Möller. A hybrid tableau algorithm for ALCQ.

In Proc. of the 2008 Int. Workshop on Description Logics, also in 18th European Conference

on Artificial Intelligence (ECAI 2008), pages 725–726, 2008.

2. J. Faddoul and V. Haarslev. Algebraic tableau reasoning for the description logic SHOQ.

Logic Journal of the IGPL, Special Issue on Hybrid Logics, 2010. To appear.

3. J. Faddoul, V. Haarslev, and R. Möller. Algebraic tableau algorithm for ALCOQ. In Proc.

of the 2009 Int. Workshop on Description Logics (DL 2009), 2009.

4. N. Farsiniamarj and V. Haarslev. Practical reasoning with qualified number restrictions: A

hybrid Abox calculus for the description logic SHQ. AI Communications, Special Issue on

Practical Aspects of Automated Reasoning, 2009. To appear.

5. V. Haarslev and R. Möller. Optimizing reasoning in description logics with qualified number

restrictions. In Description Logics, pages 142–151, 2001.

6. V. Haarslev, M. Timmann, and R. Möller. Combining tableaux and algebraic methods for

reasoning with qualified number restrictions. In Description Logics, pages 152–161, 2001.

7. I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic. In Proc.

of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001), pages 199–204. Morgan

Kaufmann, Los Altos, 2001.

8. Y. Kazakov and B. Motik. A resolution-based decision procedure for SHOIQ. Journal of

Automated Reasoning, 40(2-3):89–116, 2008.

9. B. Motik, R. Shearer, and I. Horrocks. Optimized reasoning in description logics using

hypertableaux. In (CADE-21), volume 4603 of Lecture Notes in Artificial Intelligence, pages

67–83. Springer, 2007.

10. H. J. Ohlbach and J. Koehler. Modal logics, description logics and arithmetic reasoning.

Artificial Intelligence, 109(1-2):1–31, 1999.

11. B. Parsia, B. Cuenca Grau, and E. Sirin. From wine to water: Optimizing description logic

reasoning for nominals. In Proc. of the 10th Int. Conference on Principles of Knowledge

Representation and Reasoning (KR), pages 90–99, 2006.

172 Optimizing Algebraic Tableau Reasoning for SHOQ

