Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

Guiding Reification in OWL
through Aggregation

Paula Severi', José Fiadeiro', and David Ekserdjian?

! Department of Computer Science
2 Department of History of Art and Film
University of Leicester, United Kingdom

Abstract. We put forward a methodological approach aimed at guiding
ontology modellers in choosing which relations to reify. Our proposal
is based on the notion of aggregation as used in conceptual modelling
approaches for representing situations that, normally, would require non-
binary relations or complex integrity constraints. The feedback received
from using the method in a real-word situation is that if offers a more
controlled use of reification and a closer fit between the resulting ontology
and the application domain as perceived by an expert.

1 Introduction

A well-known limitation of OWL 2 (Web Ontology Language) is that only bi-
nary relations between classes can be represented [1-3]. In practice, relations of
arbitrary arity are quite common and they have to be represented in OWL in an
indirect way by coding them as classes®. In the literature of Description Logic
(DL) [4], the class codifying an n-ary relation p is called the reification of p *.

As any codification, reification requires extra work in addition to ‘simple’
modelling, which can make it quite impractical (and unintuitive), especially when
performed by people who are not ‘experts’: extra classes, predicates, individuals
and axioms [5] need to be introduced and, as the number of classes increases,
ontologies can become very difficult to read and understand, mainly because this
additional information (which is encoded) is not directly visible. That is, there is
a mismatch between the layer of abstraction at which domain modellers work and
that of the representation where information is encoded, which is particularly
harmful when we want to extend and reuse ontologies.

In this paper, we propose the use of a methodological construction that has
been devised many years ago in the database community, which is based on
the notion of aggregation as proposed in [6]. Aggregation is an abstraction that

3 Similarly for RDF (Resource Description Framework)

4 The term reification can have several meanings and uses in Logic in general, and the
Semantic Web in particular. In this paper, we use it as a synonym for encoding n-ary
relations as classes. We do not use it to refer to the usage of RDF as a metalanguage
to describe other logics, or in situations in which a statement can be assigned a URI
and treated as a resource, or the use of classes as individuals.

416



Paula Severi, Jose Fiadeiro and David Ekserdjian. 417

was offered therein for increasing the “understandibility of relational models by
the imposition of additional semantic structure”. Although, in ontologies, the
technical problems that arise are not necessarily the same as those of relational
databases, the methodological issues are similar in the sense that the solution to
our problem lies first of all in helping modellers to conceptualize the real world
in a way that can lead to a better representation, and then offering them a
mechanism for implementing these semantic structures in ontologies. By ‘better’
we mean a more controlled use of reification and a closer fit between the resulting
ontology and the real-world domain as perceived by an expert.

Having this in mind, we start by motivating the problem using the case
study that led us to investigate the representation of n-ary relationships — an
ontology of 16th-century Italian altarpieces. In Section 3, we discuss a formal,
set-theoretical, notion of aggregation and the way that it can be implemented
in ontologies through reification. Then, in Section 4, we discuss how aggregation
as a modelling abstraction can be used effectively in a number of situations that
are recurrent in domains such as that of altarpieces.

2 DMotivation

In order to illustrate some of the problems that may arise from the limitations
of having to encode n-ary relations through reification and the method that we
propose to minimize them, we use the Ontology of Altarpieces [7] — a joint
project between the Departments of Computer Science and History of Art and
Film at the University of Leicester. This case study is a good example of a
domain in which n-ary relations arise quite naturally and frequently.

Suppose that we want to express the following knowledge as produced in
natural language by an art expert:

1. The altarpiece painted by Raphael called “Sistine Madonna™ has the figure
of the Virgin on it.

2. The altarpiece painted by Raphael called “Sistine Madonna” has the figure
of the Christ on it.

3. The altarpiece painted by Raphael called “The Marriage of the Virgin™ has
the figure of the Virgin on it.

The above sentences can be represented by a ternary relation hasFigure between
the sets Painters, PictureNames and Figures.

hasFigure = {(raphael, sistine madonna, virgin),
(raphael, sistine madonna, christ),
(raphael, marriage of virgin, virgin)}

Figure 1 shows an entity relation (ER) diagram for the relationship hasFigure
of which the set above is an extension. This relation cannot be represented in

® See http://en.wikipedia.org/wiki/Sistine_Madonna.
5 See http://en.wikipedia.org/wiki/The_Marriage_of_the_Virgin_(Raphael).



418 Guiding Reification in OWL through Aggregation

Painters hasFigure Pictures

Figures

Fig. 1. ER diagram: hasFigure as a relationship of arity 3

OWL unless we code it as a class CpasFigure Of individuals that represent the
tuples — the reification of the relation [4]. For example, we create an individual
r1 that represents the tuple

(raphael, sistine madonna, virgin)

and we connect r; to each component in the tuple using the role names painter,
picturename and figure as shown in Figure 2.

r

. ] i
painter J(plcturename 1gure

raphael sistine madonna virgin

Fig. 2. Connecting r; to the components of the tuple

However, reifying hasFigure is not necessarily the right decision that a mod-
eller should make. This is because Figure 1 shows the relationship hasFigure
isolated from the rest of the ontology. A diagram that shows other relationships
between these entities in a wider conceptual model of the domain of altarpieces
is depicted in Figure 3 In this diagram, we can see another relationship in-
volving Painters and PictureNames and a number of ‘descriptive attributes’
(functional relationships involving a data type) that apply to that relationship.
Naturally, one cannot take a blind approach to the representation of these as-
pects of the domain and reify relations as they come: the complexity of the
ontologies thus generated would be even beyond skilled computer scientists, let
alone domain experts.



Paula Severi, Jose Fiadeiro and David Ekserdjian. 419

Suppose we want to express that The Virgin is holding Christ in the altarpiece
called “Sistine Madonna” by Raphael. To represent the above sentence, we need
a relation holds of arity 4 where

holds = {(raphael, sistine madonna, virgin, christ) }

In the Ontology of Altarpieces we have about 20 relations of arity 3 such as
hasFigure and more than 4000 relations such as holds of arity 4. It would not
make sense to blindly reify all the relations of arity strictly greater than 2. Given
that each relation may have an average of 1000 tuples, doing so would mean 1000
individuals for coding the tuples and 1000 x 4 pairs connecting the individuals
with their components. If we consider that the details of those figures and other
attributes of the altarpieces need to be represented, it is easy to see that the
whole ontology would become quite unwieldy.

In other words, basic questions that a modeller needs to consider very care-
fully is: “Can I reduce the number of reifications in my ontology?”, “Which
relations are more convenient to reify?”. Our answer in this paper is given
in methodological terms, inspired by similar problems faced by the relational
database community 30 years ago.

Width

Date Height

Painters hasPainted PictureNames

hasFigure Figures

Fig. 3. ER diagram: how the hasFigure relationship interacts with other relationships

The examples presented in this paper are very simple and try to extract the
main concepts behind the method. However, we have applied aggregations to
more complex relations in the Ontology of Altarpieces.



420 Guiding Reification in OWL through Aggregation

3 Aggregation in Set Theory vs Reification in OWL

Aggregation as defined in [6] refers to an abstraction in which a relationship
between objects is regarded as a higher-level object. The intention, as stated
therein, was to adapt cartesian product structures (as proposed by T. Hoare
for record structures in programming languages) to be used in the context of
relational models. Although a formal definition was not given as a semantics for
the abstraction, we found it useful to advance one so that, on the one hand,
we can be precise about our usage of the term and, on the other hand, we can
relate it to the mechanism of reification. Throughout the paper, we use the Greek
alphabet for entities that we define in Set Theory.

Definition 1. Let A1, Ay C A and p C Ay x As be a binary relation. An
aggregation of p is a set A, C A together with two (total) functions m and o
(called projections) from A, to Ay and As, respectively, such that:

1. For allr € A,, (mi(r),m2(r)) € p — i.e., there is no jJunk’ in A,.

2. For all (z1,x2) € p, there exists r € A, such that m1(r) = x1 and ma(r) = x2
— the aggregation covers the whole relation p.

3. For all ri,m9 € A,, if m(r1) = mi(r2) and ma(r1) = ma(re) then m =
ro — i.e., there is mo ‘confusion’: every tuple of the relation has a unique
representation as an aggregate.

It is trivial to prove the following result:
Proposition 1. A, is isomorphic to p.

That is, an aggregation is indeed offering a ‘faithfull’ representation of the rela-
tion. We denote this isomorphism by ¥, or just ¥ where ¥(r) = (m1(r), m2(r)).
Its inverse defines the encoding of the relation, i.e. it assigns to each tuple in the
relation p a unique element (aggregate) of the set A,.

Informally, the reification of a relation p is a class C, representing the tuples of
p [4, 8]. This representation should be as close as possible to the relation itself in
order to avoid any possible mismatch between the representation and the model
that the expert has in mind. In order to be able to analyse this relationship,
we have found it useful to provide a concrete definition of how we are using the
notion of reification:

Definition 2. Let Ay, Ay C A and p C Ay x Ag be a binary relation. A reifi-
cation of p in OWL is a concept C, together with two roles Py and P>, called
projections, two domains D1 and Do, and the following collection of axioms:

proj func) TCL1IP N <15,
proj domain) 3P,. TN3IP.TCC,
proj range) T CVP;.DiMNVP;.Ds

(
(
(
(proj totality) C, C 3P,.D1 M 3P,.Dy

(unique rep) C, hasKey(P, P»)




Paula Severi, Jose Fiadeiro and David Ekserdjian. 421

These definitions can be generalized to relations of arbitrary arity. We can
now define more precisely how a reification relates to the relation:

Definition 3. Let p C Ay x Ay be a binary relation. Given an interpretation I,
we say that the reification (C,, D1, Do, Py, P5) is faithful to p in relation to I iff
DI = Ay, DI = A,, and (C’;,Pf,P{) is an aggregation of p.

Unfortunately, the axioms that are part of the reification are not sufficient
to guarantee that it is faithfull to p in relation to every interpretation:

— The first four axioms state that the role names P; and P, are total functions
from C, to Dy and Dy, respectively. However, a limitation of OWL is that
the reasoner does not show any inconsistency if we forget to define P; or
P, for some element of C, (see [9]). This type of mistake could obviously
avoided if OWL provided us with relations of arity n.

— The axiom (unique rep) states that two named individuals in C, that have
the same projections should be equal. This axiom is weaker than the third
condition of Definition 1 in the sense that unicity of the representation is
not enforced for all individuals but only on those that are explicitly named
in the ontology. This is because the hasKey constructor of OWL-2 is a weak
form of key representation (so-called “EasyKey constraints”) that is valid
only for individuals belonging to the Herbrand Universe [10].

Summarising, reification is not only hard work (in the sense that it requires
the modeller to introduce a number of roles and axioms that are ‘technical’, i.e.
more related to the limitations of the formalism and less specific to the domain of
application) but also prone to errors. Essentially, errors may arise if the modeller
forgets to enforce the properties that cannot be expressed in OWL: totality, ‘no
junk’ or coverage.

Notice that, in the specific case of binary relations, we can add an atomic
role R to the ontology and add the following axiom to the reification, which
corresponds to the first condition of Definition 1 — ‘no junk’:

(R-contains) (P,) " 'oP, C R

This axiom states that the relation R can be recovered from the reification C,
through the projections P; and Ps. In this case, faithfulness would require that
Rl = C;{ . The ability to work with an atomic role R also has methodological
advantages as illustrated in the next section.

Also note that, in the binary case, the converse of (R-contains), which would
correspond to the second condition of Definition 1, is as follows

(R-inclusion) RC (Py)"!o P,

However, this axiom cannot be expressed in OWL in the above form 7 because
the right-hand side of the inclusion is not a role name (see [3]).

" This is not a proof that the axiom cannot be expressed in the logic which would be
more involved.



422 Guiding Reification in OWL through Aggregation

These shortcomings show why methodological support is necessary when us-
ing reification in OWL: one should make sure that abstraction mechanisms are
available through which a modeller can keep a close fit between the represen-
tation and the domain and that these mechanisms are supported, as much as
possible, by tools. The aim of the techniques put forward in the next section
is precisely to overcome the gap that may exist between the perception of the
relationships that exist in the domain of discourse and the use of reification to
encode them in OWL.

4 Guiding the Use of Reifications in Ontologies

In this section, we put forward a methodological approach aimed at guiding
the modeller in the use of reification. The method is based on the usage of
the semantic primitive of aggregation as used in conceptual modelling precisely
for representing situations that, normally, would require non-binary relations or
complex integrity constraints [11]. We illustrate the approach with some exam-
ples that are representative of the situations that we have encountered in the
altarpieces project.

Painters hasPainted PictureNames

hasFigure Figures

Fig. 4. ER diagram: hasPainted as an aggregate of hasFigure

4.1 Relationships amongst Relationships

A recurrent situation in database modelling is the use of aggregation in order to
reduce certain ternary relationships to binary ones [11]. Using ER diagrams, the
method can be explained in terms of evolving situations such as the one depicted
in Figure 1 to the one depicted in Figure 4. More specifically, the method consists
in identifying a binary relationship — hasPainted — such that the ternary



Paula Severi, Jose Fiadeiro and David Ekserdjian. 423

relationship — hasFigure — can be expressed as a binary relationship between
the aggregation of the former — hasPainted — and the remaining domain —
Figures. The aggregation of a relationship is indicated by the box that surrounds
the relationship diagram. Following this method, instead of reifying the whole
relation hasFigure, we reify hasPainted. Since hasPainted is a binary relation,
we represent it by the role hasPainted and consider the reification of hasPainted
as in Definition 2. For this, we introduce the class Altarpieces as the reification
ChasPainted @and the roles painter and picturename as the projections. The relation
hasFigure is represented as an object property whose domain is Ch 45 painteq and
whose range is Figures as shown in Figure 5.

painter_1

Painters

painter

hasPainted

A|tarpieC€S = Ch,asPainted Figures

hasFigure

picturename

<
PictureNames

Fig. 5. Representation of hasFigure that considers hasPainted as an aggregate

We have chosen the simplest example from the ontology to illustrate the
method. In this case it is clear from the use of the noun in the sentences in
Section 2 that we should have chosen to model altarpieces as a class Altarpieces
right from the start. The point is that, from the point of view of conceptual
modelling, altarpieces are an aggregation of a relation: art experts identify al-
tarpieces precisely through the name of the painter and the designation of the
picture. Therefore, the class Altarpieces corresponds, in a natural way, to the
reification of the relation hasPainted. In the case of other examples in our on-
tology, for instance the relations holds and wears, among others, the class does
not arise so naturally (indeed, they do not correspond to nouns), which explains
why using reification to represent them is somewhat artificial, i.e. driven by
technical, not conceptual concerns.

Definition 4. Let Ay, Ay, A3 C A, p C Ay x Ay be a binary relation and
P C A x Ay x Ag be a ternary relation. We say that p participates in p’ if the
following condition is satisfied:

— Forallz € A,y € Ag,z € A3, (x,y) € p whenever (z,y,z) € p'.

If p participates in p’ then p’ “can be seen” as a binary relation between the
aggregation A, and As.



424 Guiding Reification in OWL through Aggregation

The relationship hasPainted ‘participates’ in the relationship hasFigure
since the following constraint is satisfied:

if (x,y,2) € hasFigure then (z,y) € hasPainted. (1)

The above constraint is enforced in OWL by the axiom that states that the
domain of hasFigure is Chaspainted, and the axiom (hasPainted-contains) from
the binary-relation extension of Definition 2 (see Figure 5).

The method that we propose for guiding reification consists in analysing
which relations participate in other relations: if p participates in p’ then, instead
of reifying the whole relation p’, we should consider reifying the participating
relation p and represent p’ as a role whose domain is C,. If p participates in yet
another relation, say p”, that relation does not need to be reified either but reuse
instead the reification of p. Indeed, hasPainted participates in many relations
other than hasFigure — e.g. hasFlield, for representing polyptych altarpieces
that have many fields. All the corresponding relations can be represented in
OWL as object properties whose domain is Chgspainteq as in Figure 5.

Another important aspect of this representation (which is another reason why
it is better than the reified ternary relation) is that we now have the relation
hasFigure represented as a property hasFigure and not as a class ChasFigure-
Reifications represent properties but they cannot be used in the syntax as prop-
erties because they are actually classes. We cannot use constructors for roles on
ChasFigure sSuch as composition, quantification or transitive closure, which may
restrict the ability of the modeller to capture important aspects of the domain.
Whilst the representation of hasFigure as a property allows us to use the role
name hasFigure in quantifications or in compositions. For instance, we can use
an existential quantifier over the role hasFigure to express that all altarpieces
must have some religious figure on it as follows:

Altarpieces C JhasFigure.Religious

4.2 Descriptive attributes

Another related methodological guideline for the use of reification arises from
what in [11] are called descriptive attributes. Descriptive attributes are used to
record information about a relationship rather than about one of the participat-
ing entities, again using an aggregation. From a conceptual modelling point of
view, they allow us to capture typical situations in which a functional depen-
dency exists on a ternary relation as an attribute of the aggregation of a binary
relation. For example, it would be intuitive to represent height, width and date in
Figure 6 as descriptive attributes associated with the relationship hasPainted.

Definition 5. Let p C Ay x Ay and p) € A; x Ay x As. We say that p' is
descriptive attribute of p if the following conditions holds:

1. p' is a function from Ay x Ay into Az.
2. p participates in p' (see Definition 4).



Paula Severi, Jose Fiadeiro and David Ekserdjian. 425

Width

Date Height

Painters hasPainted PictureNames

Fig. 6. ER diagram: hasPainted and descriptive attributes associated with it

This property is, indeed, satisfied by height:

1. There is a functional dependency between the height of the altarpiece and
the pair given by the painter and the picture name. In other words, the
ternary relation height is actually a function

height € Painters X PictureNames — Int
2. hasPainted participates in height, i.e.:
if (x,y,2) € height then (x,y) € hasPainted. (2)

Given that descriptive attributes involve a participating relation, the method-
ological guidelines that we discussed in 4.1 suggest that descriptive attributes be
represented as (functional) roles of the reification of the participating relation.
For instance, using the reification Chyspainted, the descriptive attribute height
can be represented in OWL by a data type property height and two axioms

T E< 1.height

> lheight C ChaspPainted

The constraints associated with the descriptive attribute height are deduced from
the above two axioms and the axiom (hasPainted-contains).

5 Related Work and Concluding Remarks

The use of conceptual modelling primitives in the context of ontologies is not
new. For instance, [12] and [13] show how to transform ER diagrams into Descrip-
tion Logic. However, this transformation does not include relationships involving
relationships or descriptive attributes as illustrated in Section 4, nor does it ad-
dress aggregation as a modelling abstraction. A paper that focuses specifically on



426 Guiding Reification in OWL through Aggregation

aggregation is [14]. However, the author represents aggregations using union of
classes, which does not correspond in any way to their original meaning [6]. Our
use of aggregation (based on cartesian products) adheres to its use in databases
and explores its methodological advantages for conceptual modelling [11].

Our approach is also related with proposals that, like [15], put forward pat-
terns for representing relations p C A x B x C. The third case of Pattern 1 in
that note does the reification of the whole relation and the remaining cases do
the reification of B x C' and represent p as a property whose range is the reifica-
tion Cgxc. Our method is based on semantic abstractions and, therefore, goes
beyond simple patterns. In fact, it deepens the study of these patterns in the
sense that it guides the application of reification by the identification of relations
that, like hasPainted, participate in other relations.

On the subject of representing non-binary relations, [16] provides a trivial
extension of the syntax of OWL with n-ary properties. Decidability is not studied
and the extension contemplates only properties: there are no other constructors
to deal with predicates of arity n as in [4, 8]. On the other hand, OWL 2 provides
the possibility of defining n-ary datatype predicates F, albeit in a restricted way
[17]. We can use an n-ary predicate F in expressions of the form VP ... P,.F or
dP; ... P,.FF where P, ... P, are binary data type predicates. The n-ary predicate
F is actually a functional proposition defined implicitly by a formula of the form
Az ... zp).comp(p, q) where comp € {<,=,>,<,>,#} and p and q are linear
polynomials on z1,...,x,. However, OWL does not support the definition of
n-ary predicates by listing the tuples as for object and datatype properties.

Our plans for future work include further study of the extensions of DL
for n-ary relations [4,8,18]. In particular, we have in mind to investigate the
formal mechanisms that, from a DL point of view, can support the construc-
tions illustrated in Section 4. For instance, following the argument in Section
10.6.1 of [5], the class Altarpieces can be seen as a binary relation with two at-
tributes painter and picturename or as a ternary relation with three attributes
painter, picturename and height. This is possible in the case of a descriptive at-
tribute because of the fact that there is a functional dependency. However, in
the case of general ternary relations such as hasFigure, this is not possible: the
class Altarpieces cannot be seen as a ternary relation with attributes painter,
picturename and hasFigure. The relation hasFigure is being represented by the
role name hasFigure and not by Altarpieces. This change of point of view is im-
portant when we consider aggregations of aggregations, which is another topic
that we are exploring.

The examples presented in this paper are very simple and try to extract the
main concepts behind the method. However, we have applied aggregations to
more complex relations in the Ontology of Altarpieces. For instance, there are
cases where we need to add another layer of aggregations and, therefore, consider
aggregations of aggregations. This is the case of many relations such as holds
and wears where the relation hasFigure itself needs to be reified.



Paula Severi, Jose Fiadeiro and David Ekserdjian. 427

References

10.
11.

12.

13.

14.

15.

16.

17.

18.

W3C: OWL 2 Overview. http://www.w3.org/TR/owl2-overview/

Horrocks, I., Patel-Schneider, P.F.; McGuinness, D.L., Welty, C.A.: OWL: a De-
scription Logic Based Ontology Language for the Semantic Web. In Baader, F.,
Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F., eds.: The De-
scription Logic Handbook. CUP (2007)

Horrocks, 1., Kutz, O., Sattler, U.: The Even More Irresistible SROZQ. In: Proc.
of the 10th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2006), AAAT Press (2006) 5767

Calvanese, D., Giacomo, G.D.: Expressive Descriptions Logics. In: The Description
Logic Handbook. CUP 193-236

Borgida, A., Brachman, R.J.: Conceptual Modeling with Description Logics. (2003)
349-372

Smith, J., Smith, D.: Database abstractions: aggregation. Communications of the
ACM 20(6) (June 1977) 405-413

Ekserdjian, D., P.Severi: Ontology of Altarpieces. Technical report, University of
Leicester (2009)

Giacomo, G.D., Lenzerini, M.: Description Logics with Inverse Roles, Functional
Restrictions, and N-ary Relations. In: JELIA 94, Springer (1994) 332-346

. Motik, B., Horrocks, 1., Sattler, U.: Bridging the Gap Between OWL and Relational

Databases. J. of Web Semantics 7(2) (April 2009) 74-89

Parsia, B., Sattler, U., Schneider, T.: Easy Keys for OWL. In: OWLED. (2008)
Ramakrishna, R., Gehrke, J.: Database Management Systems (3rd edition). Mc
Graw Hill (2003)

Sattler, U., Calvanese, D., Molitor, R.: Relation with Other Formalisms. In: The
Description Logic Handbook. CUP 149-192

Borgida, A., Lenzerini, M., Rosati, R.: Description Logic for Databases. In: The
Description Logic Handbook. CUP 149-192

Veres, C.: Aggregation in Ontologies: Practical Implementations in OWL. In:
ICWE 2005. LNCS, Springer (2005)

Noy, N., Rector, A.: N-ary relations. http://www.w3.org/TR/swbp-n-
aryRelations/

Salguero, A., Delgado, C., Araque, F.: Easing the Definition of N-Ary Relations for
Supporting Spatio-Temporal Models in OWL. In: EUROCAST. (2009) 271-278
B.Parsia, Stattler, U.: OWL 2: Data Range Extension: Linear Equations.
http://www.w3.org/TR/2009/NOTE-owl2-dr-linear-20091027/

Giacomo, G.D., Lenzerini, M.: What’s in an Aggregate: Foundations for Descrip-
tion Logics with Tuples and Sets. In: IJCAI (1). (1995) 801-807



