
Paraconsistent Description Logics Revisited

Norihiro Kamide

Waseda Institute for Advanced Study, Waseda University,
1-6-1 Nishi Waseda, Shinjuku-ku, Tokyo 169-8050, JAPAN.

logician-kamide@aoni.waseda.jp

Abstract. Inconsistency handling is of growing importance in Knowl-
edge Representation since inconsistencies may frequently occur in an
open world. Paraconsistent (or inconsistency-tolerant) description logics
have been studied by several researchers to cope with such inconsis-
tencies. In this paper, a new paraconsistent description logic, PALC,
is obtained from the description logic ALC by adding a paraconsistent
negation. Some theorems for embedding PALC into ACL are proved,
and PALC is shown to be decidable. A tableau calculus for PALC is
introduced, and the completeness theorem for this calculus is proved.

1 Introduction

Inconsistency handling is of growing importance in Knowledge Representation
since inconsistencies may frequently occur in an open world. Paraconsistent
(or inconsistency-tolerant) description logics have been studied by several re-
searchers [5–8, 11–13, 16, 18, 19] to cope with such inconsistencies.

However, the existing paraconsistent description logics have no good compat-
ibility with the standard description logics such as ALC [15] etc. in the following
sense:

1. these paraconsistent description logics are not a straightforward extension
of the standard ones,

2. some paraconsistent description logics have no translation into a standard
description logic.

Such compatibility is important to adopt and re-use the existing applications
and algorithms for the standard description logics. A translation or reduction of
a paraconsistent description logic into a standard description logic is especially
important for such a compatibility issue [5, 6].

The aim of this paper is thus to introduce a compatible paraconsistent de-
scription logic which is a straightforward extension of ALC and is also embed-
dable into ALC. To construct such a compatible paraconsistent description logic,
some merits of some existing paraconsistent description logics are adopted and
combined.

Some examples of studies of paraconsistent description logics are presented as
follows. An inconsistency-tolerant four-valued terminological logic was originally

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

197

introduced by Patel-Schneider [13], three inconsistency-tolerant constructive de-
scription logics, which are based on intuitionistic logic, were studied by Odintsov
and Wansing [11, 12], some paraconsistent four-valued description logics includ-
ing ALC4 were studied by Ma et al. [5, 6], some quasi-classical description logics
were developed by Zhang et al. [18, 19], a sequent calculus for reasoning in four-
valued description logics was introduced by Straccia [16], and an application of
four-valued description logic to information retrieval was studied by Meghini et
al. [7, 8].

The logic ALC4 [5] has a good translation into ALC, and using this trans-
lation, the satisfiability problem for ALC4 is shown to be decidable. However,
ALC4 and its variations have no classical negation (or complement), i.e., these
logics are not an extension of the standard description logics. The quasi-classical
description logics [18, 19] have the classical negation, i.e., these logics are re-
garded as extensions of the standard description logics. However, translations
of quasi-classical description logics into the corresponding standard description
logics have not been proposed yet.

The paraconsistent description logic proposed in this paper supports both
the merits of ALC4 and the quasi-classical description logics, i.e., it has the
translation and the classical negation. Moreover, a simple dual-interpretation
semantics is used in the proposed logic. Such a dual-interpretation semantics is
taken over from the dual-consequence Kripke-style semantics for Nelson’s para-
consistent four-valued logic with strong negation N4 [1, 9].

A description logic (called ALCn

∼
) with such a dual (or multiple)-interpretation

semantics was introduced and studied by Kaneiwa [4] to deal with a negation
issue, but not to deal with an issue of inconsistency handling. The logic ALCn

∼
is

a natural extension of ALC, and ALCn

∼
is shown to be decidable (w.r.t. the con-

cept satisfiability problem) and complete (w.r.t. a tableau calculus). But, ALCn

∼

is not paraconsistent, and a translation into ALC has not been proposed yet. The
present paper is based on the spirit of ALCn

∼
for dual (or multiple)-interpretation

semantics.

The contents of this paper are then summarized as follows. A new paraconsis-
tent description logic, PALC, is obtained from ALC by adding a paraconsistent
negation similar to the strong negation in Nelson’s N4. A semantical embed-
ding theorem of PALC into ALC is shown by constructing a standard single-
interpretation of ALC from a paraconsistent dual-interpretation of PALC, and
vice versa. By using this embedding theorem, the concept satisfiability problem
for PALC is shown to be decidable. The complexity of the decision procedure
for PALC is also shown to be the same complexity as that of ALC. Next, a
tableau calculus, T PALC (for PALC), is introduced, and a syntactical embed-
ding theorem of this calculus into a tableau calculus, T ALC (for ALC), is proved.
The completeness theorem for T PALC is proved by combining both the seman-
tical and syntactical embedding theorems. A comparision of PALC and other
paraconsistent description logics is explained.

198 Paraconsistent Description Logics Revisited

2 Paraconsistent Description Logic

In this section, firstly, we present a semantical definition of ALC, and secondly,
we introduce PALC by extending ALC with a paraconsistent negation.

2.1 ALC

The ALC-language is constructed from atomic concepts, atomic roles, ⊓ (inter-
section), ⊔ (union), ¬ (classical negation or complement), ∀R (universal concept
quantification) and ∃R (existential concept quantification). We use the letters A
and Ai for atomic concepts, the letter R for atomic roles, and the letters C and
D for concepts.

Definition 1 Concepts C are defined by the following grammar:

C ::= A | ¬C | C ⊓ C | C ⊔ C | ∀R.C | ∃R.C

Definition 2 An interpretation I is a pair 〈∆I , ·I〉 where

1. ∆I is a non-empty set,
2. ·I is an interpretation function which assigns to every atomic concept A a

set AI ⊆ ∆I and to every atomic role R a binary relation RI ⊆ ∆I × ∆I .

The interpretation function is extended to concepts by the following inductive
definitions:

1. (¬C)I := ∆I \ CI ,
2. (C ⊓ D)I := CI ∩ DI ,
3. (C ⊔ D)I := CI ∪ DI ,
4. (∀R.C)I := {a ∈ ∆I | ∀b [(a, b) ∈ RI ⇒ b ∈ CI]},
5. (∃R.C)I := {a ∈ ∆I | ∃b [(a, b) ∈ RI ∧ b ∈ CI]}.

An interpretation I is a model of a concept C (denoted as I |= C) if CI 6= ∅.
A concept C is said to be satisfiable in ALC if there exists an interpretation I
such that I |= C.

The syntax of ALC is extended by a non-empty set NI of individual names.
We denote individual names by o, o1, o2, x, y and z.

Definition 3 An ABox is a finite set of expressions of the form: C(o) or R(o1, o2)
where o, o1 and o2 are in NI , C is a concept, and R is an atomic role. An ex-
pression C(o) or R(o1, o2) is called an ABox statement. An interpretation I in
Definition 2 is extended to apply also to individual names o such that oI ∈ ∆I .
Such an interpretation is a model of an ABox A if for every C(o) ∈ A, oI ∈ CI

and for every R(o1, o2) ∈ A, (oI1 , oI2) ∈ RI . An ABox A is called satisfiable in
ALC if it has a model.

We adopt the following unique name assumption: for any o1, o2 ∈ NI , if
o1 6= o2, then oI1 6= oI2 .

Norihiro Kamide. 199

Definition 4 A TBox is a finite set of expressions of the form: C ⊑ D. The
elements of a TBox are called TBox statments. An interpretation I := 〈∆I , ·I〉
is called a model of C ⊑ D if CI ⊆ DI . An interpretation I is said to be a
model of a TBox T if I is a model of every element of T . A TBox T is called
satisfiable in ALC if it has a model.

Definition 5 A knowledge base Σ is a pair (T ,A) where T is a TBox and A
is an ABox. An interpretation I is a model of Σ if I is a model of both T and
A. A knowledge base Σ is called satisfiable in ALC if it has a model.

Since the satisfiability for an ABox, a TBox or a knowledge base can be
reduced to the satisfiability for a concept [2], we focus on the concept satisfiability
in the following discussion.

2.2 PALC

Similar notions and terminologies for ALC are also used for PALC. The PALC-
language is constructed from the ALC-language by adding ∼ (paraconsistent
negation).

Definition 6 Concepts C are defined by the following grammar:

C ::= A | ¬C | ∼C | C ⊓ C | C ⊔ C | ∀R.C | ∃R.C

Definition 7 A paraconsistent interpretation PI is a structure 〈∆PI , ·I
+

, ·I
−

〉
where

1. ∆PI is a non-empty set,
2. ·I

+

is an interpretation function which assigns to every atomic concept A
a set AI

+

⊆ ∆PI and to every atomic role R a binary relation RI
+

⊆
∆PI × ∆PI ,

3. ·I
−

is an interpretation function which assigns to every atomic concept A
a set AI

−

⊆ ∆PI and to every atomic role R a binary relation RI
−

⊆
∆PI × ∆PI ,

4. for any atomic role R, RI
+

= RI
−

.

The interpretation functions are extended to concepts by the following induc-
tive definitions:

1. (∼C)I
+

:= CI
−

,

2. (¬C)I
+

:= ∆PI \ CI
+

,

3. (C ⊓ D)I
+

:= CI
+

∩ DI
+

,

4. (C ⊔ D)I
+

:= CI
+

∪ DI
+

,

5. (∀R.C)I
+

:= {a ∈ ∆PI | ∀b [(a, b) ∈ RI
+

⇒ b ∈ CI
+

]},

6. (∃R.C)I
+

:= {a ∈ ∆PI | ∃b [(a, b) ∈ RI
+

∧ b ∈ CI
+

]},

7. (∼C)I
−

:= CI
+

,

8. (¬C)I
−

:= ∆PI \ CI
−

,

200 Paraconsistent Description Logics Revisited

9. (C ⊓ D)I
−

:= CI
−

∪ DI
−

,

10. (C ⊔ D)I
−

:= CI
−

∩ DI
−

,

11. (∀R.C)I
−

:= {a ∈ ∆PI | ∃b [(a, b) ∈ RI
−

∧ b ∈ CI
−

]},

12. (∃R.C)I
−

:= {a ∈ ∆PI | ∀b [(a, b) ∈ RI
−

⇒ b ∈ CI
−

]}.

An expression I∗ |= C (∗ ∈ {+,−}) is defined as CI
∗

6= ∅. A paraconsistent

interpretation PI := 〈∆PI , ·I
+

, ·I
−

〉 is a model of a concept C (denoted as
PI |= C) if I+ |= C. A concept C is said to be satisfiable in PALC if there
exists a paraconsistent interpretation PI such that PI |= C.

The interpretation functions ·I
+

and ·I
−

are intended to represent “verifica-
tion” and “falsification”, respectively.

Definition 8 A paraconsistent interpretation PI in Definition 7 is extended to
apply also to individual names o such that oI

+

, oI
−

∈ ∆PI and oI
+

= oI
−

. Such
a paraconsistent interpretation is a model of an ABox A if for every C(o) ∈ A,

oI
+

∈ CI
+

and for every R(o1, o2) ∈ A, (oI
+

1 , oI
+

2) ∈ RI
+

. Such a paraconsistent

interpretation is called a model of C ⊑ D if CI
+

⊆ DI
+

. The satisfiability of
ABox, a TBox or a knowledge base in PALC is defined in the same way as in
ALC.

3 Semantical Embedding and Decidability

In the following, we introduce a translation of PALC into ALC, and by using
this translation, we show a semantical embedding theorem of PALC into ALC.
The translation introduced is a slight modification of the translation introduced
by Ma et al. [5] to embed ALC4 into ALC. A similar translation has been used by
Gurevich [3] and Rautenberg [14] to embed Nelson’s three-valued constructive
logic [1, 9] into intuitionistic logic. The way of showing the semantical and syn-
tactical embedding theorems of PALC into ALC is a new technical contribution
developed in this paper. The semantical and syntactical embedding theorems
are used to show the decidability and completeness theorems for PALC.

Definition 9 Let NC be a non-empty set of atomic concepts and N ′
C

be the set
{A′ | A ∈ NC} of atomic concepts. 1 Let NR be a non-empty set of atomic roles
and NI be a non-empty set of individual names. The language L∼ of PALC is
defined using NC , NR, NI , ∼, ¬,⊓,⊔, ∀R and ∃R. The language L of ALC is
obtained from L∼ by adding N ′

C
and deleting ∼.

A mapping f from L∼ to L is defined inductively by

1. for any R ∈ NR and any o ∈ NI , f(R) := R and f(o) := o,
2. for any A ∈ NC , f(A) := A and f(∼A) := A′ ∈ N ′

C
,

3. For any A(o) ∈ NC , f(A(o)) := A(f(o)) and f(∼A(o)) := A′(f(o)) ∈ N ′
C
,

4. f(¬C) := ¬f(C),

1 A can include individual names, i.e., A can be A(o) for any o ∈ NI .

Norihiro Kamide. 201

5. f(C ♯ D) := f(C) ♯ f(D) where ♯ ∈ {⊓,⊔},
6. f(∀R.C) := ∀f(R).f(C),
7. f(∃R.C) := ∃f(R).f(C),
8. f(∼∼C) := f(C),
9. f(∼¬C) := ¬f(∼C),

10. f(∼(C ⊓ D)) := f(∼C) ⊔ f(∼D),
11. f(∼(C ⊔ D)) := f(∼C) ⊓ f(∼D),
12. f(∼∀R.C) := ∃f(R).f(∼C),
13. f(∼∃R.C) := ∀f(R).f(∼C).

Lemma 10 Let f be the mapping defined in Definition 9. For any paraconsistent
interpretation PI := 〈∆PI , ·I

+

, ·I
−

〉 of PALC, we can construct an interpreta-
tion I := 〈∆I , ·I〉 of ALC such that for any concept C in L∼,

1. CI
+

= f(C)I ,

2. CI
−

= f(∼C)I .

Proof. Let NC be a non-empty set of atomic concepts and N ′
C

be the set
{A′ | A ∈ NC} of atomic concepts. Let NR and NI be sets of atomic roles and
individual names, respectively.

Suppose that PI is a paraconsistent interpretation 〈∆PI , ·I
+

, ·I
−

〉 where

1. ∆PI is a non-empty set,
2. ·I

+

is an interpretation function which assigns to every atomic concept A ∈
NC a set AI

+

⊆ ∆PI , to every atomic role R ∈ NR a binary relation RI
+

⊆
∆PI × ∆PI and to every individual name o ∈ NI an element oI

+

∈ ∆PI ,
3. ·I

−

is an interpretation function which assigns to every atomic concept A ∈
NC a set AI

−

⊆ ∆PI , to every atomic role R ∈ NR a binary relation RI
−

⊆
∆PI × ∆PI and to every individual name o ∈ NI an element oI

−

∈ ∆PI ,
4. for any R ∈ NR and any o ∈ NI , RI

+

= RI
−

and oI
+

= oI
−

.

Suppose that I is an interpretation 〈∆I , ·I〉 where

1. ∆I is a non-empty set such that ∆I = ∆PI ,
2. ·I is an interpretation function which assigns to every atomic concept A ∈

NC ∪ N ′
C

a set AI ⊆ ∆I , to every atomic role R ∈ NR a binary relation
RI ⊆ ∆I × ∆I and to every individual name o ∈ NI an element oI ∈ ∆I ,

3. for any R ∈ NR and any o ∈ NI , RI = RI
+

= RI
−

and oI = oI
+

= oI
−

.

Suppose moreover that PI and I satisfy the following conditions: for any
A ∈ NC and any o ∈ NI ,

1. AI
+

= AI and (A(o))I
+

= (A(o))I ,

2. AI
−

= (A′)I and (A(o))I
−

= (A′(o))I .

The lemma is then proved by (simultaneous) induction on the complexity of
C. The base step is obvious. We show only some cases on the induction step
below.

202 Paraconsistent Description Logics Revisited

Case C ≡ ¬D: For (1), we obtain: a ∈ (¬D)I
+

iff a ∈ ∆PI \ DI
+

iff a ∈

∆I \ DI
+

(by the condition ∆PI = ∆I) iff a ∈ ∆I \ f(D)I (by induction
hypothesis for 1) iff a ∈ (¬f(D))I iff a ∈ f(¬D)I (by the definition of f).

For (2), we obtain: a ∈ (¬D)I
−

iff a ∈ ∆PI \ DI
−

iff a ∈ ∆I \ DI
−

(by the
condition ∆PI = ∆I) iff a ∈ ∆I \ f(∼D)I (by induction hypothesis for 2) iff
a ∈ (¬f(∼D))I iff a ∈ f(∼¬D)I (by the definition of f).

Case C ≡ ∼D: For (1), we obtain: a ∈ (∼D)I
+

iff a ∈ DI
−

iff a ∈ f(∼D)I

(by induction hypothesis for 2). For (2), we obtain: a ∈ (∼D)I
−

iff a ∈ DI
+

iff
a ∈ f(D)I (by induction hypothesis for 1) iff a ∈ f(∼∼D)I (by the definition
of f).

Case C ≡ ∀R.D: We show only (2) below.

d ∈ (∀R.D)I
−

iff d ∈ {a ∈ ∆PI | ∃b [(a, b) ∈ RI
−

∧ b ∈ DI
−

]}

iff d ∈ {a ∈ ∆I | ∃b [(a, b) ∈ RI ∧ b ∈ DI
−

]} (by the conditions ∆PI = ∆I and

RI
−

= RI)
iff d ∈ {a ∈ ∆I | ∃b [(a, b) ∈ RI ∧ b ∈ f(∼D)I]} (by induction hypothesis for

2)
iff d ∈ ((∃R.f(∼D))I)
iff d ∈ ((∃f(R).f(∼D))I) (by the definition of f)
iff d ∈ ((f(∼∀R.D))I) (by the definition of f).

Lemma 11 Let f be the mapping defined in Definition 9. For any paraconsistent
interpretation PI := 〈∆PI , ·I

+

, ·I
−

〉 of PALC, we can construct an interpreta-
tion I := 〈∆I , ·I〉 of ALC such that for any concept C in L∼,

1. I+ |= C iff I |= f(C),
2. I− |= C iff I |= f(∼C).

Proof. By Lemma 10.

Lemma 12 Let f be the mapping defined in Definition 9. For any interpretation
I := 〈∆I , ·I〉 of ALC, we can construct a paraconsistent interpretation PI :=

〈∆PI , ·I
+

, ·I
−

〉 of PALC such that for any concept C in L∼,

1. I |= f(C) iff I+ |= C,
2. I |= f(∼C) iff I− |= C.

Proof. Similar to the proof of Lemma 11.

Theorem 13 (Semantical embedding) Let f be the mapping defined in Def-
inition 9. For any concept C,

C is satisfiable in PALC iff f(C) is satisfiable in ALC.

Norihiro Kamide. 203

Proof. By Lemmas 11 and 12.

Theorem 14 (Decidability) The concept satisfiability problem for PALC is
decidable.

Proof. By decidability of the satisfiability problem for ALC, for each concept C
of PALC, it is possible to decide if f(C) is satisfiable in ALC. Then, by Theorem

13, the satisfiability problem for PALC is decidable.

The satisfiability problems of a TBox, an ABox and a knowledge base for
PALC are also shown to be decidable.

Since f is a polynomial-time reduction, the complexities of the satisfiability
problems of a TBox, an ABox and a knowledge base for PALC can be reduced
to those for ALC, i.e., the complexities of the problems for PALC are the same
as those for ALC. For example, the satisfiability problems of an acyclic TBox
and a general TBox for PALC are PSPACE-complete and EXPTIME-complete,
respectively.

For the concept satisfiability problem for PALC, the existing tableau algo-
rithms for ALC are applicable by using the translation f with Theorem 13.

4 Syntactical Embedding and Completeness

From a purely theoretical or logical point of view, a sound and complete axiom-
atization is required for the underlying semantics. In this section, we thus give
a sound and complete tableau calculus T AALC for PALC.

Definition 15 A concept is called a negation normal form (NNF) if the classical
negation connective ¬ occurs only in front of atomic concepts.

Let C(x) be a concept in NNF. In order to test satisfiability of C(x), the
tableau algorithm starts with the ABox A = {C(x)}, and applies the inference
rules of a tableau calculus to the ABox until no more rules apply.

Definition 16 (T ALC) Let A be an ABox that consists only of NNF-concepts.
The inference rules for the tableau calculus T ALC for ALC are of the form:

A
A ∪ {C1(x), C2(x)}

(⊓)

where (C1 ⊓ C2)(x) ∈ A, C1(x) /∈ A or C2(x) /∈ A,

A
A ∪ {C1(x)} | A ∪ {C2(x)}

(⊔)

where (C1 ⊔ C2)(x) ∈ A and [C1(x) /∈ A and C2(x) /∈ A],

A
A ∪ {C(y)}

(∀R)

204 Paraconsistent Description Logics Revisited

where (∀R.C)(x) ∈ A, R(x, y) ∈ A and C(y) /∈ A,

A
A ∪ {C(y), R(x, y)}

(∃R)

where (∃R.C)(x) ∈ A, there is no individual name z such that C(z) ∈ A and
R(x, z) ∈ A, and y is an individual name not occurring in A.

Definition 17 Let A be an ABox that consists only of NNF-concepts. Then,
A is called complete if there is no more rules apply to A. A is called clash if
{A(x),¬A(x)} ⊆ A for some atomic concept A(x). A tree produced by a tableau
calculus from A is called complete if all the nodes in the tree are complete. A
branch of a tree produced by a tableau calculus from A is called clash-free if all
its nodes are not clash.

The following theorem is known.

Theorem 18 (Completeness) For any ALC-concept C in NNF, T ALC pro-
duces a complete tree with a clash-free branch from the Abox {C} iff C is satis-
fiable in ALC.

For PALC-concepts, we use the same definition of NNF as that of ALC-
concepts, i.e., “negation” in the term NNF means “classical negation.” The way
of obtaining NNFs for PALC-concepts is almost the same as that for ALC-
concepts, except that we also use the law: ¬∼C ↔ ∼¬C, which is justified by
the fact: (¬∼C)I

+

= (∼¬C)I
+

.

Definition 19 (T PALC) Let A be an ABox that consists only of NNF-concepts.
The inference rules for the tableau calculus T PALC for PALC are obtained

from T ALC by adding the inference rules of the form:

A
A ∪ {C(x)}

(∼)

where ∼∼C(x) ∈ A, 2

A
A ∪ {∼C1(x)} | A ∪ {∼C2(x)}

(∼⊓)

where (∼(C1 ⊓ C2))(x) ∈ A and [∼C1(x) /∈ A and ∼C2(x) /∈ A],

A
A ∪ {∼C1(x),∼C2(x)}

(∼⊔)

where (∼(C1 ⊔ C2))(x) ∈ A, ∼C1(x) /∈ A or ∼C2(x) /∈ A,

A
A ∪ {∼C(y), R(x, y)}

(∼∀R)

2 We do not use the condition: C(x) /∈ A in (∼). This is from a technical reason. See
the proof of Theorem 20.

Norihiro Kamide. 205

where (∼∀R.C)(x) ∈ A, there is no individual name z such that ∼C(z) ∈ A and
R(x, z) ∈ A, and y is an individual name not occurring in A,

A
A ∪ {∼C(y)}

(∼∃R)

where (∼∃R.C)(x) ∈ A, R(x, y) ∈ A and ∼C(y) /∈ A.

An expression f(A) denotes the set {f(α) | α ∈ A}.

Theorem 20 (Syntactical embedding) Let A be an ABox that consists only
of NNF-concepts in L∼, and f be the mapping defined in Definition 9. Then:

T PALC produces a complete tree with a clash-free branch from A iff
T ALC produces a complete tree with a clash-free branch from f(A)

Proof. • (=⇒): By induction on the complete trees T with a clash-free branch
from A in T PALC. We distinguish the cases according to the first inference of
T . The base step is obvious. The induction step is considered below. We show
only the following case.

Case (∼): The first inference of T is of the form:

A
A ∪ {C(x)}

(∼)

where ∼∼C(x) ∈ A. By induction hypothesis, T ALC produces a complete tree
with a clash-free branch from f(A)∪{f(C(x))} with f(∼∼C(x)) ∈ f(A). By the
definition of f , we have f(∼∼C(x)) = f(C(x)), and hence f(A) ∪ {f(C(x))} =
f(A) ∈ f(A). Therefore, T ALC provides a complete tree with a clash-free branch
from f(A).

• (⇐=): By induction on the complete trees T ′ with a clash-free branch from
f(A) in T ALC. We distinguish the cases according to the first inference of T ′.
We show only the following case.

Case (∀R): The first inference of T ′ is of the form:

f(A)

f(A) ∪ {f(∼C(y))}
(∀R)

where ∀R.f(∼C(x)) ∈ f(A), f(R(x, y)) ∈ f(A) and f(∼C(y)) /∈ f(A). By in-
duction hypothesis, T PALC provides a complete tree with a clash-free branch
from A∪{∼C(y)}. By the definition of f , we have ∀R.f(∼C(x)) = ∀f(R).f(∼C(x))
= f(∼∃R.C(x)) and f(R(x, y)) = R(x, y). Thus, we obtain:

A
A ∪ {∼C(y)}

(∼∃R).

Therefore, T PALC provides a complete tree with a clash-free branch from A.

206 Paraconsistent Description Logics Revisited

Theorem 21 (Completeness) For any PALC-concept C in NNF, T PALC
produces a complete tree with a clash-free branch from the Abox {C} iff C is
satisfiable in PALC.

Proof. Let C be a PALC-concept in NNF. Then, we obtain:

T PALC produces a complete tree with a clash-free branch from {C}
iff T ALC produces a complete tree with a clash-free branch from {f(C)} (by

Theorem 20)
iff f(C) is satisfiable in ALC (by Theorem 18)
iff C is satisfiable in PALC (by Theorem 13).

5 Remarks

We now explain about some differences and similarities among ALC4 [5], quasi-
classical description logics [18, 19] and PALC. In ALC4, a four-valued interpre-
tation I := (∆I , ·I) is defined using a pair 〈P, N〉 of subsets of ∆I and the
projection functions proj+〈P, N〉 := P and proj−〈P,N〉 := N . The interpreta-
tions of an atomic concept A and a conjunctive concept C1⊓C2 are then defined
as follows:

1. AI := 〈P, N〉 where P,N ⊆ ∆I ,
2. (C1 ⊓ C2)

I := 〈P1 ∩ P2, N1 ∪ N2〉 if CI
i

= 〈Pi, Ni〉 for i = 1, 2.

In quasi-classical description logics, a reformulation or simplification of the four-
valued interpretations of ALC4 is used: An interpretation is defined using a pair
〈+C,−C〉 of subsets of ∆I without using projection functions. The interpreta-
tions of an atomic concept A and a conjunctive concept C1⊓C2 are then defined
as follows:

1. AI := 〈+A,−A〉 where +A,−A ⊆ ∆I ,
2. (C1 ⊓ C2)

I := 〈+C1 ∩ +C2,−C1 ∪ −C2〉.

The pairing functions used in the four-valued and quasi-classical semantics have
been used in some algebraic semantics for Nelson’s logics (see e.g. [10] and the
references therein). On the other hand, the semantics of PALC is defined us-

ing two interpretation functions ·I
+

and ·I
+

instead of the pairing functions.
These interpretation functions have been used in some Kripke-type semantics
for Nelson’s logics (see e.g. [17] and the references therein). The “horizontal”
semantics using paring functions and the “vertical” semantics using two kinds
of interpretation functions have thus essentially the same meaning.

Acknowledgments. I would like to thank Dr. Ken Kaneiwa and the ref-
erees for their valuable comments. This research was partially supported by
the Japanese Ministry of Education, Culture, Sports, Science and Technology,
Grant-in-Aid for Young Scientists (B) 20700015.

Norihiro Kamide. 207

References

1. A. Almukdad and D. Nelson, Constructible falsity and inexact predicates, Journal

of Symbolic Logic 49, pp. 231–233, 1984.
2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi and Peter F. Patel-Schneider

(Eds.), The description logic handbook: Theory, implementation and applications,
Cambridge University Press, 2003.

3. Y. Gurevich, Intuitionistic logic with strong negation, Studia Logica 36, pp. 49–59,
1977.

4. K. Kaneiwa, Description logics with contraries, contradictories, and subcontraries,
New Generation Computing 25 (4), pp. 443–468, 2007.

5. Y. Ma, P. Hitzler and Z. Lin, Algorithms for paraconsistent reasoning with OWL,
Proceedings of the 4th European Semantic Web Conference (ESWC 2007), LNCS
4519, pp. 399-413, 2007.

6. Y. Ma, P. Hitzler and Z. Lin, Paraconsistent reasoning for expressive and tractable
description logics, Proceedings of the 21st International Workshop on Description
Logic (DL 2008), CEUR Workshop Proceedings 353.

7. C. Meghini and U. Straccia, A relevance terminological logic for information re-
trieval, Proceedings of the 19th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 197–205, 1996.

8. C. Meghini, F. Sebastiani and U. Straccia, Mirlog: A logic for multimedia informa-
tion retrieval, In: Uncertainty and Logics: Advanced Models for the Representation
and Retrieval of Information, pp. 151–185, Kluwer Academic Publishing, 1998.

9. D. Nelson, Constructible falsity, Journal of Symbolic Logic 14, pp. 16–26, 1949.
10. S.P. Odintsov, Algebraic semantics for paraconsistent Nelson’s logic, Journal of

Logic and Computation 13 (4), pp. 453–468, 2003.
11. S.P. Odintsov and H. Wansing, Inconsistency-tolerant description logic: Motivation

and basic systems, in: V.F. Hendricks and J. Malinowski, Editors, Trends in Logic: 50
Years of Studia Logica, Kluwer Academic Publishers, Dordrecht, pp. 301–335, 2003.

12. S.P. Odintsov and H. Wansing, Inconsistency-tolerant Description Logic. Part II:
Tableau Algorithms, Journal of Applied Logic 6, pp. 343–360, 2008.

13. Peter F. Patel-Schneider, A four-valued semantics for terminological logics, Artifi-

cial Intelligence 38, pp. 319–351, 1989.
14. W. Rautenberg, Klassische und nicht-klassische Aussagenlogik, Vieweg, Braun-

schweig, 1979.
15. M. Schmidt-Schauss and G. Smolka, Attributive concept descriptions with com-

plements, Artificial Intelligence 48, pp. 1–26, 1991.
16. U. Straccia, A sequent calculus for reasoning in four-valued description logics,

Proceedings of International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods (TABLEAUX 1997), LNCS 1227, pp. 343–357, 1997.

17. H. Wansing, The logic of information structures, LNAI 681, 163 pages, 1993.
18. X. Zhang and Z. Lin, Paraconsistent reasoning with quasi-classical semantics in
ALC, Proceedings of the 2nd International Conference on Web Reasoning and Rule
Systems (RR 2008), LNCS 5341, pp. 222–229, 2008.

19. X. Zhang, G. Qi, Y. Ma, Z. Lin, Quasi-classical semantics for expressive description
logics, Proceedings of the 22nd International Workshop on Description Logic (DL
2009), CEUR Workshop Proceedings 477.

208 Paraconsistent Description Logics Revisited

