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Abstract. We consider the complexity of answering conjunctive queries
in the description logic S, i.e., in ALC extended with transitive roles.
While a co-NExpTime lower bound was recently established in [5], the
best known upper bound was 2-ExpTime. In this paper, we concentrate
on the case where only a single transitive role (and no other role) is
present and establish a tight co-NExpTime upper bound.

1 Introduction

Formal ontologies have gained significant importance in the last decade and
play an increasing role in a growing number of application areas including the
semantic web, ontology-based information integration, and peer-to-peer data
management. As a result, ontology formalisms such as description logics (DLs)
are nowadays required to offer support for query answering that goes beyond
simple taxonomic questions and membership queries. In particular, conjunctive
queries (CQs) over instance data play a central role in many applications and
have consequently received considerable attention, cf. [11, 6, 9] and references
therein and below.

A main aim of recent research has been to identify the potential and limi-
tations of CQ answering in various DLs by mapping out the complexity land-
scape of this reasoning problem. When concerned with inexpressive DLs such
as DL-Lite and EL, one is typically interested in data complexity and efficient
implementations based on relational database systems [3, 8]. In expressive DLs,
the data complexity is almost always coNP-complete and it is more interesting
to study combined complexity. While 2-ExpTime upper bounds for expressive
DLs of the ALC family are known since 1998 [4], lower bounds except ExpTime-
hardness (which is trivially inherited from satisfiability) have long been elusive.
A first step was made in [7], where inverse roles were identified as a source of
complexity: CQ answering in plain ALC remains ExpTime-complete, but goes
up to 2-ExpTime-completeness in ALCI. When further extending ALCI to the
popular DL SHIQ, CQ answering remains 2-ExpTime-complete [6].
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Interestingly, inverse roles turn out not to be the only source of complexity
in SHIQ. In [5], we have shown that transitive roles, which play a central role in
many ontologies and are used to represent fundamental relations such as “part
of” [10], also increase the complexity of CQ answering. More specifically, CQ
answering is co-NExpTime-hard in the DL S, which is ALC extended with
transitive roles and the basic logic of the SHIQ family, even with only a single
transitive role and no other roles (and when the TBox is empty). We have also
shown in [5] that if we further add role hierarchies and thus extend S to SH,
CQ answering even becomes 2-ExpTime-complete.

However, the precise complexity of CQ answering in S has remained open
between co-NExpTime and 2-ExpTime. The only existing tight bound (also
from [5]) concerns tree-shaped ABoxes, for which CQ answering in S is only Ex-

pTime-complete (which is remarkable because previously known lower bounds
for CQ answering in DLs did not rely on the ABox structure). In this paper,
we present ongoing work on CQ answering in S and show that, in the pres-
ence of only a single transitive role and no other role, CQ answering in S is
in co-NExpTime, thus co-NExpTime-complete. This result is interesting for
two reasons. First, co-NExpTime is an unusual complexity class for CQ an-
swering in expressive DLs as all previous extensions of ALC have turned out
to be complete for a deterministic time complexity class; the only exception is
a co-NExpTime result for ALCI in [7] which is, however, entirely unsurpris-
ing because it concerns a syntactically and semantically restricted case (“rooted
CQ answering”) where a co-NExpTime bound comes naturally. And second,
we believe that the presented upper bound can be extended to the general case
where an arbitrary number of roles is allowed, though at the expense of making
it considerably more technical.

As usual, we consider conjunctive query entailment instead of CQ answering,
i.e., we replace the search problem by its decision problem counterpart. We use
the following strategy to obtain a co-NExpTime upper bound for CQ entail-
ment. First, we use a standard technique to show that CQ entailment over un-
restricted ABoxes can be reduced to entailment of UCQs (unions of conjunctive
queries) over ABoxes that contain only a single individual and no role assertions.
More precisely, we use a Turing reduction that requires an exponential number of
UCQ entailment checks, where each UCQ contains exponentially many disjuncts
in the worst case. Thus, it suffices to establish a co-NExpTime upper bound for
each of the required UCQ entailments. Second, we show that if one of the UCQ
entailments does not hold, then there is a tree-shaped counter-model with only
polynomially many types on each path. Third, we characterize counter-models
in terms of tree-interpretations that are annotated in a certain way with sub-
queries of the original CQ (so-called Q-markings). Thus, we can decide UCQ-
(non)-entailment by deciding the existence of a Q-marked tree-interpretation.
Fourth, we show that, additionally to the restriction on the number of types, it
suffices to consider Q-marked tree-interpretations in which there are only poly-
nomially many different annotations on each path. Finally, we prove that the
existence of a Q-marked tree-interpretation with the mentioned restrictions on
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the number of types and annotations can be checked by guessing an initial part
of the annotated tree-interpretation that has only polynomial depth and thus
exponential size, which gives the desired co-NExpTime bound.

2 Preliminaries

We briefly introduce the description logic S, conjunctive queries, and conjunctive
query entailment.

Knowledge Bases. We assume standard notation for the syntax and semantics
of S knowledge bases [6]. In particular, NC and NI are countably infinite and
disjoint sets of concept names and individual names. For the purpose of this
paper, we consider a single transitive role, denoted throughout by r. Concepts
are defined inductively: (a) each A∈NC is a concept, and (b) if C, D are concepts,
then C ⊓D, ¬C, and ∃r.C are concepts.1 A TBox is a set of concept inclusions
C ⊑ D. An ABox is a set of assertions C(a) and r(a, b). A knowledge base (KB)
is a pair K = (T ,A) consisting of a TBox T and an ABox A. We use I to denote
an interpretation, ∆I for its domain, and CI and rI for the interpretation of
a concept C and the role r, respectively. We denote by Ind(A) the set of all
individual names in an ABox A.

Conjunctive Query Entailment. Let NV be a countably infinite set of vari-
ables. A conjunctive query (CQ or query) over a KB K is a finite set of atoms
of the form A(x) or r(x, y), where x, y ∈NV, and A is a concept name.2 For a
CQ q over K, let Var(q) denote the variables occurring in q. A match for q in an
interpretation I is a mapping π : Var(q) → ∆I such that (i) π(x)∈AI for each
A(x)∈ q, and (ii) (π(x), π(y))∈ rI for each r(x, y)∈ q. We write I |= q if there
is a match for q in I. If I |= q for every model I of K, then K entails q, writ-
ten K |= q. The query entailment problem is to decide, given K and q, whether
K |= q. We sometimes also consider unions of conjunctive queries (UCQs), which
take the form

⋃
i qi, where each qi is a conjunctive query. The notions I |= q and

K |= q are lifted from CQs to UCQs in the obvious way.

The directed graph Gq associated with a query q is defined as (V,E), where
V = Var(q) and E = {(x, y) | r(x, y) ∈ q}. When deciding CQ entailment, we
assume without loss of generality that the input query q (i.e., the graph Gq) is
connected. For V ⊆ Var(q), we use q|V ↓ to denote the restriction of q to the set
of variables that are reachable in Gq starting from some element in V . We call
q|V ↓ a proper subquery of q if it is connected, and use sub(q) to denote the set
of all proper subqueries of q. Obviously, q ∈ sub(q).

1 Concepts of the form C ⊔D and ∀r.C are viewed as abbreviations.
2 As usual, individuals in q can be simulated, and queries with answer variables can

be reduced to the Boolean CQs considered here.
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3 Reduction to Unary ABoxes

The objective of this section is to reduce CQ entailment over arbitrary knowledge
bases to UCQ entailment over knowledge bases whose ABoxes contain only a
single concept assertion and no role assertions.

Let K = (T ,A) be a knowledge base and q a CQ for which we want to decide
whether K |= q. We assume without loss of generality that T = {⊤ ⊑ CT }. The
announced reduction, which is similar to one used in [5], makes use of the fact
that if there is an interpretation I of K with I 6|= q, then there is a forest-shaped
such model, i.e., a model that consists of an ABox part of unrestricted relational
structure and a tree-shaped part rooted at each ABox individual. To check for
the existence of a countermodel of this form, we consider all ways in which the
query variables can be distributed among the different parts of the model. The
query has no match if for each possible distribution, we can select an ABox
individual a such that some subquery assigned to the tree model below a is not
matched in that tree model. This leaves us with the problem of determining
the existence of certain tree models (one for each ABox individual) that spoil a
(worst-case exponential) set of subqueries.

To formally implement this idea, we require a few preliminary definitions.
We use cl(K) to denote the smallest set that contains CT , each concept C with
C(a) ∈ A, and is closed under single negation and subconcepts. A type is a
subset t ⊆ cl(K) that satisfies the following conditions:

1. ¬C ∈ t iff t /∈ C, for all ¬C ∈ cl(T );
2. C ⊓ D ∈ t iff C ∈ t and D ∈ t, for all C ⊓ D ∈ cl(T );
3. CT ∈ t.

We use tp(K) to denote the set of all types for K. A completion of A is an ABox
A′ such that

– A ⊆ A′ with Ind(A) = Ind(A′);
– for each a ∈ Ind(A), we have {C | C(a) ∈ A′} ∈ tp(K);
– r(a, b), r(b, c) ∈ A′ implies r(a, c) ∈ A′;
– ∃r.C ∈ cl(K), r(a, b) ∈ A, and C(b) ∈ A′ implies (∃r.C)(a) ∈ A′.

We use cpl(A) to denote the set of all completions for A. A match candidate
for a completion A′ ∈ cpl(A) describes a way of distributing the query variables
among the different parts of the model. Formally, it is a mapping ζ : Var(q) →
{a, a↓ | a ∈ Ind(A)} such that

– if A(x) ∈ q and ζ(x) = a, then A(a) ∈ A′;
– if r(x, y) ∈ q, ζ(x) = a, and ζ(y) = b, then r(a, b) ∈ A′;
– if r(x, y) ∈ q, ζ(x) = a, ζ(y) = b↓, and a 6= b, then r(a, b) ∈ A′;
– r(x, y) ∈ q and ζ(x) = a↓ implies ζ(y) = a↓.

For every r(x, y) ∈ q with ζ(x) = a and ζ(y) = b↓ (where potentially a = b),
define a subset V ⊆ Var(q) as the smallest set such that

– y ∈ V ;
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– if r(x′, y′) ∈ q with x′ ∈ V , then y′ ∈ V ;
– if r(x′, y′) ∈ q with y′ ∈ V and ζ(x′) = b↓, then x′ ∈ V .

We use q|r(x,y) to denote the restriction of q to the variables in V . Let Qζ denote
the set of all queries q|r(x,y) obtained in this way. It is straightforward to verify
that all these queries are proper subqueries, i.e., Qζ ⊆ sub(q).

A query annotation for A′ identifies the subqueries that do not have a match
in the counter-model that we construct. Formally, it is a map α : Ind(A) → 2sub(q)

that satisfies the following conditions:

1. for every match candidate ζ for A′, there is a query q|r(x,y) ∈ Qζ such that

q|r(x,y) ∈ α(a) where ζ(y) = a↓;
2. q ∈ α(a) for all a ∈ Ind(A).

For each a ∈ Ind(A), we use A′|a to denote the restriction of A′ to assertions of
the form C(a). The proof of the following lemma is similar to that of a closely
related result in [6].

Lemma 1. K 6|= q iff there is a completion A′ of A and a query annotation α
for A′ such that for all a ∈ Ind(A), we have Ka 6|=

⋃
α(a), where Ka = (T ,A′|a).

Lemma 1 constitutes the announced reduction: to decide whether K |= q, we can
enumerate all completions A′ of A and query annotations α for A′, and then
perform the required UCQ entailment checks.

4 Characterization of Counter-models

It remains to decide whether Ka |=
⋃

α(a) holds for each a ∈ Ind(A). Since
α(a) may contain exponentially many different subqueries of q (this is what
actually happens in the lower bound proved in [5]), it is challenging to do this
in co-NExpTime. We start with a characterization of counter-models. In the
remainder of the section, for readability, we fix some a ∈ Ind(A), and we use Q
to denote α(a) and Ca to denote ⊓{C | C(a) ∈ A′}.

Many of the subsequent techniques and results will be concerned with trees
and tree interpretations, which we introduce next. Let Σ be an arbitrary set.
Then a tree (over Σ with root p) is a set T = {p · w |w ∈ S} where p ∈ Σ∗ and
S ⊆ Σ∗ is a prefix-closed set of words. Each node w · c ∈ T , where w ∈ T and
c ∈ Σ, is a child of w. For a node w ∈ T , |w| denotes the length of w, disregarding
the prefix p (so that the root of T has length 0). We say the branching degree
of T is bounded by k if |{c ∈ Σ | w · c ∈ T}| ≤ k for all w ∈ T . A path in T , is
a (potentially infinite) sequence w0, w1, . . . of elements from T such that (i) w0

is the root of T , and (ii) for each i > 0, wi is a child of wi−1. If T is a tree
and f : T → S is a function with S finite, then we use max(T, f) to denote the
maximal number of distinct values that f can take on an arbitrary path in T .

An interpretation I is a tree interpretation if ∆I is a tree. We introduce the
notation root(I) to denote the root of the tree ∆I . A tree interpretation I is a
tree model of Ka if
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– I is a model of T , and root(I) ∈ CI
a ,

– rI = {(w, w · c) | w, w · c ∈ ∆I ∧ c ∈ Σ}+, and
– for all ∃r.C ∈ cl(K) and w ∈ (∃r.C)I , there is c ∈ Σ such that w · c ∈ CI ,

i.e., all relevant existential restrictions are satisfied in one step.

Given a tree interpretation I and w ∈ ∆I , we use I|w to denote the restriction
of I to the subtree rooted at w.

The following lemma shows that we can restrict our attention to tree-shaped
interpretations in which only polynomially many types appear on any given path.
As the proof of the lemma is surprisingly subtle, we defer it to the appendix of
a longer version of this submission [1]. Given an interpretation I, we use tI(w)
to refer to the type of w ∈ ∆I in I, i.e. {C ∈ cl(K) | w ∈ CI}.

Lemma 2. If Ka 6|=
⋃

Q, then there is an interpretation I such that:

1. I is a tree model of Ka, and I 6|=
⋃

Q, and
2. max(∆I , tI) ≤ |cl(K)|.

To characterize counter-models, we employ marking of interpretations, simi-
lar to that in [5]. A marking simulates a top-down walk through a tree interpre-
tation I greedily matching the variables of the queries in Q. The marking fails
if we arrive at a subquery that is fully matched along this walk. As we show
next, the existence of a marking for a tree interpretation I is a necessary and
sufficient condition for I 6|=

⋃
Q.

For a query p and a variable x ∈ Var(p), we say that x is consumed (in p) by
a type t if {A | A(x) ∈ p} ⊆ t and {y | r(y, x) ∈ p} = ∅. Given a type t ∈ tp(K)
and a query p ∈ sub(q), we denote by sub

t(p) the set of all proper subqueries of
pt, where pt is obtained from p by removing all atoms involving a variable that
is consumed by t. In other words, sub

t(p) is the set of connected components in
the reduced query pt. Trivially, sub

t(p) = {p} if t does not consume any variable
in p.

The following lemma describes a single step of the top-down walk through a
tree interpretation.

Lemma 3. Assume a tree interpretation I, w ∈ ∆I and any set P of queries.
Then I|w 6|=

⋃
P iff there is a set P ′ such that:

(i) P ′ contains some non-empty p′ ∈ sub
tI(w)(p) for each p ∈ P ;

(ii) I|w′ 6|=
⋃

P ′ for each child w′ of w in ∆I .

Proof. For the if direction, we show that if I|w |=
⋃

P , then there is no set P ′

satisfying (i) and (ii). If I|w |=
⋃

P , then there is a match π in I|w for some

p ∈ P . We show that then, for each p′ ∈ sub
tI(w)(p), there exists a child w′ of w

such that I|w′ admits a match for p′. This implies that there is no set P ′, since

there is no possible choice of a subquery in sub
tI(w)(p) to be included.

Let π be a match for p in I|w, and let sub
π(w)(p) denote the set of all proper

subqueries of the query pπ(w) that results from p by dropping each atom involving
a variable x with π(x) = w. By definition of a match, each x ∈ Var(p) with
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π(x) = w is consumed by tI(w). This implies that all atoms removed from p to

obtain pπ(w) are also removed to obtain ptI(w), and thus each p′ ∈ sub
tI(w)(p) is

contained in some p′′ ∈ sub
π(w)(p). Since π is a match for p, each p′′ ∈ sub

π(w)(p)
has a match in I|w′ for some child w′ of w (in particular, π restricted to the
domain of I|w′ is such a match), and so does each p′ ⊆ p′′. This shows that, for

each p′ ∈ sub
tI(w)(p), there exists a child w′ of w such that I|w′ |= p′.

For the other direction we show that if there does not exist a set P ′ as above,
then I|w |=

⋃
P . Assume that there is no P ′ satisfying (i) and (ii). Then we

can select some p ∈ P such that for each non-empty p′ ∈ sub
tI(w)(p), there is

a child w′ of w with I|w′ |= p′, and we can select a match πp′ in I|w′ for each
p′. Observe that each x ∈ Var(p) that is not consumed by tI(w) occurs in some
p′ and is in the scope of some πp′ . It can be easily verified that a match π for
p can be composed by taking the union of all π′

p, and setting π(x) = w for all
remaining variables x. This shows I|w |= p and I|w |=

⋃
P . o

We can now formally define the notion of a marking, which describes a top-
down walk through a whole tree interepretation.

Definition 1. Let I be a tree interpretation. A Q-marking for I is a mapping
µ : ∆I → 2sub(q) such that:

1. µ(root(I)) = Q,
2. for each w ∈ ∆I and each pair w · i, w · j ∈ ∆I , µ(w · i) = µ(w · j),

3. for each w · i ∈ ∆I , µ(w · i) is a set containing a non-empty p′ ∈ sub
tI(w)(p)

for each p ∈ µ(w).

Using Lemma 3, we can characterize query non-entailment as follows:

Lemma 4. There is a Q-marking for a tree interpretation I iff I 6|=
⋃

Q.

Proof. For the if direction, assume I 6|=
⋃

Q. We define a Q-marking µ for I
inductively:

– µ(root(I)) = Q,
– µ(w·c) = µ(w)′ for all w·c ∈ ∆I , where µ(w)′ is a ⊆-minimal set of subqueries

satisfying conditions (i) and (ii) of Lemma 3 (where we take P = µ(w) and
P ′ = µ(w)′).

Note that a suitable set µ(root(I))′ exists for the children of the root because
I 6|=

⋃
Q. Then at each step w · c, condition (ii) in Lemma 3 ensures that

I|w·c 6|=
⋃

µ(w · c). Applying the lemma again we ensure the existence of a
suitable set µ(w · c)′ for the children of w · c. It is trivial to verify that µ satisfies
the conditions in the definition of Q-marking (in particular, for condition 3 we
use condition (i) in Lemma 3).

The other direction follows easily from the first condition in Definition 1,
which ensures that the root is always marked with Q, and the following claim:

(∗) If µ is a Q-marking for I, then I|w 6|=
⋃

µ(w) for every w ∈ ∆I .

Meghyn Bienvenu, et al. 155



To show (∗), we assume for a contradiction that µ is a Q-marking and that
I|w |=

⋃
µ(w) for some w ∈ ∆I . That is, I|w |= p for some p ∈ µ(w). Among all

such pairs (w, p), we select one with minimal |Var(p)|, i.e., such that |Var(p)| ≤
|Var(p′)| for every w′ ∈ ∆I and every p′ ∈ µ(w′) such that I|w′ |= p′. In the
case where tI(w) consumes no variable in p, we have that for every child w′

of w, µ(w) = µ(w′) and I|w |= p iff I|w′ |= p. We can iteratively apply this
argument to choose a w∗ ∈ ∆I|w (either w itself or a first descendant where some
variable is consumed) such that tI(w∗) consumes some x ∈ Var(p), I|w∗ |= p,
and µ(w∗) = µ(w). The fact that tI(w∗) consumes some x ∈ Var(p) ensures

|Var(p′)| < |Var(p)| for every p′ ∈ sub
tI(w∗)(p). Since µ is a Q-marking for I and

p ∈ µ(w∗), by conditions 2 and 3 in Definition 1, there must be some non-empty

p′ ∈ sub
tI(w∗)(p) such that p′ ∈ µ(w′) for all children w′ of w∗. We know from

Lemma 3 that I|w∗ |= {p} implies that I|w′ |= {p′} for some child w′ of w∗. But
as |Var(p′)| < |Var(p)|, this is a contradiction. o

We have shown that UCQ non-entailment reduces to deciding the existence of
a marking. The following lemma will help us to show that the latter problem can
be decided in NExpTime. It shows that, even though there can be exponentially
many queries in Q, the query set changes only a few times on each path of a
marked interpretation. More precisely:

Lemma 5. If I 6|=
⋃

Q, then I admits a Q-marking µ with max(∆I , µ) ≤
|Var(q)|2 + 1.

Proof. Let µ be the Q-marking defined in the proof of Lemma 4. We consider
an arbitrary path w1, w2, . . . in I, and show that l = |{µ(w1), µ(w2), . . .}|
≤ |Var(q)|2 + 1. We let J = {i | µ(wi) 6= µ(wi+1)}. We will show that |J | ≤ |q|2.
The desired bound will follow from this and the fact that l ≤ |J | + 1. Let
ti = tI(wi) for all i ≥ 0. We say a query q′ is i-matched if q′ has a match in Ii

but not on Ii−1, where Ik is defined by setting (i) ∆Ik = {(1, t1), . . . , (k, tk)};
(ii) rIk = {((i, ti), (j, tj)) | j > i}; (iii) AIk = {(i, ti) | A ∈ ti} for all A ∈ NC.
Note that, for any query q′, there is at most one index i such that q′ is i-matched.
For each pair x, y ∈ Var(q), let q|x,y be the query that is obtained by restricting
q|{x}↓ to the variable y and the variables that reach y in the graph Gq. Let
X = {q|x,y | x, y ∈ Var(q)}. Note that |X| ≤ |Var(q)|2. We now show that for
each i ∈ J , there exists some q′ ∈ X such that q′ is i-matched. Since there is at
most one i for each q′, this implies |J | ≤ |X| ≤ |q|2 and the bound follows.

Consider an arbitrary i ∈ J . Then µ(wi) 6= µ(wi+1) implies that for some

p′ ∈ µ(wi), µ(wi+1) contains some p′′ 6= p′ from sub
tI(w)(p′), and some x ∈

Var(p′) is consumed by tI(wi). By definition, the query p′ is a proper subquery
of some p ∈ Q. Observe that, if we restrict our attention to p and its subqueries,
the marking µ ‘moves’ to a strictly smaller subquery at every type that consumes
some variable. Let M be the set of source variables in the query graph Gp of
this p, i.e. M = {y ∈ Var(p) | {y′ | r(y′, y) ∈ p} = ∅}. It is not hard to see that,
if x ∈ Var(p′) is consumed by tI(wi), each q|y,x with y ∈ M has a match in Ii.
To see that there exists at least one y ∈ M such that q|y,x is i-matched, assume
towards a contradiction that there is some j < i such that each q|y,x has a match
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in Ij , and take the smallest such j. Then all variables that reach x in Gq are
consumed by some type on the path to wj , and wj is marked with some p′′ ⊆ p
where {y | r(y, x) ∈ p′′} = ∅. As x is consumed by tI(wj), then the markings of
all descendants of wj contain some subquery of p′′ where x does not occur. This
contradicts the fact that p′ ∈ µ(wi) and x ∈ Var(p′). o

As a direct consequence of Lemmas 2, 4 and 5, we obtain the following charac-
terization of counter-models; this is the basis of our UCQ entailment algorithm.

Theorem 1. Ka 6|=
⋃

Q iff there is a tree interpretation I such that:

(A) I is a model of Ka with max(∆I , tI) ≤ |cl(K)|;
(B) I admits some Q-marking µ and max(∆I , µ) ≤ |Var(q)|2 + 1.

By removing domain elements not needed to satisfy existential restrictions from
cl(K), it is standard to show that we can assume the interpretation I from
Theorem 1 to have branching degree at most |cl(K)|.

5 Witnesses of Counter-models

By Theorem 1, Ka 6|=
⋃

Q can be decided by checking whether there is a tree
interpretation that satisfies conditions (A) and (B). As we show next, the exis-
tence of such an interpretation I is guaranteed if we can find an initial part of I
whose depth is bounded by dK,q := |cl(K)| × (|Var(q)|2 +1). Since the branching
degree of I is linear in the size of K, this initial part is of at most exponential
size. A nondeterministic exponential time procedure for checking Ka 6|=

⋃
Q is

then almost immediate. We represent initial parts of countermodels as follows.

Definition 2. A witness for “Ka 6|=
⋃

Q” is a node-labeled tree W = (T, τ, ρ)
where τ : T → tp(K) and ρ : T → 2sub(q), such that:

1. The branching degree of T is bounded by |cl(K)|.
2. For each w ∈ T , |w| ≤ dK,q.
3. max(T, τ) ≤ |cl(K)| and max(T, ρ) ≤ |Var(q)|2 + 1;
4. {C | C(a) ∈ A′} ⊆ τ(e) and ρ(e) = Q for the root e of T .
5. For all w ∈ T with |w|< dK,q and ∃r.C ∈ τ(w), there is a child w′ of w with

C ∈ τ(w′).
6. For each w ∈ T and each child w′ of w, ¬∃r.D ∈ τ(w) implies {¬D,¬∃r.D} ⊆

τ(w′).
7. For each pair w1, w2 of children of w, ρ(w1) = ρ(w2) is a set containing some

nonempty p′ ∈ sub
t(p) for each p ∈ ρ(w).

An initial part of a tree interpretation represented by a witness can be unravelled
into a tree interpretation that satisfies (A) and (B) of Theorem 1, thus witnessing
Ka 6|=

⋃
Q.

Theorem 2. Ka 6|=
⋃

Q iff there exists a witness W for “Ka 6|=
⋃

Q”.
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Proof. For the ‘only if’ direction, by Theorem 1 there exists a tree-model I of
Ka and a Q-marking µ for I such that max(∆I , tI) ≤ |cl(K)|, max(∆I , µ) ≤
|Var(q)|2 + 1, and the branching degree of I is at most |cl(K)|. We can obtain
a witness by restricting I and µ to the first dK,q levels. More precisely, W =
(T, τ, ρ) is obtained by setting:

- T = {w ∈ ∆I | |w| ≤ dK,q};
- τ(w) = tI(w) and ρ(w) = µ(w) for all w ∈ T .

For the other direction, observe that a witness W = (T, τ, ρ) is almost a
Q-marked model of Ka, except a node w ∈ T with |w| = dK,q may not have the
children it needs to satisfy the existential restrictions. However, since the path
from the root to w has dK,q +1 nodes and due to (3) in Definition 2, there exists
a pair of nodes on this path that share the same type and query set. This allows
us to obtain a tree-model and a Q-marking by unraveling W as follows.

For each node w ∈ T , let s(w) be the shortest prefix of w such that τ(s(w)) =
τ(w) and ρ(s(w)) = ρ(w). Let D ⊆ T ∗ be the smallest set of such that:

- the root of T belongs to D, and
- if w0 · · ·wn ∈ D, then w0 · · ·wnw ∈ D for all children w of s(wn).

Consider the following interpretation I and marking µ:

- ∆I = D;
- AI = {w0 · · ·wn ∈ ∆I | A ∈ τ(vn)} for all concept names A;
- rI = {(w0 · · ·wn−1, w0 · · ·wn) | w0 · · ·wn ∈ ∆I};
- µ(w0 · · ·wn) = ρ(wn) for all w0 · · ·wn ∈ ∆I .

It is easy to check that µ is a Q-marking for I. To see that I is model of Ka,
observe that for each node w ∈ T with |w| = dK,q, there is a proper prefix w′

of w such that s(w′) 6= w′. This means that such a w will never be added to a
path in ∆I . This implies that each w0 · · ·wn ∈ ∆I has |wn| < dK,q and hence
satisfies all the existential restrictions. o

We can check for the existence of a witness by nondeterministically guessing an
(exponential size) candidate structure W = (T, τ, ρ) and then verifying condi-
tions (1-7) in Definition 2. The latter is feasible in time exponential in |K| and
|q|. Hence, Ka 6|=

⋃
Q can be decided nondeterministically in time exponential

in |K| and |q|.

For the overall algorithm, observe that each completion A′ of A is of size
polynomial in |K| and |q|, while the size of α(a) is at most exponential in |K|
and |q| for each a ∈ Ind(A). Thus, using Lemma 1, checking K 6|= q is trivially in
NExpTime provided that checking Ka 6|=

⋃
α(a) is NExpTime. By combining

this with the matching lower bound in [5], we get:

Theorem 3. CQ entailment over S KBs with one transitive role, and no other
roles, is co-NExpTime-complete.
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6 Conclusion

We believe that Theorem 3 can be extended to the case where there is an arbi-
trary number of roles, both transitive and unrestricted ones. This requires the
combination of the techniques presented in this paper with the ones developed
in [5]. In particular, different roles used in a query p ∈ Q induce a partitioning
of p into different “clusters”, and each cluster can be treated in a similar way as
an entire, unpartitioned query p ∈ Q in the current paper. Since the technical
details, which we are currently working out, can be expected to become some-
what cumbersome, we believe that it is instructive to first concentrate on the
case of a single transitive role as we have done in this paper.

It is interesting to note that the techniques from this paper can be used
to reprove in a transparent way the ExpTime upper bound for CQ answering
over S knowledge bases that contain only a single concept assertion and no role
assertions from [5]—restricted to a single transitive role, of course. In the case
of such ABoxes, we do not need the machinery from Sections 3 and 5, nor the
(subtle to prove) Lemma 2. The essential technique is Q-markings, which can
be simplified to maps from ∆I to sub(q) instead of to 2sub(q) because Q is a
singleton that consists only of the input query. By Lemma 4, it suffices to check
for the existence of a tree-shaped interpretation I along with a Q-marking for
I. This can be done by a standard type-elimination procedure.
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