
Extending OWL with Integrity Constraints

Jiao Tao1, Evren Sirin2, Jie Bao1, and Deborah L. McGuinness1

1 Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY, USA
2 Clark&Parsia, LLC, Washington, DC, USA

1 Introduction

The Web Ontology Language (OWL) [1] is an expressive ontology language
based on Description Logics (DL)1. The semantics of OWL addresses distributed
knowledge representation scenarios where complete knowledge about the domain
cannot be assumed. Further, the semantics has the following characteristics:

– Open World Assumption (OWA): i.e., a statement cannot be inferred to be
false on the basis of failures to prove it.

– Absence of the Unique Name Assumption (UNA): i.e., two different names
may refer to the same object.

However, these characteristics can make it difficult to use OWL for data val-
idation purposes in real-world applications where complete knowledge can be
assumed for some or all parts of the domain.

Example 1 Suppose we have the following inventory KB K. One might add the
following axiom α to express the constraint “a product is produced by a producer”.
K = {Product(p)}, α : Product ⊑ ∃hasProducer.Producer

In this example, due to the OWA, not having a known producer for p does not
cause a logical inconsistency. Therefore, we cannot use α to detect (or prevent)
that a product is added to the KB without the producer information.

Example 2 Suppose we have the following inventory KB K. One might add the
following axiom α to express the constraint “a product has at most one producer”.
K = {Product(p), hasProducer(p, m1), hasProducer(p, m2)},
α : Product ⊑ ≤ 1hasProducer.⊤

Since m1 and m2 are not explicitly defined to be different from each other, they
will be inferred to be same due to the cardinality restriction. However, in many
cases, the reason to use functional properties is not to draw this inference, but to
detect an inconsistency. When the information about instances are coming from
multiple sources we cannot always assume explicit inequalities will be present.

In these scenarios, there is a strong need to use OWL as an Integrity Con-
straint (IC) language with closed world semantics. That is, we would like to adopt
the OWA without the UNA for parts of the domain where we have incomplete

1 Throughout the paper we use the terms OWL and DL interchangeably.

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

137

knowledge, and the Closed World Assumption (CWA)2 with UNA otherwise.
This calls for the ability to combine the open world reasoning of OWL with
closed world constraint validation.

In this paper, we describe an alternative IC semantics for OWL, which en-
ables developers to augment OWL ontologies with IC axioms. Standard OWL
axioms in the ontologies are used to compute inferences with open world seman-
tics and ICs are used to validate instance data using closed world semantics.
Our goal is to enable OWL as an IC language, especially in settings where OWL
KBs are integrated with relational databases and ICs are needed to enforce the
named individuals to have some known values. We show that IC validation can
be reduced to query answering when the KB expressivity is SRI or the con-
straint expressivity is SROI. The queries generated from ICs can be expressed
in the SPARQL query language allowing existing OWL reasoners to be used for
IC validation easily.

2 IC Use Cases

There are several common use cases for closed world constraint checking that
have been identified in the relational and deductive databases literature [2, Chap.
11]. We prepared a user survey to gather use cases and requirements for ICs from
the OWL community. These use cases are similar to what we consider to be the
canonical IC use cases and can be summarized as follows:

Typing constraints Typing constraints require that individuals that par-
ticipate in a relation should be instances of certain types. For example, closed
world interpretation of domain and range axioms in OWL would fit into this
category. Given the following ICs
∃hasProducer.⊤ ⊑ Product, ⊤ ⊑ ∀hasProducer.Producer

The following role assertion
hasProducer(product1, producer1)

would violate these ICs since product1 and producer1 are not explicitly known
to be instances of Product and Producer respectively. The data would be valid
with the addition of the following assertions:

Product(product1), Producer(producer1).
Domain and range axioms can be seen as global typing constraints; that is they
affect instances of every class that participates in a property assertion. OWL
also allows finer-grained typing constraints using universal restrictions.

Participation constraints Participation constraints require that instances
of the constrained class should have a role assertion. Given an IC semantics, the
existential restrictions in OWL can be used for this purpose. For instance, in
Example 1, α is a participation constraint. With IC semantics, we expect K to
be invalid w.r.t. this constraint since the producer of p is not known. K would
be valid only when additional axioms in the following form are added:

hasProducer(p, producer), Producer(producer).

2 With CWA, a statement is inferred to be false if it is not known to be true, which
is the opposite of OWA.

138 Extending OWL with Integrity Constraints

Uniqueness constraints Uniqueness constraints require that an individual
cannot participate in multiple role assertions with the same role. The keys in re-
lational databases enforce such constraints. A similar restriction can be expressed
in OWL with a FunctionalProperty declaration. For instance, in Example 2, α
is an uniqueness constraint. With IC semantics, K is invalid w.r.t. this constraint
since p has two producers m1 and m2 which are not known to be same. K would
be valid after adding the assertion m1 = m2.

3 Related Work

The research on integrating ICs with OWL has been conducted in multiple
directions. One approach to achieve this combination is to couple OWL with
rule-based formalisms and express ICs as rules without heads as in [3, 4]. For
example, according to the proposal in [3], the constraint axiom α in Example 1
is expressed with rules as follows:
⊥ ← DL[Product](x),not P (x, y)
P (x, y)← DL[hasProducer](x, y), DL[Producer](y)

where atoms with prefix DL are DL atoms which are evaluated as queries to the
OWL KB, not is the Negation As Failure (NAF) operator 3, and ⊥ is a special
predicate representing the empty rule head. The addition of constraints (rules)
to a DL KB constitutes a hybird KB, and the detection of a constraint violation
is reduced to checking if the special predicate ⊥ is entailed by the hybrid KB.
With this approach, ontology developers have to deal with one more additional
formalism, i.e., rules, besides the ontology language OWL to model the domain.

ICs can also be expressed with the epistemic query language EQL-Lite [5]
where EQL-Lite allows one to pose epistemic FOL queries that contain the
K operator used against standard FOL KBs. Since every OWL axiom can be
represented as an FOL formula we can translate the constraint axiom in Example
1 to the following EQL-Lite query:
KProduct(x)→ ∃y.(KhasProducer(x, y) ∧ KProducer(y))

where the answers of this query return the individuals in the KB that satisfy the
constraint, and the answers of the negated query will return the individuals that
violate the IC. Although the data complexity of answering domain independent
EQL-Lite queries in DL-Lite is LOGSPACE, it would require substantially more
effort to support EQL-Lite in DL KBs with full expressivity and the complexity
results are still unknown.

Another line of approach is based on the epistemic extension of DLs [6, 7]
where modal operators K and A can be used in concept and role expressions of
the given DL KB. Intuitively, KC represents the set of individuals that are known
to be instances of C and KR represents the pair of individuals that are known to
be related with the role R. Operator A is interpreted in terms of autoepistemic
assumptions. Then the ICs are represented as epistemic DL axioms, and the
satisfaction of ICs is defined as the entailment of the epistemic IC axioms by the

3 NAF is widely used in logic programming systems. With NAF, axioms that cannot
be proven to be true are assumed to be false

Jiao Tao, Evren Sirin, Jie Bao and Deborah McGuinness. 139

standard DL KB. For example, the constraint α in Example 1 can be translated
into the following epistemic DL axiom:
KProduct ⊑ ∃KhasProducer.KProducer.
One important feature of [6, 7] is that all interpretation domains are same,

and an individual name always refers to the same object in every interpretation.
Due to this feature, strict UNA is enforced. That is, two different names always
denote different resources. However, this is not compatible with OWL since it
is possible that standard OWL axioms infer that two different names identify
the same individual. While existing research has focused on epistemic extensions
for relatively inexpressive ALC there has not been much research for combining
epistemic logics with more expressive DLs.

Besides the above work, there are some other proposals concerning on in-
tegration of ICs with OWL. In this paper, we focus on approaches that reuse
OWL as an IC language. Our closest related work is a proposal by Motik et al.
[8] based on a minimal Herbrand model semantics of OWL: here, a constraint
axiom is satisfied if all minimal Herbrand models satisfy it. This approach may
result in counterintuitive results or a significant modeling burden in the following
cases.

First, unnamed individuals can satisfy constraints, which is not desirable for
closed world data validation.

Example 3 Consider the KB K that contains a product instance and its un-
known producer, and the constraint α that every product has a known producer:
K = {Product(p),∃hasProducer.Producer(p)}
α : Product ⊑ ∃hasProducer.Producer

Since p has a producer in every minimal Herbrand model of K, α is satisfied,
even though the producer is unknown.

Second, if a constraint needs to be satisfied only by named individuals, then
a special concept O has to be added into the original IC axiom, and every named
individual should be asserted as an instance of O. This adds a significant main-
tenance burden on ontology developers, but still doesn’t capture the intuition
behind the constraint;

Example 4 Suppose we have a KB K where there are two possible producers
for a product and a constraint α:

K = {Product(p), (∃hasProducer.{m1, m2})(p), O(p),
Producer(m1), Producer(m2), O(m1), O(m2)}

α : Product ⊑ ∃hasProducer.(Producer ⊓O)

The intuition behind constraint α is that the producer of every product
should be known. Even though we do not know the producer of p is m1 or m2

for sure, α is still satisfied by the semantics of [8] because in every minimal
Herbrand model p has a producer that is also an instance of Producer and O.

Third, the disjunctions and ICs may also interact in unexpected ways.

Example 5 Consider the following KB K where there are two categories for
products and a constraint α defined on one of the categories:

140 Extending OWL with Integrity Constraints

K = {Product ⊑ Category1 ⊔ Category2, Product(p)}
α : Category1 ⊑ ∃categoryType.⊤

Since we do not know for sure that p belongs to Category1, it is reasonable
to assume that the constraint α will not apply to p and α will not be violated.
However, with [8] semantics, α is violated because there is a minimal model
where p belongs to Category1 but it does not have a categoryType value.

In this paper, we present a new IC semantics for OWL that overcomes the
above issues and enables efficient IC validation for OWL.

4 Preliminaries

4.1 Description Logics SROIQ

In this section, we give a brief description about the syntax and semantics of the
Description Logic SROIQ [9], which is the logical underpinning of OWL 2 [10].
More details can be found in [9].

Let NC , NR, NI be non-empty and pair-wise disjoint sets of atomic con-
cepts, atomic roles and named individuals respectively. The SROIQ role R
is an atomic role or its inverse R−. Concepts are defined inductively as follows:

C ← A | ¬C | C1 ⊓ C2 | ≥ nR.C | ∃R.Self | {a}

where A ∈ NC , a ∈ NI , C(i) a concept, R a role.
We use the following standard abbreviations for concept descriptions: ⊥ =

C ⊓ ¬C, ⊤ = ¬⊥, C ⊔D = ¬(¬C ⊓ ¬D), ≤ nR.C = ¬(≥ n + 1 R.C), ∃R.C =
(≥ 1 R.C), ∀R.C = ¬(∃R.¬C), {a1, . . . , an} = {a1} ⊔ · · · ⊔ {an}.

A SROIQ-interpretation I = (∆, ·I), where ∆ is the domain, and .I is the
interpretation function which maps A ∈ NC to a subset of ∆, R ∈ NR to a
subset of ∆×∆, a ∈ NI to an element of ∆. The interpretation can be extended
to inverse roles and complex concepts as follows:

(R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI}, (¬C)I = ∆ \ CI , (C ⊓D)I = CI ∩DI ,

(≥ nR.C)I = {x | #{y.〈x, y〉 ∈ RI and y ∈ CI} ≥ n}

(∃R.Self)I = {x | 〈x, x〉 ∈ RI}, {a}I = {aI}.

where # denotes the cardinality of a set.
A SROIQ knowledge base K is a collection of SROIQ axioms, including

TBox, RBox, and ABox axioms. A SROIQ-interpretation I satisfies an axiom
α, denoted I |= α, if CI ⊆ DI (RI

1 ⊆ RI
2 , RI

1 ◦ . . . ◦RI
n ⊆ RI , ∀x ∈ ∆ : 〈x, x〉 ∈

RI , ∀x ∈ ∆ : 〈x, x〉 6∈ RI , RI
1 ∩RI

2 = ∅ resp.) holds when α=C ⊑ D (R1 ⊑ R2,
R1 . . . Rn ⊑ R, Ref(R), Irr(R), Dis(R1, R2) resp.). Note that, there are also
four kinds of ABox axioms (C(a), R(a, b), a = b, a 6= b). Their semantics is
given by encoding them as TBox axioms ({a} ⊑ C, {a} ⊑ ∃R.{b}, {a} ⊑ {b},
{a} ⊑ ¬{b}, resp.). I is a model of K if it satisfies all the axioms in K. We
define Mod(K) to be the set of all interpretations that are models of K. We say
K entails α, written as K |= α, if I |= α for all models I ∈Mod(K).

Jiao Tao, Evren Sirin, Jie Bao and Deborah McGuinness. 141

4.2 Distinguished Conjunctive Queries (DCQs)

We now describe the syntax and semantics of distinguished conjunctive queries
(DCQs). Let NV be a non-empty set of variable names disjoint from NI , NC ,
and NR. A query atom is an ABox axiom where variables can be used in place
of individuals. Formally, it is defined as follows:

q ← C(x) | R(x, y) | ¬R(x, y) | x = y | x 6= y

where x, y ∈ NI ∪NV , C is a concept, and R is a role. A conjunctive query (CQ)
is the conjunction of query atoms:

Q← q | Q1 ∧Q2

A DCQ is a CQ containing only distinguished variables.4

The semantics of DCQs are given in terms of interpretations defined in Sec-
tion 4.1. We define an assignment σ : NV → NI to be a mapping from the
variables used in the query to named individuals in the KB. We define σ(Q) to
denote the application of an assignment σ to a query Q such that the variables
in the query are replaced with individuals according to the mapping. We say a
KB K entails a DCQ Q with an assignment σ, written as K |=σ Q, if:

K |=σ q iff K |= σ(q)

K |=σ Q1 ∧Q2 iff K |=σ Q1 and K |=σ Q2

We define the answers to a query, A(Q,K), to be the set of all assignments
for which the KB entails the query. That is, A(Q,K) = {σ | K |=σ Q}. We say
that a query is true w.r.t. a KB, denoted K |= Q, if there is at least one answer
for the query, and false otherwise.

5 IC Semantics for OWL

There has been a significant amount of research to define the semantics of ICs
for relational databases, deductive databases, and knowledge representation sys-
tems in general. There are several proposals based on KB consistency or KB
entailment. Against both of these approaches, Reiter argued that ICs are epis-
temic in nature and are about “what the knowledge base knows” in [11]. He
proposed that ICs should be epistemic first-order queries that will be asked to
a standard KB that does not contain epistemic axioms.

We agree with Reiter about the epistemic nature of ICs and believe this is
the most appropriate semantics for ICs. In the following section, we describe an
alternative IC semantics for OWL axioms, which is similar to how the semantics
of epistemic DL ALCK [6] and MKNF DL ALCKNF [7] are defined. Then, in
Section 5.2, we discuss how the IC semantics addresses the issues explained in
Section 1 and Section 3, and enables OWL to be an IC language.

4 A distinguished variable can be mapped to only known individuals, i.e., an element
from NI

142 Extending OWL with Integrity Constraints

5.1 Formalization

We define IC-interpretation as a pair I,U where I is a SROIQ interpretation
defined over the domain ∆I and U is a set of SROIQ interpretations. The IC-
interpretation function .I,U maps concepts to a subset of ∆, roles to a subset of
∆×∆ and individuals to an element of ∆ as follows:

CI,U = {xI | x ∈ NI s.t. ∀J ∈ U , xJ ∈ CJ }

RI,U = {〈xI , yI〉 | x, y ∈ NI s.t. ∀J ∈ U , 〈xJ , yJ 〉 ∈ RJ }

where C is an atomic concept and R is a role. According to this definition,
CI,U is the interpretation of named individuals that are instances of C in every
(conventional) interpretation from U . RI,U can be understood similarly.

IC-interpretation is extended to inverse roles and complex concepts as follows:

(R−)I,U = {〈xI , yI〉 | 〈yI , xI〉 ∈ RI,U},

(C ⊓D)I,U = CI,U ∩DI,U , (¬C)I,U = NI \ CI,U ,

(≥ nR.C)I,U = {xI | x ∈ NI s.t. #{yI | 〈xI , yI〉 ∈ RI,U , yI ∈ CI,U} ≥ n},

(∃R.Self)I,U = {xI | x ∈ NI s.t. 〈xI , xI〉 ∈ RI,U}, {a}I,U = {aI}.

We can see that the IC-interpretation I,U is using the closed-world assump-
tion. For example, the elements of CI,U are the interpretation of named indi-
viduals that should be in the interpretation set of CI for all I ∈ U . Any named
individual that can not be proven to be an instance of C is assumed to be an
instance of ¬C since (¬C)I,U is the complement of CI,U w.r.t. NI .

Note that, although the IC interpretations have some similarities to the epis-
temic interpretations of ALCK and ALCKNF [6, 7], there are some important
differences. First, the IC interpretation in our approach is applicable to any
SROIQ DL KB while the expressivity of DLs in [6, 7] is limited to ALC. Sec-
ond, in ALCK and ALCKNF [6, 7], strict UNA is used by the interpretations
which is not the case in IC interpretations.

In our IC semantics, we want to adopt a weak form of UNA; that is, two
named individuals with different identifiers are assumed to be different by default
unless their equality is required to satisfy the axioms in the KB. This idea
is similar to minimal model semantics where equality relation is treated as a
congruence relation and minimized.

We formalize this notion of weak UNA by defining Minimal Equality (ME)
models. We start by defining the ≺= relation. Given two models I and J , we
say J ≺= I if all of the following conditions hold:

– For every concept C, J |= C(a) implies I |= C(a);
– For every role R, J |= R(a, b) implies I |= R(a, b);
– EJ ⊂ EI

where EI is the set of equality relations between named individuals (equality
relations, for short) satisfied by I:

EI = {〈a, b〉 | a, b ∈ NI s.t. I |= a = b}

Jiao Tao, Evren Sirin, Jie Bao and Deborah McGuinness. 143

ModME(K) is the models of K with minimal equality (ME) between named
individuals. Formally, we define

ModME(K) = {I ∈Mod(K) | ∄J ,J ∈Mod(K),J ≺= I}

It is easy to see that for every ME model I in ModME(K), there is no model
J of K where EJ ⊂ EI . Two different named individuals are interpreted as
equivalent in I ∈ModME(K) only if this equality is necessary to make I being
a model of K. For example, suppose we have the axiom a = {b}⊔{c} in K. Then,
∀I ∈ Mod(K), one of the following three conditions hold: (1) aI = bI , aI 6= cI ;
(2) aI = cI , aI 6= bI ; (3) aI = bI = cI . If (1) or (2) holds, then I ∈ModME(K)
because a has to be interpreted to be equivalent to at least one of b and c to
make I being a model of K. Whereas for case (3), I /∈ ModME(K) since the
equality relations in I are not minimal.

An IC-interpretation I,U satisfies an axiom α, denoted as I,U |= α, if

CI,U ⊆ DI,U (RI,U
1 ⊆ RI,U

2 , R1 ⊑ R2, RI,U
1 ⊆ RI,U

2 , ∀x ∈ NI : 〈xI,U , xI,U 〉 ∈

RI,U , ∀x ∈ NI : 〈xI,U , xI,U 〉 6∈ RI,U , RI,U
1 ∩ RI,U

2 = ∅ resp.) holds when
α=C ⊑ D (R1 ⊑ R2, R1 . . . Rn ⊑ R, Ref(R), Irr(R), Dis(R1, R2) resp.).

Given a SROIQ KB K and a SROIQ constraint α, the IC-satisfaction of
α by K, i.e., K |=IC α, is defined as:

K |=IC α iff ∀I ∈ U , I,U |= α,where U = ModME(K)

We define an extended KB as a pair 〈K, C〉 where K is a SROIQ KB as
before and C is a set of SROIQ axioms interpreted with IC semantics. We say
that 〈K, C〉 is valid if ∀α ∈ C,K |=IC α, otherwise there is an IC violation.

5.2 Discussion

It is easy to verify that the IC semantics provides expected results for the exam-
ples presented in Section 1 and Section 3. For instance, we get an IC violation
in Example 1 since the IC interpretation of Product contains p but the IC in-
terpretation of (∃hasProducer.Producer) is empty.

The following example shows how weak UNA allows the individuals that are
not asserted to be equal to be treated different for constraint validation purposes.

Example 6 Consider the KB K and the constraint α:

K = {C(c), R(c, d1), R(c, d2), D(d1), D(d2)}, α : C ⊑≥ 2R.D

With the weak UNA, d1 and d2 are interpreted to be different in every ME model.
Therefore, the IC-interpretation of (≥ 2R.D) includes c, and α is satisfied by K.

Now we illustrate another point regarding disjunctions in constraints.

Example 7 Suppose we have the KB K and constraint α:

K = {C(a), (C1 ⊔ C2)(a)}, α : C ⊑ C1 ⊔ C2

144 Extending OWL with Integrity Constraints

Constraint α should be read as “every instance of C should be either a known
instance of C1 or a known instance of C2”. Since we do not know for sure
whether a belongs to C1 or C2, α is expected to be violated by K. Indeed,
according to our semantics we get CI,U = {aI} and (C1 ⊔ C2)

I,U
= ∅. Therefore

CI,U 6⊆ (C1 ⊔ C2)
I,U

and we conclude there is an IC violation.
If we want to represent the alternative constraint: “every instance of C should

be an instance of C1 or C2”, we can define a new name C ′ in the KB to substitute
C1 ⊔ C2, thus having the new KB K′ and constraint α′ as follows:

K′ = {C(a), (C1 ⊔ C2)(a), C ′ ≡ C1 ⊔ C2}, α′ : C ⊑ C ′

There is no IC violation in this version because now the disjunction is interpreted
as standard OWL axioms. As these examples show, we can model the constraints
to express different disjunctions in a flexible way.

6 IC Validation

We have defined in Section 5.1 that, the extended KB 〈K, C〉 is valid if every
IC axiom in C is IC-satisfied by K. In this section, we describe how to do IC
validation, i.e., check IC-satisfaction by translating constraint axioms to queries
with the NAF operator not . We start by giving the formal semantics for not
in DCQs, then describe the translation rules from IC axioms to DCQnot and
finally provide a theorem showing that IC validation can be reduced to answering
DCQnot under certain conditions.

6.1 DCQnot

In Section 4.2 , we introduced standard DCQs. However, the expressivity of
standard DCQs is not enough to capture the closed world nature of IC semantics.
For this reason, we add the not operator to DCQs to get DCQnot queries. The
syntax of DCQnot is defined as follows:

Q← q | Q1 ∧Q2 | not Q

The semantics of not is defined as:

K |=σ not Q iff ∄σ′ s.t. K |=σ′

σ(Q)

And we use the abbreviation Q1 ∨Q2 for not (not Q1 ∧ not Q2). We can see

K |=σ Q1 ∨Q2 iff K |=σ Q1 or K |=σ Q2

6.2 Translation Rules: from ICs to DCQnot

We now present the translation rules from IC axioms to DCQnot queries. The
translation rules are similar in the spirit to the Lloyd-Topor transformation [12]

Jiao Tao, Evren Sirin, Jie Bao and Deborah McGuinness. 145

but instead of rules we generate DCQnot queries. The idea behind the translation
is to translate a constraint axiom into a query such that when the constraint is
violated the KB entails the query. In other words, whenever the answer to the
query is not empty, we can conclude that the constraint is violated.

The translation contains two operators: Tc for translating concepts and T
for translating axioms. Tc is a function that takes a concept expression and a
variable as input and returns a DCQnot query as the result:

Tc(Ca, x) := Ca(x)

Tc(¬C, x) := not Tc(C, x)

Tc(C1 ⊓ C2, x) := Tc(C1, x) ∧ Tc(C2, x)

Tc(≥ nR.C, x) :=
∧

1≤i≤n

(R(x, yi) ∧ Tc(C, yi))
∧

1≤i<j≤n

not (yi = yj)

Tc(∃R.Self, x) := R(x, x)

Tc({a}, x) := (x = a)

where Ca is an atomic concept, C(i) is a concept, R is a role, a is an individual,
x is an input variable, and y(i) is a fresh variable.
T is a function that maps a SROIQ axiom to a DCQnot query as follows:

T (C1 ⊑ C2) := Tc(C1, x) ∧ not Tc(C2, x)

T (R1 ⊑ R2) := R1(x, y) ∧ not R2(x, y)

T (R1 . . . Rn ⊑ R) := R1(x, y1) ∧ . . . Rn(yn−1, yn) ∧ not R(x, yn)

T (Ref(R)) := not R(x, x)

T (Irr(R)) := R(x, x)

T (Dis(R1, R2)) := R1(x, y) ∧R2(x, y)

where C(i) is a concept, R(i) is a role, x and y(i) is variable.

6.3 Reducing IC Validation to Answering DCQnot

In Theorem 1, we show that IC validation via query answering is sound and
complete when the expressivity of the extended KB is either 〈SRI,SROIQ〉
or 〈SROIQ,SROI〉. Note that, when the expressivity is 〈SROIQ,SROIQ〉,
we can not reduce IC validation to query answering in a straightforward way
due to the interaction between the disjunctive (in)equality axioms in K and the
cardinality constraints in C. We limit this interaction by either excluding nomi-
nals and cardinality restrictions in K thus prohibiting disjunctive (in)equality to
appear in K, or by prohibiting cardinality restrictions in C. Due to space limita-
tions we only present the main theorem here. The complete proofs are presented
in the technical report [13].

Theorem 1 Given an extended KB 〈K, C〉 with expressivity 〈SRI,SROIQ〉
(〈SROIQ,SROI〉 resp.), we have that K |=IC α iff K 6|= T (α) where α ∈ C.

146 Extending OWL with Integrity Constraints

7 Implementation

The emerging best practice query language for OWL ontologies is SPARQL
[14] which is known to have the same expressive power as nonrecursive Datalog
programs [15] and can express DCQnot queries. Therefore, based on the results
from Section 6.3, we can reduce IC validation to SPARQL query answering if
the KB is SRI or the ICs do not contain cardinality restrictions.

We have built a prototype IC validator5 by extending the OWL 2 DL reasoner
Pellet6. The prototype reads ICs expressed as OWL axioms and translates each
IC first to a DCQnot query and then to a SPARQL query. The resulting query
is executed by the SPARQL engine in Pellet where a non-empty result indicates
a constraint violation. Since the translation algorithm is reasoner independent
this prototype can be used in conjunction with any OWL reasoner that supports
SPARQL query answering.

We have used this proof-of-concept prototype to validate ICs with several
large ontologies such as the LUBM dataset.7 For testing, we removed several
axioms from the LUBM ontology and declared them as ICs instead. The dataset
is logically consistent but turning axioms into ICs caused some violations to
be detected. Since each constraint is turned into a separate query there is no
dependence between the validation time of different constraints. We have not
performed extensive performance analysis for IC validation but as a simple com-
parison we looked at logical consistency checking time vs. IC validation time. For
LUBM(5), which has 100K individuals and 800K ABox axioms, logical consis-
tency checking was in average 10s whereas validating a single IC took in average
2s. The naive approach in our prototype to execute each query separately would
not scale well as the number of ICs increase. However, there are many improve-
ment possibilities ranging from combining similar queries into a single query to
running multiple queries in parallel.

8 Conclusions and Future Work

In this paper, we described how to provide an IC semantics for OWL axioms
that can be used for data validation purposes. Our IC semantics provide intuitive
results for various different use cases we examined. We presented translation
rules from IC axioms to DCQnot queries, showing that IC validation can be
reduced to query answering when the KB expressivity is SRI or constraint
expressivity is SROI. Our preliminary results with a prototype IC validator
implementation show that existing OWL reasoners can be used for IC validation
efficiently with little effort. Using SPARQL queries for IC validation makes our
approach applicable to a wide range of reasoners. In the future, we will be looking
at the performance of IC validation in realistic datasets and will be exploring
the IC validation algorithms for the full expressivity of SROIQ.

5 http://clarkparsia.com/pellet/oicv-0.1.2.zip
6 http://clarkparsia.com/pellet
7 http://swat.cse.lehigh.edu/projects/lubm/

Jiao Tao, Evren Sirin, Jie Bao and Deborah McGuinness. 147

References

1. Smith, M.K., Welty, C., McGuiness, D.: OWL web ontology language guide (2004)
2. Colomb, R.M.: Deductive Databases and Their Applications. CRC Press (1998)
3. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining

answer set programming with description logics for the semantic web. AI 172(12-
13) (2008) 1495–1539

4. Motik, B.: A faithful integration of description logics with logic programming. In:
IJCAI2007. (2007) 477–482

5. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: EQL-Lite:
Effective first-order query processing in description logics. In: IJCAI2007. (2007)
274–279

6. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W., Schaerf, A.: An epistemic oper-
ator for description logics. AI 100(1–2) (1998) 225–274

7. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and
negation as failure. ACM Transactions on Computational Logic 3 (2002) 177–225

8. Motik, B., Horrocks, I., Sattler, U.: Bridging the gap between OWL and relational
databases. In: WWW2007. (2007) 807–816

9. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: KR2006.
(2006) 57–67

10. Motik, B., Patel-Schneider, P.F., Grau, B.C.: OWL 2 web ontology language direct
semantics (2009)

11. Reiter, R.: On integrity constraints. In: TARK1988. (1988) 97–111
12. Lloyd, J.W.: Foundations of logic programming. (1987)
13. Tao, J., Sirin, E., Bao, J., McGuinness, D.: Integrity constraints in OWL. Technical

report, Rensselaer Polytechnic Institute, Troy, NY, USA (2010)
14. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF (2008)
15. Angles, R., Gutierrez, C.: The expressive power of SPARQL. In: ISWC2008. (2008)

114–129

148 Extending OWL with Integrity Constraints

