
Optimization Techniques

for Fuzzy Description Logics

Nikolaos Simou1, Theofilos Mailis1, Giorgos Stoilos2, and Giorgos Stamou1

1 Department of Electrical and Computer Engineering,
National Technical University of Athens,

Zographou 15780, Greece
{nsimou,theofilos,gstam}@image.ntua.gr

2 Oxford University Computing Laboratory , Parks Road
Wolfson Building, Oxford OX1 3QD, United Kingdom

giorgos.stoilos@comlab.ox.ac.uk

Abstract. Sophisticated uncertainty representation and reasoning are
necessary for the alignment and integration of Web data from different
sources. For this purpose the extension of the Description Logics using
fuzzy set theory has been proposed, resulting to fuzzy Description Logics
(DLs). However, despite the fact that since the initial proposal a lot of
work has been done in the area, the practicability of very expressive
fuzzy DLs still remains open, due to the absence of practically scalable
systems. This paper presents optimization techniques that can improve
the performance of fuzzy-DL systems’ reasoning.

1 Introduction

Fuzzy ontologies are envisioned to be very useful in the Semantic Web. Further-
more, the need for handling fuzzy and uncertain information is crucial to the
Web, since information and data along it may often be uncertain or imperfect.
This requirement for uncertainty representation has led W3C to set up the Un-
certainty Reasoning for the World Wide Web XG3. Currently FiRE 4 [13] and
FuzzyDL5 [1] are the only existing systems for very expressive fuzzy description
logics (DLs) supporting the fKD-SHIN and fuzzy SHIf languages respectively.
Furthermore, the DeLorean reasoner that supports fKD −SROIQ was recently
proposed in literature [3]. This reasoner does not implement a fuzzy tableau al-
gorithm but an algorithm that reduces a fuzzy knowledge base to a crisp one [2]
using Pellet [12] for reasoning.

Despite the fact that the first proposal for fuzzy DLs was made by Straccia
in 1998 [16], since then little work has been done in order to permit the use
of expressive fuzzy DLs in realistic applications. The theoretical complexity of
the tableau reasoning algorithm for f-SHIN , presented in [14], is 2-Nexptime

3 http://www.w3.org/2005/Incubator/urw3/
4 http://www.image.ece.ntua.gr/~nsimou/FiRE/
5 http://gaia.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

244

that is very expensive. Therefore an implementation directly based on this very
expensive algorithm, would result to a reasoner that could not be applied to
real case scenarios. This problem was handled in crisp DLs, that also suffer from
high complexity, by the use of optimization techniques [8, 18]. Using these tech-
niques, a theoretically expensive computation can be converted to an equivalent
of practically lower complexity. As a result many optimized reasoners were im-
plemented for expressive DLs like FaCT++ [17], Racer [5] and Pellet [12] that
can handle effectively large and expressive knowledge bases.

Regarding optimization techniques for fuzzy DLs there is only the work of
Haarslev et al. [6] that presents an optimized prototype system supporting ALC
extended with uncertainty. This system uses fuzzy, probabilistic and possibilistic
functions, while the optimizations presented are quite general. Our work, on the
other hand, focuses on optimization techniques only for fuzzy DLs and more
specifically for the expressive DL fKD-SHIN . We present in detail the proposed
optimization techniques, we discuss their applicability to fuzzy DLs using other
fuzzy operators than those used in fKD-SHIN , and we optimize the operation
of the greatest lower bound that is the main reasoning service of fuzzy DLs. The
main contributions of this paper are the following:

1. It presents novel optimization techniques that can be applied to fuzzy DLs.
2. It provides an experimental evaluation of the proposed optimization tech-

niques.

The rest of the paper is organized as follows. The following section introduces
fKD-SHIN , section 3 presents the proposed optimizations techniques and sec-
tion 4 illustrates the evaluation of our proposal. Finally, section 5 concludes the
paper and provides a discussion on the achieved results and possible future work.

2 The Fuzzy DL fKD-SHIN

In this section, we briefly present the syntax and semantics of DL fKD-SHIN
which is a fuzzy extension of the DL SHIN [9]. Similarly to crisp description
logic languages, a fuzzy description logic language consists of an alphabet of
distinct concepts names (C), role names (R) and individual names (I), together
with a set of constructors to construct concept and role descriptions. If R is a
role then R− is also a role, namely the inverse of R. fKD-SHIN -concepts are
inductively defined as follows,

1. If C ∈ C, then C is a fKD-SHIN -concept,
2. If C and D are concepts, R is a role, S is a simple role and n ∈ N, then

(¬C), (C ⊔ D), (C ⊓ D), (∀R.C), (∃R.C), (≥ nS) and (≤ nS) are also
fKD-SHIN -concepts.

In contrast to crisp DLs, the semantics of fuzzy DLs are provided by a fuzzy
interpretation [15]. A fuzzy interpretation is a pair I = 〈∆I , ·I〉 where ∆I is a
non-empty set of objects and ·I is a fuzzy interpretation function, which maps

Nikolaos Simou, et al. 245

an individual name a to elements of aI ∈ ∆I and a concept name A (role name
R) to a membership function A

I : ∆I → [0, 1] (RI : ∆I × ∆I → [0, 1]).

By using fuzzy set theoretic operations the fuzzy interpretation function can
be extended to give semantics to complex concepts, roles and axioms. fKD-SHIN
uses the standard fuzzy operators of 1−x for fuzzy negation, max, min for fuzzy
union and intersection respectively and Kleenes Dienes implication [10].

A fKD-SHIN knowledge base Σ is a triple 〈T ,R,A〉, where T is a fuzzy
TBox, R is a fuzzy RBox and A is a fuzzy ABox. The TBox is a finite set
of fuzzy concept axioms which are of the form C ⊑ D called fuzzy concept
inclusion axioms and C ≡ D called fuzzy concept equivalence axioms, where
C is a concept name and D an fKD-SHIN concept. Similarly, the RBox is a
finite set of fuzzy role axioms of the form Trans(R) called fuzzy transitive role
axioms and R ⊑ S called fuzzy role inclusion axioms. Finally, the ABox is a
finite set of fuzzy assertions of the form 〈a : C⊲⊳n〉, 〈(a, b) : R⊲⊳n〉, where ⊲⊳

stands for ≥, >,≤ or <, or a 6
.
= b, for a, b ∈ I. Furthermore, the symbols ⊲ and

⊳ are used as a placeholder for the inequalities ≥, > and ≤, < respectively. An
assertion is called positive if defined by ⊲ while it is called negative if defined
by ⊳. Intuitively, a fuzzy assertion of the form 〈a : C ≥ n〉 means that the
membership degree of a to the concept C is at least equal to n.

As in crisp DLs, the main reasoning services of fKD-SHIN are entailment,
ABox consistency and subsumption. Furthermore, since a fuzzy ABox might
contain many positive assertions for an individual, without forming a contradic-
tion, two additional reasoning services exist in fKD-SHIN to compute what is
the best lower and upper truth-value bounds of a fuzzy assertion. The greatest
lower bound (glb) and the least upper bound (lub) of an assertion with respect
to a knowledge base have been defined in [15].

The reasoning services in fuzzy DLs are reduced to ABox consistency. This
problem in the majority of expressive DLs is solved with the use of tableaux
algorithms [7] that operate by decomposing complex concepts contained in an
ABox according to their semantics. This procedure is made by expansion rules
that differ for each DL constructor. The main objective of tableaux algorithms is
to create a tableau structure that will be an abstraction of a model of an ABox

A [9]. In a similar way, a tableau algorithm is used in fuzzy DLs to construct a
fuzzy tableau for a fuzzy ABox A [14].

The tableau algorithm, presented by Stoilos et al. [14] for fKD-SHIN , op-
erates in completion forests similar to the SHIN algorithm [9]. A completion
forest consists of a set of completion trees that are connected as the defined
assertions of an ABox A specify. Each node x is labelled with a set L(x), which
contains membership triples of the form 〈C, ⊲⊳, n〉, where C a fKD-SHIN con-
cept that appears within A and n ∈ [0, 1]. Similarly, each edge 〈x, y〉 is labelled
with a set L(〈x, y〉) which contains membership triples of the form 〈R, ⊲⊳, n〉,
where R is an fKD-SHIN role that occurs in A. The algorithm expands the
tree either by expanding the set L(x), of a node x with new triples, or by adding
new leaf nodes. The expansion of the completion forest is determined from the
tableau expansion rules that apply for the membership triples of a node. If

246 Optimization Techniques for Fuzzy Description Logics

for example 〈C1 ⊓ C2,⊲, n〉 ∈ L(x), and {〈C1,⊲, n〉, 〈C2,⊲, n〉} 6⊆ L(x) then
L(x) → L(x)∪{〈C1,⊲, n〉, 〈C2,⊲, n〉}. It is very important to note at this point
that tableau expansion rules for fuzzy DLs depend on the type of assertion,
hence a positive conjuction is treated differently from a negative one. Finally,
intuitively a clash is contained in a node when there are two conjugated triples
i.e L(x) = {〈C, >, n〉 〈C, <, l〉 }, with n > l. For a detailed presentation of the
fKD-SHIN tableau algorithm, the interested reader is referred to [14].

3 Optimizations techniques

3.1 Degrees Normalization

The ABox in fuzzy DLs contains concepts assertions, in which an individual
participates in a concept with a degree, as well as role assertions, in which two
individuals are related through a role with a degree. Due to this extension, in
fuzzy DLs we can end up with an ABox in which an individual participates in
the same concept with different degrees without forming a contradiction. Since
the ABox of a fuzzy knowledge base in many cases is automatically generated
[11], the existence of multiple assertions that can degrade the performance of
reasoning is possible. Therefore, we can end up with a node

L(x) = {〈C,⊲i, ni〉, 〈C,⊳j , ℓj〉},

where C is a fKD-SHIN concept, ni, ℓj ∈ [0, 1] are degrees and 1 ≤ i ≤ k, 1 ≤
j ≤ m. This situation is particularly problematic for many reasons. Firstly, in
order to check for a clash we need to perform a proper number of checks, which
here is k×m. Subsuquently, if the node is clash-free and C is the complex concept
∃R.A, then one needs to apply rule ∃⊲ k times creating k different edges 〈x, yi〉
with L(yi) = {〈A,⊲i, ni〉}.

This situation can be solved more effectively by normalizing the participation
degrees in the membership triples of a node that use the same concept, reducing
the assertions of this concept in a node to at most 2. In other words, we only
allow the greatest positive assertion and the least negative assertion of a concept
in a node, i.e.

L(x) = {〈C,⊲, dmax〉 〈C,⊳, dmin〉}.

If we furthermore extend this idea to concept assertions that include the nega-
tion of a concept, we end up with the rules illustrated in Table 1 for degrees
normalization in a node.

Additionally, during the process of degrees normalization, we can introduce
some additional rules based on the expansion rules of fKD-SHIN in order to
detect a contradiction. Lets assume node

L(x) = {〈C, >, n〉 〈¬C, >, l〉 }

and n + l ≥ 1 which means that there is a clash that can be detected without
applying the fKD-SHIN rule of negation.

Nikolaos Simou, et al. 247

Table 1. Rules for degrees normalization

Assertion 1 Assertion 2 Condition Action

〈C, ⊲, n〉 ∈ L(x) 〈C, ⊲, m〉 ∈ L(x) n ⊲ m Delete 〈C, ⊲, m〉

〈C, >, n〉 ∈ L(x) 〈C,≥, m〉 ∈ L(x) n ≥ m Delete 〈C,≥, m〉

〈C, ⊳, n〉 ∈ L(x) 〈C, ⊳, m〉 ∈ L(x) n ⊳ l Delete 〈C, ⊲, m〉

〈C, <, n〉 ∈ L(x) 〈C,≤, m〉 ∈ L(x) n ≤ m Delete 〈C,≥, m〉

〈C, ⊳, n〉 ∈ L(x) 〈¬C, ⊲, m〉 ∈ L(x) n ≤ 1 − m Delete 〈¬C, ⊲, m〉

n > 1 − m Delete 〈C, ⊳, n〉

〈C, ⊲, n〉 ∈ L(x) 〈¬C, ⊳, m〉 ∈ L(x) n ≥ 1 − m Delete 〈¬C, ⊳, m〉

n < 1 − m Delete 〈C, ⊲, n〉

The technique of degrees normalization can be also extended to the role
assertions of a fuzzy ABox. Degrees normalization is easily implemented and for
a node x that contains n membership triples the possible checks that need to be
done are the combinations per 2 i.e. n!

2!(n−2)! which means that this technique is

of polynomial complexity. Additionally, the rules for early clash detection can
be modified according to the fuzzy complement used for the interpretation of
negation, permiting in that way its use in fuzzy DLs that use different fuzzy
logics. The only disadvantage of this optimization technique is that it is strongly
depended on the knowledge base. In other words, it is possible that the use of
degrees normalization technique for some knowledge bases (more specifically for
knowledge bases that do not contain membership triples of the same concept)
will have no result in the performance.

3.2 ABox Partitioning

An optimization technique that was applied in crisp reasoners and can be also
used in fuzzy reasoners to boost up their performance is ABox partitioning [4,
6]. This technique is based on the fact that tableau expansion rules have specific
effect on the tableau structure. Hence, a tableau expansion rule can either add
(i) a new neighbour node to the node of examination, (ii) new membership
triples in this node or finally (iii) new membership triples to neighbouring nodes.
Therefore, due to this property of the fKD-SHIN constructors, the assertional
component of a fuzzy knowledge base can be divided in smaller partitions, which
can be examined independently. Let’s examine the following example in order
to understand the benefits from the ABox partitioning technique.

Example 1. Let us assume the completion forest shown in Fig. 1 where A, B, C,
D, E, F are fKD-SHIN concepts and R, S, L are fKD-SHIN roles.

Assuming that B is a complex fKD-SHIN concept, we will examine the
different ways that the tableau expansion rules affect this completion forest,
with respect to the different forms that B can have and the different forms of
inequalities (⊲,⊳) that can appear in membership triples with B. Consequently
we distinguish the following cases: If B consists of:

248 Optimization Techniques for Fuzzy Description Logics

v

w

x

y

z

u

S > 0.8 L > 0.6

L(v) = {〈B, >, 0.6〉}

R > 0.6

L(x) = {〈D, >, 0.7〉}

R > 0.7

L(y) = {〈E, >, 0.5〉}

L(w) = {〈C, >, 0.4〉}

L(z) = {〈F, >, 0.8〉}

L(u) = {〈A, >, 0.5〉}

Fig. 1. The completion forest of two ABox partitions.

– constructors of the form ¬,⊓,⊔, then only node v is affected.

– constructors ∃ and ≥ and the membership triple contains ⊲ or constructors
∀ and ≤ and the inequality is ⊳, then new neighbor nodes are created for
node v.

– constructor ∀ and inequality ⊲ or constructor ∃ and inequality ⊳, then
all existing and (possibly) new neighbors of v are affected can be affected
(depending on the role S that participates in the concept B = ∀S.C and
whether there exists R with R ⊑* S).

– constructor ≤ and inequality ⊲, or ≥ and inequality ⊳, then nodes w, x and
also the possible new neighbors of v are affected.

Finally, if we consider R− as the inverse role of R then again the expansion
of a rule with inverse roles will only affect the neighbors of v.

As we can observe, in any case the consistency of node v is independent of
nodes z and u. In other words, the ABox of the Example 1 can be partitioned
in two smaller ABoxes that can be examined independently. If both partitions
are consistent then the ABox will be consistent as well, while if even one of the
partitions is inconsistent then the ABox will be inconsistent.

In that way the storage requirements of tableau are considerably reduced,
since the nodes that are not connected to the node that is examined, and there-
fore do not directly affect its consistency, can be omitted. Additionally, the
storage requirements can be further reduced because after the expansion of a
consistent partition of the ABox, the partition can be discarded from the com-
pletion forest. Formally given ABox partitions are evaluated as folows.

Definition 1. (Connection Relation) We inductively define the connection
relation between two individuals a, b ∈ I w.r.t. an ABox A (denoted with !A)
as follows:

a !A b ⇐⇒

R (a, b) ⊲ d ∈ A for some role R and d ∈ [0, 1] or

R (b, a) ⊲ d ∈ A for some role R and d ∈ [0, 1] or

a !A c and c!Ab for some individual c ∈ I

(1)

Nikolaos Simou, et al. 249

Definition 2. For an ABox A and the set of individuals in it I, for each a ∈ I

the set [a]
A

contains a and all the individuals related to it w.r.t A.

[a]
A

= {a}∪ {b | b ∈ I and a !A b} (2)

Definition 3. We denote with A[a] the partition of the ABox A that contains
only individuals in [a]

A
:

A[a] = {C (b) ⊲⊳d | C (b) ⊲⊳d ∈ A and b ∈ [a]
A
}∪ (3)

{R (b, c) ⊲ d | R (b, c) ⊲ d ∈ A and b, c ∈ b ∈ [a]
A
}

Definition 4. The set A is the smallest subset of the powerset of A such that
it applies:

a ∈ I =⇒ A[a] ∈ A (4)

Theorem 1. It holds that:

1. ∪
Ai∈A

Ai = A,

2. Ai

⋂

Aj = ∅, for each pair Ai,Aj ∈ A such that Ai 6= Aj ,
3. A is consistent w.r.t. a TBox T iff each Ai ∈ A is consistent w.r.t. a TBox

T .

ABox partitioning is a very effective optimization technique. It is of poly-
nomial complexity and it can be applied to any fuzzy DL without nominals
independently from the fuzzy operators used to provide the interpretations. The
extreme case in which ABox partitioning does not boost up the performance of
reasoning is when all the individuals are connected with each other. Addition-
ally, ABox partitioning is very important because the consistency of a node can
be examined independently of the others nodes contained in an ABox, a fact
that is very useful for greatest lower bound reasoning service (see Section 3.3).

3.3 Optimized GLB

One of the most interesting and important reasoning services offered by fuzzy
DLs is computing the greatest lower bound of some individual a to some concept
C. Formally for a fuzzy knowledge base Σ and a crip assertion ϕ, the greatest
lower bound (glb) of ϕ w.r.t. Σ is glb(Σ,ϕ) = sup{n | Σ |= ϕ ≥ n}, where sup ∅ =
0 while the least upper bound lub of c w.r.t. Σ is lub(Σ,ϕ) = inf{n | Σ |= ϕ ≤ n},
where inf ∅ = 1. A decision procedure for solving greatest lower and least upper
bounds was proposed by Straccia [15]. More precisely, one first defines the set
of “relative” degrees as complemented values (for membership degree 0.4, the
complemented value is C0.4 = 1−0.4 = 0.6) and the degrees 0, 0.5 and 1 form the
set of membership degrees NΣ = {n, 1−n | {(a : C)⊲⊳n, ((a, b) : R)⊲⊳n}∩A 6= ∅}.
Then, in order to evaluate the glb of an assertion ϕ one evaluates the greatest
n ∈ NΣ such that Σ |= ϕ ≥ n. An optimization in the search space, proposed
in [15], is to use binary search algorithm reducing in that way the satisfiability
checks required. To better understand the operation for the evaluation of glb
let’s consider the following example.

250 Optimization Techniques for Fuzzy Description Logics

Example 2. Let Σ be a satisfiable fuzzy knowledge base with NΣ = {0, . . . , 0.5, . . . , 1}
that contains the following nodes

L(x) = {〈(E ⊓ D),≥, 0.6〉, 〈∃R.(∀R−.C),≥ 0.8〉}

L(y) = {〈(A ⊓ B),≥, 0.7〉}

and glb(Σ, (x : C)) is asked.

Since glb is asked Σ |= ϕ ≥ n,∀n ∈ NΣ must be solved to find the greatest
n. We apply the binary search algorithm, assuming that 0.5 is the middle if we
sort the elements of NΣ . Therefore, we evaluate if Σ |= (x : C) ≥ 0.5 and in case
it is (i.e. Σ ∪ (x : C) < 0.5 is unsatisfiable) we move on to higher degree until
Σ 6|= (x : C) ≥ n that indicates that the previous degree is the glb(Σ, (x : C)),
differently (i.e. Σ |= (x : C) ≥ n,∀n ∈ NΣ) glb(Σ, (x : C)) = 1.

1. Add membership triple 〈C, <, 0.5〉 to node x.

L(x) = {〈(E ⊓ D),≥, 0.6〉, 〈∃R.(∀R−.C),≥, 0.8〉〈C, <, 0.5〉}

L(y) = {〈(A ⊓ B),≥, 0.7〉}

2. Application of (E ⊓ D),≥, 0.6

L(x) = {〈E,≥, 0.6〉, 〈D,≥, 0.6〉, 〈∃R.(∀R−.C),≥, 0.8〉〈C, <, 0.5〉}

L(y) = {〈(A ⊓ B),≥, 0.7〉}

3. Application of 〈∃R.(∀R−.C),≥, 0.8〉

L(x) = {〈E,≥, 0.6〉, 〈D,≥, 0.6〉, 〈∃R.(∀R−.C),≥, 0.8〉, 〈C, <, 0.5〉, 〈C,≥, 0.8〉}

L(x, y) = {〈R,≥, 0.8〉}

L(x) = {〈∀R−.C,≥, 0.8〉}

L(y) = {〈A,≥, 0.7〉, 〈B,≥, 0.7〉}

4. Clash detected i.e. Σ |= (x : C) ≥ 0.5 and we move on to next n ∈ NΣ

selected by binary search by adding membership triple 〈C, <, n〉 to node x.

5. Application of (E ⊓ D),≥, 0.6

L(x) = {〈E,≥, 0.6〉, 〈D,≥, 0.6〉, 〈∃R.(∀R−.C),≥, 0.8〉〈C, <, n〉}

L(y) = {〈(A ⊓ B),≥, 0.7〉}

...

Nikolaos Simou, et al. 251

In order to improve the performance of the algorithm for the evaluation of glb
we propose the use of two techniques. Firstly, since this check refers to a specific
individual ABox partitioning can be used in order to examine only the ABox

partition A′ in which the individual of assertion ϕ is contained. (Note that node
y in the above example is unnecessary.) It is important to note at this point
that the knowledge base must be consistent, differently the partition selected
may be an consistent partition of an inconsistent ABox that will give incorrect
results. By selecting a partition A′ a new set of membership degrees only for it
with NA

′

⊆ NΣ is evaluated that in most cases contains a significantly smaller
amount of degrees resulting to less satisfiability checks.

Furthermore, as we can observe from the previous example, when satisfiabil-
ity for glb is solved the assertions of the examined node are expanded in the same
way regardless of the new membership triple that is added each time. The per-
formance of glb can be further improved by preventing this recurrent expansion
of the membership triples in the original ABox. This can be achieved by expand-
ing the A′ partition resulting to a completion forest F in which no expansion
rule can apply, which is then cached. Then, the membership triple that results
from the assertion examined for glb ϕ is added to the cached completion forest
i.e. F ∪ ϕ and the resulting completion forest is expanded. In that way, we get
the same satisfiability result without the recurrent expansion of the membership
triples contained in A′, a fact which makes the glb computation much faster.

The described optimizations for glb are very effective since they reduce the
search space of tableau independently of the fuzzy knowledge base used. Addi-
tionally, they are applicable to any fuzzy DL since they do not depend on the
fuzzy operators used and they are easily implemented. Finally, despite the fact
that the storage requirements may increase due to caching, the overall storage
requirements of tableau remains low compared to unoptimized glb.

4 Results

Our evaluation focuses on the performance of greatest lower bound reasoning
service. More specifically, we evaluate the performance of global greatest lower
bound i.e. the greatest lower bound of all the individuals in a fuzzy knowledge
base with all the defined concepts of the TBox. The TBox used is acyclic and it
contains 43 defined concepts of fKD-SHIN expressiveness. All the experiments
performed using FiRE under Linux on a Core 2 Duo 2G machine with 2Gb
memory. We examined the performance of this reasoning service using fuzzy
knowledge bases of different sizes by adjusting the size of individuals, the results
are illustrated in Table 2.

As we can observe the optimization techniques dramatically reduce the time
required for the evaluation of global greatest lower bound in all cases. More
specifically, unoptimized FiRE cannot perform global glb for more than about
1200 individuals because the system runs out of memory. This is because the
size of the tableau increases proportionally to the number of individuals in the
knowledge base. On the other hand, optimized FiRE using ABox partitioning is

252 Optimization Techniques for Fuzzy Description Logics

able to reduce the storage requirements making in that way the problem almost
scalable. Furthermore the optimized use of glb service avoids the recurrence
satisfiability test saving in that way space and time. However, it is very important
to note in the specific knowledge base ABox partitioning operates very well,
fact that boosts the overall performance. In the worst case scenario that ABox

partitioning cannot apply the space and time required remain very large.

Table 2. Performance of global glb in knowledge bases of different size. The response
time is in milliseconds

Individuals Unoptimized FiRE Optimized FiRE

500 1.436.127 277.006
1000 3.992.231 651.342
1550 Out of Memory 984.966
2140 Out of Memory 1326.072

5 Conclusions

In this paper optimizations techniques that can boost the performance of fuzzy
DLs were presented. Our main objective was to present novel optimization tech-
niques that can apply to fuzzy DLs. We first made an introduction to the fuzzy
DL fKD-SHIN and we then presented degrees normalization, ABox partitioning
and an optimized method for the evaluation of the greatest lower bound, which
is a very important reasoning service for fuzzy DLs. After that, we performed an
evaluation of the proposed optimization techniques using fuzzy reasoning engine
FiRE in which they are implemented. Evaluation of FiRE using the optimiza-
tion techniques showed that reasoning in fuzzy DLs can be very effective. More
specifically optimized FiRE reduces the storage requirements making in that
way the global greatest lower bound problem almost scalable.

As far as future directions are concerned, we intend to further investigate on
optimization techniques for very expressive fuzzy DLs.

References

1. F. Bobillo and U. Straccia. fuzzydl: An expressive fuzzy description logic reasoner.
In In Proceedings of the 17th IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2008), pages 923–930, 2008.

2. Fernando Bobillo, Miguel Delgado, and Juan Gómez-Romero. A crisp representa-
tion for fuzzy SHOIN with fuzzy nominals and general concept inclusions. pages
174–188, 2008.

3. J. Gmez-Romero F. Bobillo, M. Delgado. Delorean: A reasoner for fuzzy owl 1.1.
In In Proceedings of the 4th International Workshop on Uncertainty Reasoning for
the Semantic Web (URSW 2008), pages 923–930, 2008.

Nikolaos Simou, et al. 253

4. Volker Haarslev and Ralf Moller. Expressive abox reasoning with number restric-
tions, role hierarchies, and transitively closed roles. In In: Proceedings of Seventh
International Conference on Principles of Knowledge Representation and Reason-
ing (KR2000), pages 273–284. Morgan Kaufmann, 2000.

5. Volker Haarslev and Ralf Möller. RACER System Description. In IJCAR-01,
volume 2083, 2001.

6. Volker Haarslev, Hsueh-Ieng Pai, and Nematollaah Shiri. Optimizing tableau rea-
soning in alc extended with uncertainty. In Proceedings of the 2007 International
Workshop on Description Logics (DL-2007), pages 307–314, 2007.

7. Reiner Hähnle. Tableaux and related methods. In Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, pages 103–137. Elsevier Sci-
ence Publishers, 2001.

8. I. Horrocks and P. F. Patel-Schneider. Optimising description logic subsumption.
Journal of Logic and Computation, 9(3):267–293, 1999.

9. I. Horrocks, U. Sattler, and S. Tobies. Reasoning with Individuals for the De-
scription Logic SHIQ. In David MacAllester, editor, CADE-2000, number 1831
in LNAI, pages 482–496. Springer-Verlag, 2000.

10. G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications.
Prentice-Hall, 1995.

11. N. Simou, Th. Athanasiadis, G. Stoilos, and S. Kollias. Image indexing and retrieval
using expressive fuzzy description logics. Signal, Image and Video Processing,
2(4):321–335.

12. Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: A practical OWL-DL reasoner. Journal of Web Semantics, 5:51–53,
2007.

13. Giorgos Stoilos, Nikos Simou, Giorgos Stamou, and Stefanos Kollias. Uncertainty
and the semantic web. IEEE Intelligent Systems, 21(5):84–87, 2006.

14. Giorgos Stoilos, Giorgos Stamou, Vassilis Tzouvaras, Jeff Z. Pan, and Ian Horrocks.
Reasoning with very expressive fuzzy description logics. Journal of Artificial In-
telligence Research, 30(5):273–320, 2007.

15. U. Straccia. Reasoning within fuzzy description logics. Journal of Artificial Intel-
ligence Research, 14:137–166, 2001.

16. Umberto Straccia. A fuzzy description logic. In AAAI ’98/IAAI ’98: Proceedings of
the fifteenth national/tenth conference on Artificial intelligence/Innovative appli-
cations of artificial intelligence, pages 594–599. American Association for Artificial
Intelligence, 1998.

17. Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: System de-
scription. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006),
volume 4130 of Lecture Notes in Artificial Intelligence, pages 292–297. Springer,
2006.

18. Dmitry Tsarkov, Ian Horrocks, and Peter F. Patel-Schneider. Optimizing termi-
nological reasoning for expressive description logics. J. of Automated Reasoning,
39(3):277–316, 2007.

254 Optimization Techniques for Fuzzy Description Logics

