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1 Introduction

Temporal description logics (TDLs) have been studied by many researchers (see
e.g., [1, 10] for surveys and [4, 2, 15] for recent or important results). These TDLs
are, however, not compatible in the following sense: these are not embeddable
into the standard (non-temporal) description logics (DLs), and hence the existing
algorithms for testing satisfiability in the standard DLs are not available for
these TDLs. Such a compatibility issue is important for obtaining reusable and
practical algorithms for temporal reasoning in ontologies.

In this paper, two compatible TDLs, XALC and BALCl, are introduced by
combining and modifying the description logic ALC [14] and Prior’s tomorrow
tense logic [12, 13]. XALC has the next-time operator, and BALCl has some re-
stricted versions of the next-time, any-time and some-time operators, in which
the time domain is bounded by a positive integer l. Semantical embedding theo-
rems of XALC and BALCl into ALC are shown. By using these embedding the-
orems, the concept satisfiability problems for XALC and BALCl are shown to
be decidable. The complexities of the decision procedures for XALC and BALCl

are also shown to be the same complexity as that for ALC. Next, tableau calculi,
T XALC (for XALC) and T BALCl (for BALCl), are introduced, and syntactical
embedding theorems of these calculi into a tableau calculus, T ALC (for ALC),
are proved. The completeness theorems for T XALC and T BALCl are proved by
combining both the semantical and syntactical embedding theorems.

Prior’s tomorrow tense logic, which is a base logic of XALC and BALCl, is
regarded as the next-time fragment of linear-time temporal logic (LTL) [11], and
hence XALC and BALCl may also be familiar with many users of the existing
LTL-based TDLs. The bounded temporal operators in BALCl are, indeed, re-
garded as restricted versions of the corresponding LTL-operators. Although the
standard temporal operators of LTL have an infinite (unbounded) time domain,
i.e., the set ω of natural numbers, the bounded operators which are presented
in this paper have a bounded time domain which is restricted by a fixed positive
integer l, i.e., the set ωl := {x ∈ ω | x ≤ l}.

To restrict the time domain of temporal operators is not a new idea. Such
an idea has been discussed [5–9]. It is known that to restrict the time domain
is a technique to obtain a decidable or efficient fragment of first-order LTL [8].
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Restricting the time domain implies not only some purely theoretical merits,
but also some practical merits for describing temporal databases and planning
specifications [6, 7], and for implementing an efficient model checking algorithm
called bounded model checking [5]. Such practical merits are due to the fact that
there are problems in computer science and artificial intelligence where only a
finite fragment of the time sequence is of interest [6].

Finally in this section, other characters of XALC and BALCl are summarized
as follows: (1) the temporal operators in XALC and BALCl are only applied to
concepts and ABox assertions, (2) XALC and BALCl are based on the assump-
tions of rigid roles and rigid individual names, i.e., the interpretations of atomic
roles and individual names are not changed over time, and (3) XALC and BALCl

are based on the constant domain assumption, i.e., only one time domain is used
in the logics.

2 Temporal Description Logic with Next-Time, XALC

2.1 ALC

The ALC-language is constructed from atomic concepts, atomic roles, ⊓ (inter-
section), ⊔ (union), ¬ (classical negation or complement), ∀R (universal concept
quantification) and ∃R (existential concept quantification). We use the letters A
and Ai for atomic concepts, the letter R for atomic roles, and the letters C and
D for concepts.

Definition 1 Concepts C are defined by the following grammar:

C ::= A | ¬C | C ⊓ C | C ⊔ C | ∀R.C | ∃R.C

Definition 2 An interpretation I is a pair 〈∆I , ·I〉 where

1. ∆I is a non-empty set,
2. ·I is an interpretation function which assigns to every atomic concept A a

set AI ⊆ ∆I and to every atomic role R a binary relation RI ⊆ ∆I × ∆I .

The interpretation function is extended to concepts by the following inductive
definitions:

1. (¬C)I := ∆I \ CI ,
2. (C ⊓ D)I := CI ∩ DI ,
3. (C ⊔ D)I := CI ∪ DI ,
4. (∀R.C)I := {a ∈ ∆I | ∀b [(a, b) ∈ RI ⇒ b ∈ CI ]},
5. (∃R.C)I := {a ∈ ∆I | ∃b [(a, b) ∈ RI ∧ b ∈ CI ]}.

An interpretation I is a model of a concept C (denoted as I |= C) if CI 6= ∅.
A concept C is said to be satisfiable in ALC if there exists an interpretation I
such that I |= C.

The syntax of ALC is extended by a non-empty set NI of individual names.
We denote individual names by o, o1, o2, x, y and z.
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Definition 3 An ABox is a finite set of expressions of the form: C(o) or R(o1, o2)
where o, o1 and o2 are in NI , C is a concept, and R is an atomic role. An ex-
pression C(o) or R(o1, o2) is called an ABox statement. An interpretation I in
Definition 2 is extended to apply also to individual names o such that oI ∈ ∆I .
Such an interpretation is a model of an ABox A if for every C(o) ∈ A, oI ∈ CI

and for every R(o1, o2) ∈ A, (oI1 , oI2 ) ∈ RI . An ABox A is called satisfiable in
ALC if it has a model.

We adopt the following unique name assumption: for any o1, o2 ∈ NI , if
o1 6= o2, then oI1 6= oI2 .

Definition 4 A TBox is a finite set of expressions of the form: C ⊑ D. The
elements of a TBox are called TBox statments. An interpretation I := 〈∆I , ·I〉
is called a model of C ⊑ D if CI ⊆ DI . An interpretation I is said to be a
model of a TBox T if I is a model of every element of T . A TBox T is called
satisfiable in ALC if it has a model.

Definition 5 A knowledge base Σ is a pair (T ,A) where T is a TBox and A
is an ABox. An interpretation I is a model of Σ if I is a model of both T and
A. A knowledge base Σ is called satisfiable in ALC if it has a model.

Since the satisfiability for an ABox, a TBox or a knowledge base can be
reduced to the satisfiability for a concept [3], we focus on the concept satisfiability
in the following discussion.

2.2 XALC

Similar notions and terminologies for ALC are also used for XALC. The sym-
bol ω is used to represent the set of natural numbers. The XALC-language
is constructed from the ALC-language by adding X (next-time operator). An
expression XnC is inductively defined by X0C := C and Xn+1C := XXnC.

Definition 6 Concepts C are defined by the following grammar:

C ::= A | ¬C | XC | C ⊓ C | C ⊔ C | ∀R.C | ∃R.C

Definition 7 A temporal interpretation T I is a structure 〈∆T I , {·I
i

}i∈ω〉 where

1. ∆T I is a non-empty set,
2. each ·I

i

(i ∈ ω) is an interpretation function which assigns to every atomic

concept A a set AI
i

⊆ ∆T I and to every atomic role R a binary relation
RI

i

⊆ ∆T I × ∆T I ,
3. for any atomic role R and any i, j ∈ ω, RI

i

= RI
j

.

The interpretation function is extended to concepts by the following inductive
definitions:

1. (XC)I
i

:= CI
i+1

,
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2. (¬C)I
i

:= ∆T I \ CI
i

,

3. (C ⊓ D)I
i

:= CI
i

∩ DI
i

,

4. (C ⊔ D)I
i

:= CI
i

∪ DI
i

,

5. (∀R.C)I
i

:= {a ∈ ∆T I | ∀b [(a, b) ∈ RI
i

⇒ b ∈ CI
i

]},

6. (∃R.C)I
i

:= {a ∈ ∆T I | ∃b [(a, b) ∈ RI
i

∧ b ∈ CI
i

]}.

For any i ∈ ω, an expression Ii |= C is defined as CI
i

6= ∅. A temporal

interpretation T I := 〈∆T I , {·I
i

}i∈ω〉 is a model of a concept C (denoted as
T I |= C) if I0 |= C. A concept C is said to be satisfiable in XALC if there
exists a temporal interpretation T I such that T I |= C.

Definition 8 A temporal interpretation T I in Definition 7 is extended to apply
also to individual names o such that for any i, j ∈ ω, oI

i

∈ ∆T I and oI
i

= oI
j

.
Such a temporal interpretation is a model of an ABox A if for every C(o) ∈ A,

oI
0

∈ CI
0

and for every R(o1, o2) ∈ A, (oI
0

1 , oI
0

2 ) ∈ RI
0

. Such a temporal

interpretation is called a model of C ⊑ D if CI
0

⊆ DI
0

. The satisfiability of
ABox, a TBox or a knowledge base in XALC is defined in the same way as in
ALC.

Remark that XALC is an extension of ALC since ·I
0

includes ·I . Remark
also that XALC adopts the constant domain assumption, i.e., it has the single
common domain ∆T I , and the rigid role and name assumption, i.e., it satisfies
the conditions: for any atomic role R, any individual name o and any i, j ∈ ω,
we have RI

i

= RI
j

and oI
i

= oI
j

.

3 Semantical Embedding and Decidability

Definition 9 Let NC be a non-empty set of atomic concepts and N i
C be the set

{Ai | A ∈ NC} of atomic concepts where A0 = A, i.e., N0
C = NC . 1 Let NR be a

non-empty set of atomic roles and NI be a non-empty set of individual names.
The language Lx of XALC is defined using NC , NR, NI , X, ¬,⊓,⊔, ∀R and ∃R.
The language L of ALC is obtained from Lx by adding

∪
i∈ω N i

C and deleting X.
A mapping f from Lx to L is defined inductively by

1. for any R ∈ NR and any o ∈ NI , f(R) := R and f(o) := o,
2. for any A ∈ NC , f(XiA) := Ai ∈ N i

C , esp. f(A) := A,
3. For any A(o) ∈ NC , f(XiA(o)) := Ai(f(o)) ∈ N i

C , esp. f(A(o)) := A(f(o)),
4. f(Xi¬C) := ¬f(XiC),
5. f(Xi(C ♯ D)) := f(XiC) ♯ f(XiD) where ♯ ∈ {⊓,⊔},
6. f(Xi∀R.C) := ∀f(R).f(XiC),
7. f(Xi∃R.C) := ∃f(R).f(XiC).

Lemma 10 Let f be the mapping defined in Definition 9. For any temporal in-
terpretation T I := 〈∆T I , {·I

i

}i∈ω〉 of XALC, we can construct an interpretation
I := 〈∆I , ·I〉 of ALC such that for any concept C in Lx and any i ∈ ω,
1

A can include individual names, i.e., A can be A(o) for any o ∈ NI .
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CI
i

= f(XiC)I .

Proof. Let NC be a non-empty set of atomic concepts and N i
C be the set

{Ai | A ∈ NC} of atomic concepts where A0 = A. Let NR and NI be sets of
atomic roles and individual names, respectively.

Suppose that T I is a temporal interpretation 〈∆T I , {·I
i

}i∈ω〉 where

1. ∆T I is a non-empty set,
2. each ·I

i

(i ∈ ω) is an interpretation function which assigns to every atomic

concept A ∈ NC a set AI
i

⊆ ∆T I , to every atomic role R ∈ NR a binary
relation RI

i

⊆ ∆T I ×∆T I and to every individual name o ∈ NI an element
oI

i

∈ ∆T I ,
3. for any R ∈ NR, any o ∈ NI and any i, j ∈ ω, RI

i

= RI
j

and oI
i

= oI
j

.

Suppose that I is an interpretation 〈∆I , ·I〉 where

1. ∆I is a non-empty set such that ∆I = ∆T I ,
2. ·I is an interpretation function which assigns to every atomic concept A ∈∪

i∈ω N i
C a set AI ⊆ ∆I , to every atomic role R ∈ NR a binary relation

RI ⊆ ∆I × ∆I and to every individual name o ∈ NI an element oI ∈ ∆I ,
3. for any R ∈ NR, any o ∈ NI and any i ∈ ω, RI = RI

i

and oI = oI
i

.

Suppose moreover that T I and I satisfy the following condition: for any
A ∈ NC , any oinNI and any i ∈ ω,

AI
i

= (Ai)I and (A(o))I
i

= (Ai(o))I .

The lemma is then proved by induction on the complexity of C. The base
step is obvious. We show some cases in the induction step below.

Case C ≡ ¬D: We obtain: a ∈ (¬D)I
i

iff a ∈ ∆T I \ DI
i

iff a ∈ ∆I \ DI
i

(by the condition ∆T I = ∆I) iff a ∈ ∆I \ f(XiD)I (by induction hypothesis)
iff a ∈ (¬f(XiD))I iff a ∈ f(Xi¬D)I (by the definition of f).

Case C ≡ XD: We obtain: a ∈ (XD)I
i

iff a ∈ DI
i+1

iff a ∈ f(Xi+1D)I (by
induction hypothesis) iff a ∈ f(XiXD)I .

Case C ≡ ∀R.D: We obtain:

d ∈ (∀R.D)I
i

iff d ∈ {a ∈ ∆T I | ∀b [(a, b) ∈ RI
i

⇒ b ∈ DI
i

]}

iff d ∈ {a ∈ ∆I | ∀b [(a, b) ∈ RI ⇒ b ∈ DI
i

]} (by the conditions ∆T I = ∆I

and RI
i

= RI)
iff d ∈ {a ∈ ∆I | ∀b [(a, b) ∈ RI ⇒ b ∈ f(XiD)I ]} (by induction hypothesis)
iff d ∈ (∀R.f(XiD))I

iff d ∈ (∀f(R).f(XiD))I (by the definition of f)
iff d ∈ f(Xi∀R.D)I (by the definition of f).

Lemma 11 Let f be the mapping defined in Definition 9. For any temporal in-
terpretation T I := 〈∆T I , {·I

i

}i∈ω〉 of XALC, we can construct an interpretation
I := 〈∆I , ·I〉 of ALC such that for any concept C in Lx and any i ∈ ω,
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Ii |= C iff I |= f(XiC).

Proof. We obtain: Ii |= C iff CI
i

6= ∅ iff f(XiC)I 6= ∅ (by Lemma 10) iff

I |= f(XiC).

Lemma 12 Let f be the mapping defined in Definition 9. For any interpreta-
tion I := 〈∆I , ·I〉 of ALC, we can construct a temporal interpretation T I :=

〈∆T I , {·I
i

}i∈ω〉 of XALC such that for any concept C in Lx and any i ∈ ω,

I |= f(XiC) iff Ii |= C.

Proof. Similar to the proof of Lemma 11.

Theorem 13 (Semantical embedding) Let f be the mapping defined in Def-
inition 9. For any concept C,

C is satisfiable in XALC iff f(C) is satisfiable in ALC.

Proof. By Lemmas 11 and 12.

Theorem 14 (Decidability) The concept satisfiability problem for XALC is
decidable.

Proof. By decidability of the satisfiability problem for ALC, for each concept C
of XALC, it is possible to decide if f(C) is satisfiable in ALC. Then, by Theorem

13, the satisfiability problem for XALC is decidable.

The satisfiability problems of a TBox, an ABox and a knowledge base for
XALC are also shown to be decidable.

Since f is a polynomial-time reduction, the complexities of the satisfiability
problems of a TBox, an ABox and a knowledge base for XALC can be reduced
to those for ALC, i.e., the complexities of the problems for XALC are the same
as those for ALC. For example, the satisfiability problems of an acyclic TBox
and a general TBox for XALC are PSPACE-complete and EXPTIME-complete,
respectively. For the concept satisfiability problem for XALC,

the existing tableau algorithms for ALC are applicable by using the transla-
tion f with Theorem 13.

4 Syntactical Embedding and Completeness

From a purely theoretical or logical point of view, a sound and complete axiom-
atization is required for the underlying semantics. In this section, we thus give
such a tableau calculus T XALC for XALC.

Definition 15 A concept is called a negation normal form (NNF) if the classical
negation connective ¬ occurs only in front of atomic concepts.
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Let C(x) be a concept in NNF. In order to test satisfiability of C(x), the
tableau algorithm starts with the ABox A = {C(x)}, and applies the inference
rules of a tableau calculus to the ABox until no more rules apply.

Definition 16 (T ALC) Let A be an ABox that consists only of NNF-concepts.
The inference rules for the tableau calculus T ALC for ALC are of the form:

A
A ∪ {C1(x), C2(x)}

(⊓)

where (C1 ⊓ C2)(x) ∈ A, C1(x) /∈ A or C2(x) /∈ A,

A
A ∪ {C1(x)} | A ∪ {C2(x)}

(⊔)

where (C1 ⊔ C2)(x) ∈ A and [C1(x) /∈ A and C2(x) /∈ A],

A
A ∪ {C(y)}

(∀R)

where (∀R.C)(x) ∈ A, R(x, y) ∈ A and C(y) /∈ A,

A
A ∪ {C(y), R(x, y)}

(∃R)

where (∃R.C)(x) ∈ A, there is no individual name z such that C(z) ∈ A and
R(x, z) ∈ A, and y is an individual name not occurring in A.

Definition 17 Let A be an ABox that consists only of NNF-concepts. Then,
A is called complete if there is no more rules apply to A. A is called clash if
{A(x),¬A(x)} ⊆ A for some atomic concept A(x). A tree produced by a tableau
calculus from A is called complete if all the nodes in the tree are complete. A
branch of a tree produced by a tableau calculus from A is called clash-free if all
its nodes are not clash.

The following theorem is known.

Theorem 18 (Completeness) For any ALC-concept C in NNF, T ALC pro-
duces a complete tree with a clash-free branch from the Abox {C} iff C is satis-
fiable in ALC.

The way of obtaining NNFs for XALC-concepts is almost the same as that
for ALC-concepts, except that we also use the law: ¬XC ↔ X¬C, which is
justified by the fact: (¬XC)I

i

= (X¬C)I
i

for any i ∈ ω.

Definition 19 (T XALC) Let A be an ABox that consists only of NNF-concepts.
The inference rules for the tableau calculus T XALC for XALC are of the

form:
A

A ∪ {XiC1(x), XiC2(x)}
(X⊓)
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where Xi(C1 ⊓ C2)(x) ∈ A, XiC1(x) /∈ A or XiC2(x) /∈ A,

A

A ∪ {XiC1(x)} | A ∪ {XiC2(x)}
(X⊔)

where Xi(C1 ⊔ C2)(x) ∈ A and [XiC1(x) /∈ A and XiC2(x) /∈ A],

A

A ∪ {XiC(y)}
(X∀R)

where (Xi∀R.C)(x) ∈ A, R(x, y) ∈ A and XiC(y) /∈ A,

A

A ∪ {XiC(y), R(x, y)}
(X∃R)

where (Xi∃R.C)(x) ∈ A, there is no individual name z such that XiC(z) ∈ A
and R(x, z) ∈ A, and y is an individual name not occurring in A.

An expression f(A) denotes the set {f(α) | α ∈ A}.

Theorem 20 (Syntactical embedding) Let A be an ABox that consists only
of NNF-concepts in Lx, and f be the mapping defined in Definition 9. Then:

T XALC produces a complete tree with a clash-free branch from A iff
T ALC produces a complete tree with a clash-free branch from f(A)

Proof. (=⇒): By induction on the complete trees T with a clash-free branch
from A in T XALC. (⇐=): By induction on the complete trees T ′ with a clash-

free branch from f(A) in T ALC.

Theorem 21 (Completeness) For any XALC-concept C in NNF, T XALC
produces a complete tree with a clash-free branch from the Abox {C} iff C is
satisfiable in XALC.

Proof. Let C be a XALC-concept in NNF. Then, we obtain:

T XALC produces a complete tree with a clash-free branch from {C}

iff T ALC produces a complete tree with a clash-free branch from {f(C)} (by
Theorem 20)

iff f(C) is satisfiable in ALC (by Theorem 18)

iff C is satisfiable in XALC (by Theorem 13).
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5 Temporal Description Logic with Bounded-Time,

BALCl

5.1 BALCl

Similar notions and terminologies for XALC are also used for BALCl. The sym-
bol ≥ or ≤ is used to represent a linear order on ω. In the following discussion, l is
fixed as a certain positive integer. The BALCl-language is constructed from the
XALC-language by adding G (any-time operator) and F (some-time operator).
Remark that the temporal operators X, G and F used in BALCl are interpreted
as some l-bounded versions of the original operators.

Definition 22 Concepts C are defined by the following grammar:

C ::= A | ¬C | XC | GC | FC | C ⊓ C | C ⊔ C | ∀R.C | ∃R.C

Definition 23 A bounded-time interpretation BI is the same as a temporal
structure, i.e., it is obtained from a temporal structure 〈∆T I , {·I

i

}i∈ω〉 by re-
placing the notation ∆T I with the notation ∆BT . The interpretation function is
extended to concepts by induction on concepts. The definitions of the interpreta-
tion function is obtained from the conditions in Definitions 7 and 8 by replacing
∆T I with ∆BT , deleting the condition 1 in Definition 7, and adding the following
conditions:

1. for any i ≤ l − 1, (XC)I
i

:= CI
i+1

,

2. for any i ≥ l, (XC)I
i

:= CI
l

,

3. for any m ∈ ω, (XC)I
l+m

:= CI
l

,

4. (GC)I
i

:= CI
i

∩ CI
i+1

∩ · · · ∩ CI
i+l

,

5. (FC)I
i

:= CI
i

∪ CI
i+1

∪ · · · ∪ CI
i+l

.

The notions of satisfiability etc. are defined in the same way as in XALC.

Remark that the new conditions for the interpretation function in Definition
23 are intended to have the following axiom schemes:

1. for any m ∈ ω, Xl+mC ↔ XlC,
2. GC ↔ C ⊓ XC ⊓ · · · ⊓ XlC,
3. FC ↔ C ⊔ XC ⊔ · · · ⊔ XlC,
4. ¬GC ↔ F¬C,
5. ¬FC ↔ G¬C.

Remark also that the new conditions in Definition 23 are the l-bounded time
versions of the following standard non-restricted conditions:

1. (XC)I
i

:= CI
i+1

,

2. (GC)I
i

:=
∩

{CI
j

| i ≤ j ∈ ω},

3. (FC)I
i

:=
∪

{CI
j

| i ≤ j ∈ ω}.

These non-restricted conditions imply a standard LTL-based temporal descrip-
tion logic.

412 A Compatible Approach to Temporal Description Logics



5.2 Semantical Embedding and Decidability

Definition 24 The language Lb of BALCl is obtained from the language Lx

in Definition 9 by adding G and F. The language L of ALC is defined as the
same language in Definition 9. A mapping f from Lb to L is obtained from the
mapping defined in Definition 9 by adding the following conditions:

1. for any m ≥ l, f(XmXC) := f(XlC),
2. f(XiGC) := f(XiC) ⊓ f(Xi+1C) ⊓ · · · ⊓ f(Xi+lC),
3. f(XiFC) := f(XiC) ⊔ f(Xi+1C) ⊔ · · · ⊔ f(Xi+lC).

Lemma 25 Let f be the mapping defined in Definition 24. For any bounded-
time interpretation BI := 〈∆BI , {·I

i

}i∈ω〉 of BALCl, we can construct an in-
terpretation I := 〈∆I , ·I〉 of ALC such that for any concept C in Lb and any
i ∈ ω,

CI
i

= f(XiC)I .

Proof. Similar to the proof of Lemma 10 by replacing ∆T I with ∆BI .

We then obtain the key lemmas which correspond to Lemmas 11 and 12, and
hence obtain the following theorems.

Theorem 26 (Semantical embedding) Let f be the mapping defined in Def-
inition 24. For any concept C,

C is satisfiable in BALCl iff f(C) is satisfiable in ALC.

Theorem 27 (Decidability) The concept satisfiability problem for BALCl is
decidable.

The complexity of the decision procedure for concept satisfiability in BALCl

is the same as that in ALC.

5.3 Syntactical Embedding and Completeness

The way of obtaining NNFs for BALCl-concepts is almost the same as that for
XALC-concepts, except that we also use the laws: ¬GC ↔ F¬C and ¬FC ↔
G¬C.

Definition 28 (T BALCl) Let A be an ABox that consists only of NNF-concepts.
The inference rules for the tableau calculus T BALCl for BALCl are of the

form:
A

A ∪ {XlC(x)}
(X)

where Xl+mC(x) ∈ A for any m ∈ ω,

A

A ∪ {XiC(x), Xi+1C(x), ...,Xi+lC(x)}
(G)
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where XiGC(x) ∈ A and Xi+jC(x) /∈ A for some j ∈ ωl,

A

A ∪ {XiC(x)} | A ∪ {Xi+1C(x)} | · · · | A ∪ {Xi+lC(x)}
(F)

where XiFC(x) ∈ A and [XiC(x) /∈ A, Xi+1C(x) /∈ A, ... , and Xi+lC(x) /∈ A].

Theorem 29 (Syntactical embedding) Let A be an ABox that consists only
of NNF-concepts in Lb, and f be the mapping defined in Definition 24. Then:

T BALCl produces a complete tree with a clash-free branch from A iff
T ALC produces a complete tree with a clash-free branch from f(A)

Theorem 30 (Completeness) For any BALCl-concept C in NNF, T BALCl

produces a complete tree with a clash-free branch from the Abox {C} iff C is
satisfiable in BALCl.

6 Related Works

Some recent works concerned with TDLs are surveyed below. In [4], Baader
et al. considered the case where linear-time temporal operators are allowed to
occur only in front of DL axioms over ALC (i.e., ABox assertions and general
concept inclusion axioms), but not inside of concepts descriptions. They showed
that reasoning in the presence of rigid roles becomes considerably simpler in this
setting. The decision procedures described in [4] were developed for the purpose
of showing worst-case complexity upper bounds: with rigid roles, satisfiability
is 2EXPTIME-complete, without rigid roles, the complexity decreases further
to EXPTIME-complete (i.e., the same complexity as reasoning in ALC alone).
They also considered two other ways of decreasing the complexity of satisfiability
to EXPTIME. Compared with [4], our approach is mainly intended to obtain:
(1) reusable TDLs, i.e., the existing ALC-based satisfiability testing algorithms
are reusable and (2) “light-weight” TDLs, i.e., the complexity of satisfiability
testing is the same as that of ALC.

In [2], Baader et al. extended the known approaches to LTL runtime veri-
fication. In this approach, they used an ALC-based temporal description logic,
ALC-LTL, instead of the propositional LTL. They also considered the case where
states may be described in an incomplete way by ALC-ABoxs, instead of assum-
ing that the observed system behavior provides us with complete information
about the states of the system. Compared with [2], applications of our proposed
logics have not yet been proposed. In particular, it is not clear if the bounded-
ness of the time domain in BALCl is really useful for ontological reasoning.
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