
MASTRO at Work: Experiences on

Ontology-based Data Access

Domenico Fabio Savo1, Domenico Lembo1, Maurizio Lenzerini1,

Antonella Poggi1, Mariano Rodriguez-Muro2, Vittorio Romagnoli3,

Marco Ruzzi1, Gabriele Stella3

1 SAPIENZA Università

di Roma

lastname@dis.uniroma1.it

2 Free University of

Bozen-Bolzano

rodriguez@inf.unibz.it

3 Banca Monte dei

Paschi di Siena

firstname.lastname@banca.mps.it

Abstract. We report on an experimentation of Ontology-based Data Access

(OBDA) carried out in a joint project with SAPIENZA University of Rome,

Free University of Bolzano, and Monte dei Paschi di Siena (MPS), where we

used MASTRO for accessing, by means of an ontology, a set of data sources of

the actual MPS data repository. By both looking at these sources, and by in-

terviews with domain experts, we designed both the ontology representing the

conceptual model of the domain, and the mappings between the ontology and the

sources. The project confirmed the importance of several distinguished features

of DL-LiteA,Id to express the ontology and has shown very good performance of

the MASTRO system in all the reasoning tasks, including query answering, which

is the most important service required in the application.

1 Introduction

While the amount of data stored in current information systems continuously grows,

turning these data into information is still one of the most challenging tasks for Infor-

mation Technology. The task is complicated by the proliferation of data sources both in

single organizations, and in open environments. Specifically, the information systems

of medium and large organizations are typically constituted by several, independent,

and distributed data sources, and this poses great difficulties with respect to the goal of

accessing data in a unified and coherent way. Such a unified access is crucial for getting

useful information out of the system, as well as for taking decision based on them. This

explains why organizations spend a great deal of time and money for the understanding,

the governance, the curation, and the integration of data stored in different sources [7].

The following are some of the reasons why a unified access to data sources is prob-

lematic.

– Despite the fact that the initial design of a collection of data sources (e.g., a

database) is adequate, corrective maintenance actions tend to re-shape the data

sources into a form that often diverges from the original conceptual structure.

– It is common practice to change a data repository so as to adapt it both to spe-

cific application-dependent needs, and to new requirements. The result is that data

sources often become data structures coupled to a specific application (or, a class

of applications), rather than application-independent databases.

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

20

– The data stored in different sources tend to be redundant, and mutually inconsistent,

mainly because of the lack of central, coherent and unified data management tasks.

In principle, there are two alternative solutions to the above problems. One solution

is the re-engineering of the information system, i.e., the design of a new, coherent, and

unified data repository serving all the applications of the organization [8], and replac-

ing the original data sources. This approach is unfeasible in many situations, due to cost

and organization problems. The other solution is to create a new stratum of the infor-

mation system, co-existing with the data sources, according to the “data integration”

paradigm [1]. Such new stratum is constituted by (i) a global (also called “mediated”)

schema, representing the unified structure presented to the clients, and (ii) the mapping

relating the source data with the elements in global schema. There are two methods for

realizing such stratum, called materialized and virtual. In the materialized approach,

called data warehousing, the global schema is populated with concrete data deriving

from the sources. In the virtual approach, data are not moved, and queries posed to the

system are answered by suitably accessing the sources [9]. The latter approach, which

is the one referred to in this work, is preferable in a dynamic scenario, where sources

may be updated frequently, and clients want to use up-to-date information.

In current data integration tools the global schema is expressed in terms of a logical

database model, e.g. the relational data model [1]. It is well-known that the abstractions

and the constructs provided by this kind of data models are influenced by implementa-

tion issues. It follows that the global schema represents a sort of unified data structure

accommodating the various data at the sources, and the client, although freed from

physical aspects of the source data (where they are, and how they can be accessed), is

still exposed to issues concerning how data are packed into specific structures.

To overcome these problems, we recently proposed the notion of ontology-based

data integration, also called ontology-based data access (OBDA) [14,12]1, whose ba-

sic idea is to express the global schema as an ontology, i.e., a conceptual specification of

the application domain. With this idea, the integrated view that the system provides to

information consumers is not merely a data structure accommodating the various data

at the sources, but a semantically rich description of the relevant concepts and relation-

ships in the domain of interest, with the mapping acting as the reconciling mechanism

between the conceptual level and the data sources. Besides this characteristic, OBDA

also exploits reasoning on the ontology in computing the answers to queries, thus (at

least partially) overcoming possible incompleteness that may be present in the data.

In this paper we report on an experimentation of OBDA carried out in a joint project

by Banca Monte dei Paschi di Siena (MPS)2, Free University of Bozen-Bolzano, and

SAPIENZA Università di Roma, where we used MASTRO [13] for accessing, by means

of an ontology, a set of data sources from the actual MPS data repository. MASTRO is an

OBDA system extending the QUONTO
3 reasoner, which is based on, DL-LiteA,Id [2],

1 The two terms have very similar meaning. We tend to use the term “ontology-based data inte-

gration” in scenarios where the data sources are heterogenous (i.e., managed by different data

management systems), and distributed, which is not the case in the project described here.
2 MPS is one of the main banks, and the head company of the third banking group in Italy (see

http://english.mps.it/).
3 http://www.dis.uniroma1.it/quonto

Domenico Fabio Savo, et al. 21

one of the logics of the DL-Lite family [4]. The OBDA scenario refers to a set of 12

relational data sources, collectively containing about 15 million tuples. By both looking

at these sources, and by interviews with domain experts, we designed both the ontol-

ogy representing the conceptual model of the domain, and the mapping between the

ontology and the sources. The ontology comprises 79 concepts and 33 roles, and is ex-

pressed in terms of approximately 600 DL-LiteA,Id axioms. The relationships between

the ontology and the sources are expressed in terms of about 200 mapping assertions.

The results of the experimentation can be summarized as follows.

1) In the context of the MPS scenario, OBDA has indeed addressed many of the

data access issues mentioned before. The system provides the users with the possibility

of querying the data sources by means of the conceptual model of the domain, and this

opens up the possibility for a variety of users of extracting information from a set of

data sources that previously were accessed through specific applications.

2) The project confirmed the importance of several distinguished features of

DL-LiteA,Id, namely, identification constraints, and epistemic queries. Both features

are missing in the standard ontology language OWL 2. In particular, we believe that

the absence of identification constraints in OWL 2 may hamper the usefulness of such

language in ontology-based data access.

3) MASTRO has shown very good performance in all the reasoning tasks, including

query answering, which is the most important service required in the application. This

has been achieved by specific optimizations designed within this project of the MASTRO

query answering algorithm, in particular concerning the phase of unfolding the query

against the mapping.

4) The experience in this project has shown that OBDA can be used for checking

the quality of data sources. There are basically two kinds of data quality problems that

our system is able to detect, one related to unexpected incompletenesses in the data

sources, and the other one related to inconsistencies present in the data. The OBDA

system designed for the MPS scenario has been able to provide useful information in

order to improve both aspects of data quality.

5) Our work has pointed out the importance of the ontology itself, as a precious

documentation tool for the organization. Indeed, the ontology developed in our project

is adopted in MPS as a specification of the relevant concepts in the organization.

6) The OBDA system serves also as an inspiration for devising new data gover-

nance tasks. Relying on OBDA services, queries such as “how is a certain concept

(e.g., customer) represented in a specific data source (e.g., table GZ0005)?” can now

be answered, simply by exploiting both the ontology and the mappings designed in the

project, and the query reformulation capability of MASTRO.

The paper is organized as follows. Section 2 presents a brief description of MAS-

TRO. Sections 3 illustrates the scenario of our experimentation. Section 4 presents the

ontology and the mapping. Section 5 illustrates the use of MASTRO in the scenario.

Section 6 concludes the paper.

2 The MASTRO system

MASTRO is an OBDA system jointly developed at the SAPIENZA University of

Rome and Free University of Bozen-Bolzano. MASTRO allows for the definition of

22 Mastro at Work: Experiences on Ontology-Based Data Access

DL-LiteA,Id [2] ontologies connected through semantic mappings to external indepen-

dent relational databases storing data to be accessed. Thus, differently from other ap-

proaches to ontology definition and reasoning [10,6,11], the extensional level of the

ontology, namely, the instances of concepts and roles, are not explicitly asserted and

possibly managed by a DBMS, but are specified by mapping assertions describing how

they can be retrieved from the data at the sources. In the following we briefly sketch

the architecture of the system, distinguishing between “Ontology Definition Module”,

“Mapping Manager”, “Data Source Manager”, and “Reasoner”.

The Ontology Definition Module provides mechanisms for the specification of the

ontology as a DL-LiteA,Id TBox. DL-LiteA,Id is a Description Logic (DL) belonging

to the DL-Lite family, which adopts the Unique Name Assumption, and provides all

the constructs of OWL 2 QL4, a tractable profile of OWL 2, plus functionality and

identification assertions, with the limitation that these kind of assertions cannot involve

sub-roles. These last features, while enhancing the expressive power of the logics, do

not endanger the efficiency of both intensional reasoning, and query answering. In other

words, the computational complexity of these tasks is the same as in OWL 2 QL, namely

PTIME with respect to the size of the TBox, and LOGSPACE in the size of the data at

the sources.

The Mapping Manager supports the definition of mapping assertions relating the

data at the sources to the concepts in the ontology. The mapping assertions supported

by MASTRO are a particular form of GAV mappings [9]. More specifically, a mapping

assertion is an expression of the form ψ ; ϕ where ψ is an arbitrary SQL query over

the database, and ϕ is a DL-LiteA,Id conjunctive query without existential variables. As

described in [12], data extracted by means of query ψ are used, together with suitable

Skolem functions, to build the logic terms representing the object identifiers, thus solv-

ing the impedance mismatch problem between data at the sources and instances of the

ontology. The Mapping Manager interacts with the Data Source Manager, which is in

charge of the communication with the underlying relational sources, providing trans-

parent access to a wide range of both commercial and freeware relational DBMSs5.

Finally, the Reasoner exploits both the TBox and the mapping assertions in order to

(i) check the satisfiability of the whole knowledge base, and (ii) compute the answer

to the queries posed by the users. Such module is based on QUONTO, a reasoner for the

DL-Lite family that uses query rewriting as a main processing technique. The two main

run-time services provided by the reasoner are query answering, and consistency check.

The MASTRO process to answer conjunctive queries (CQs) is inspired by the one imple-

mented in the QUONTO system. First, the query posed by the user over the ontology is

reformulated in terms of the inclusion assertions expressed among concepts and roles;

second, such rewriting is unfolded according to the mapping assertions in order to gen-

erate an SQL query which can be directly issued over the relational data source. It can be

shown that the answers to such an SQL query are exactly the answers logically implied

by the whole knowledge base [2]. As a further powerful feature, MASTRO is able to an-

swer EQL (Epistemic Query Language) queries [3], i.e., first-order logic queries over

the ontology interpreted under an epistemic semantics. Finally, MASTRO provides the

4 http://www.w3.org/TR/owl2-profiles/
5 No relational sources can be accesses by means of suitable wrapping tools

Domenico Fabio Savo, et al. 23

consistency check capability. By virtue of the characteristics of DL-LiteA,Id, MASTRO

reduces consistency checking to verifying whether queries generated for disjointness

assertions, functionality assertions, identification constraints and EQL constraints re-

turn an empty result. To this aim, a boolean query is automatically generated for every

such construct and then rewritten, unfolded, and evaluated over the database.

3 Case study: The domain of experimentation

The data of interest in our case study are those exploited by MPS personnel for risk es-

timation in the process of granting credit to bank customers. A customer may be a per-

son, an ordinary company, or an holding company. Customers are ranked with respect

to their credit worthiness, which is established considering various circumstances and

credit/debit positions of customers. In addition to customer information, data of inter-

est regard company groups to which customers belong, and business relations between

bank customers (in particular, fifteen different kinds of such relations are relevant).

Source name Source Decription Source size

GZ0001 Data on customers 3.463.083

GZ0002 Data on juridical connections between customers 157.280

GZ0003 Data on guarantee connection between customers 1.270.333

GZ0004 Data on economical connections between customers 104.033

GZ0005 Data on corporation connections between customers 1.021.779

GZ0006 Data on patrimonial connections between customers 809.321

GZ0007 Data on company groups 55.362

GZ0012 Customers loan information 5.966.948

GZ0015 Data on monitoring and reporting procedures 1.243

GZ0101 Data on membership of customers into CCCs 2.225.466

GZ0102 Information on CCCs 663.656

GZ0104 Data on bank credit coordinators for juridical CCCs 38.457

Fig. 1. Data sources

Hereinafter, such groups of customers

will be called Clusters of Connected

Customers (CCCs). A 15 million tuple

database, stored in 12 relational tables

managed by the IBM DB2 RDBMS, has

been used as data source collection in

the experimentation. Figure 1 shows a

summary of the data sources. Such data

sources are managed by a specific appli-

cation. The application is in charge of

guaranteeing data integrity (in fact, the

underlying database does not force constraints on data). Not only this application per-

forms various updates, but an automatic procedure is executed on a daily basis to exam-

ine the data collected in the database so as to identify connections between customers

that are relevant for the credit rating calculus. Based on these connections, customers

are grouped together to form CCCs. For each cluster, several data are collected that

characterize the kinds of connections holding among cluster members (i.e., specifying

juridical, economic, or financial aspects of connections).

Data source schemas have undergone many changes in the years, trying to adapt

to the changes in the application. The result is a stratification of the data source which

causes an extended use of control fields, validity flags, and no longer used attributes

in the source schemas. Consequently, an increasing effort for the management of the

data sources is required, which has to be completely entrusted to the management ap-

plications rather than the domain experts. The aim of the experimentation has been to

prove the validity of the OBDA approach in all cases in which companies need to access

efficiently their information assets.

4 Case study: ontology, mapping, and methodology

The process that led us to realize the OBDA system for the MPS case study has been

carried out essentially in two main phases: in the first one, we have developed the on-

tology, whereas in the second one we have specified the mapping between the ontology

and the data sources.

24 Mastro at Work: Experiences on Ontology-Based Data Access

To be as much independent as possible from the actual source database, in the first

phase we carried out an in-depth analysis of the business domain following a top-down

approach. Therefore, after identifying the central concepts and the main relations be-

tween them, we iteratively refined the ontology, being supported in each development

cycle by the experts from MPS. The top-down approach turned out to be fundamental

for the success of the entire project, since in this way we were able to avoid that the

data model provided by the schema of the data sources could affect the definition of

the ontology, thus achieving complete separation between the conceptual layer and the

logical/physical layer of the system. In fact, further information on the model coming

from the analysis of the sources has been exploited only towards the end of the design

process, in order to refine the realized ontology.

The final ontology comprises 79 concepts, 33 roles, 37 concept attributes, and is

expressed in terms of about 600 DL-LiteA,Id axioms, including 30 identification con-

straints (IDCs), plus 20 EQL constraints (EQLCs). Basically, the ontology is con-

structed around the concepts Customer, CompanyGroup, CCC, and various kinds of

relations existing between customers (cf. Section 3).

In the following, we report on a series of modeling issues we dealt with during

the ontology definition phase. First, we observe that in the domain we have analyzed,

several properties of individuals depend on time. It has been therefore necessary in the

ontology to take trace of the changes of such properties, maintaining the information on

the validity periods associated with each such change. Even though from a very abstract

point of view, such properties might be considered roles or attributes, to properly model

the temporal dimension, each such role or attribute needs to be in fact reified in the

ontology. A timestamp attribute has been associated to each concept introduced by the

reification process, together with a suitable identification constraint ensuring that no

two instances of each such concept refer to the same period of time.

Example 1. The membership of a customer in a cluster of connected customers is a
time-dependent notion which is associated with a validity period. A crucial requirement
is that a customer is not member of two clusters at the same time. In the ontology, this
is modeled by the following assertions.

1. ∃inGrouping ⊑ Customer

2. ∃inGrouping− ⊑ Grouping

3. ∃relativeTo ⊑ Grouping

4. ∃relativeTo− ⊑ CCC

5. Grouping ⊑ ∃inGrouping−

6. Grouping ⊑ ∃relativeTo

7. (funct relativeTo)
8. (funct inGrouping−)
9. Grouping ⊑ δ(timestamp)

10. (id Grouping inGrouping−, timestamp)
The concept Grouping can be seen as the reification of the notion of membership of a

customer in a CCC. Assertions (1) – (8) realize reification. Assertion (9) imposes that

a timestamp is associated to each instance of Grouping. Finally, assertion (10) is the

IDC imposing that no two distinct instances of Grouping exist that are connected to

the same pair constituted by a value for the attribute timestamp and an object filler

for inGrouping−, thus specifying that a customer is never grouped at the same time in

two CCCs.

Identification constraints turned out to be an essential modeling construct, not only

for correctly modeling the temporal dimension through reification, but also for express-

ing important integrity constraints over the ontology that could not be captured other-

wise, as shown next in Example 2.

Domenico Fabio Savo, et al. 25

Example 2. Two types of clusters of connected customers are of interest represented by
the concepts JuridicalCCC and EconomicCCC, respectively. Consider then the follow-
ing identification constraint on JuridicalCCC.

(id JuridicalCCC timestamp, relativeTo− ◦ ?actualGrupping ◦ inGrouping− ◦
inMembership ◦ ?Holding ◦ hasMembership−)

Such constraint specifies that no two distinct instances of JuridicalCCC exist

that are connected to the same pair constituted by a value for timestamp and

an object filler for the path relativeTo−◦?actualGrupping ◦ inGrouping− ◦
inMembership◦?Holding ◦ hasMembership−. Intuitively, the path navigates

through the roles of the ontology, using the construct ?C to test that the path passes

through instances of C. Since the role hasMembership is typed in the ontology by

the concept CompanyGroup, the identification constraint actually says that for a certain

timestamp no two juridical CCCs exists that are connected via the above path to the

same company group.

Globally, we have specified more than 30 IDCs in the ontology. None of these

presently correspond to integrity constraints at the data sources. This is because, as it

is usual in practice, very few integrity constraints are explicitly asserted at the sources.

Thus, our ontology plays an important role in representing business rules not explicitly

reflected in the data repository of the organization.

EQLCs turned out to be another important means for correct domain model-

ing. Such constraints indeed permit to overcome some expressiveness limitations of

DL-LiteA,Id, without causing any computational blow up. Indeed, EQLCs are inter-

preted according to a suitable semantic approximation (cf. Section 2). In this experi-

mentation we have heavily used EQLCs to express, e.g., hierarchy completeness and

other important business constraints, otherwise not expressible in our ontology.

Example 3. An important constraint we want to force on the ontology is that for ev-
ery customer which has a guarantor for a loan we have to know the amount of bank
credit provided to the customer. This is specified through the following EQLC, which is
expressed in SparSQL, a query language presented in [5] based on SPARQL and SQL:

EQLC(verify not exists (

SELECT withGuarantor.cus, withGuarantor.t

FROM sparqltable(SELECT ?cus ?t

WHERE{ ?cus :isLinked ?link.

?link rdf:type ’GuaranteeRelations’.

?link :timestamp ?t}) withGuarantor

WHERE (withGuarantor.cus, withGuarantor.t) NOT IN (

SELECT withCredit.cus, withCredit.t

FROM sparqltable(SELECT ?cus ?amnt ?t

WHERE{ ?cus :hasLoan ?loan.

?loan :creditAmount ?amnt.

?loan :timestamp ?t }) withCredit)))

The above constraint says that no customer cus exists, such that cus is connected

to an instance of the concept GuaranteeRelations at the time t, and cus has not a

“known” creditAmount at the same time t. It is worth noticing that OWL 2, despite

its expressiveness, does not allow for expressing the above constraint.

26 Mastro at Work: Experiences on Ontology-Based Data Access

Let us now turn our attention to mapping specification. The mapping specifica-

tion phase has required a complete understanding and an in-depth analysis of the data

sources, which highlighted some modeling weaknesses present in the source database

schema: various modifications stratified in the years over the original data schema have

partially transformed the data sources, which now reveal some problems related to re-

dundancy, inconsistency, and incompleteness in the data. Localizing the right data to

be mapped to ontology constructs has thus required the definition of fairly complex

mapping assertions, as shown in Example 4.

Example 4. Consider the following mapping assertion specifying how to construct in-

stances of JuridicalCCC using data returned by an SQL query accessing both the table

GZ0102, which contains information about CCCs, and the table GZ0007, which con-

tains information about the company groups.

SELECT id cluster, timestamp val FROM GZ0102, GZ0007

WHERE GZ0102.validity code = ‘T’ AND GZ0102.id cluster <> 0

AND GZ0007.validity code = ‘T’ AND GZ0007.id group <> 0

AND GZ0102.id cluster = GZ0007.id group

 JuridicalCCC(ccc(id cluster, timestamp val))

From the data source analysis it turned out that each CCC that has an iden-

tifier (GZ0102.id cluster) coinciding with the identifier of a company group

(GZ0007.id group) is a juridical CCC. Such a property is specified in the SQL query in

the mapping through the join between GZ0102 and GZ0007 (GZ0102.id cluster =
GZ0007.id group). Notice that invalid tuples (those with validity code different from

‘T ′) and meaningless tuples (those with id cluster or id group equal zero) are ex-

cluded from the selection. The query returns pairs of id cluster and timestamp val,

which are used as arguments of the function ccc() to build logic terms representing

objects that are instances of JuridicalCCC, according to the method described in [12].

The mapping specification phase has produced around 200 mapping assertions,

many of which are quite involved. Their design has been possible by a deep under-

standing of the tables involved, their attributes, and the values they store. We initially

tried to automate this process with the help of current tools for automatic mapping gen-

eration, but, due to the complexity of extracting the right semantics of the source tables,

we failed. This is in line with our past experience on mapping design: the bulk of the

work in mapping specification has to be essentially carried out manually.

5 The system at work

In this section we discuss the actual use of MASTRO in the MPS scenario. As a general

comment, we remark that the OBDA system we designed for this scenario allowed to

overcome many of the data access problems we have discussed in the previous sec-

tions. In particular, querying the data sources through the conceptual view provided

by the ontology enabled various kinds of users, not necessarily experts of the appli-

cation managing data at the sources, to profitably access such data. In what follows,

we concentrate on two crucial aspects of our experience: the use we made of MASTRO

to check the quality of the data sources, and the impact that certain characteristics of

Domenico Fabio Savo, et al. 27

the MPS scenario have had on the evolution of the system in terms of its tuning and

optimizations.

As mentioned in the introduction, we faced two main issues concerning the quality

of the data sources, namely incompleteness and inconsistency in the data at the sources.

Detecting data incompleteness has been possible by exploiting the MASTRO query an-

swering services, and more precisely, by inspecting the rewriting and the unfolding that

MASTRO produces in the query answering process. Let us see this on an example. To re-

trieve from the data sources the identification codes of all company groups, MPS opera-

tors simply use a single SQL query projecting out the id code from the table GZ0007,

which contains information about company groups. Surprisingly, using the ontology to

obtain all company codes, we actually get a larger answer set, by posing over the ontol-

ogy the obvious corresponding query q(y)← CompanyGroup(x), id code(x, y). The

reason for such a difference in the answers resides in the fact that the query that MAS-

TRO asks to the source database, and that is automatically produced by the rewriting and

unfolding procedures of MASTRO, is much more complex than the query used by the

MPS operators. By reasoning over the ontology, and exploiting the mapping assertions,

MASTRO accesses all the source tables that store codes of company groups, and this

set of tables does not in fact contain only the codes of company groups that occur in

table GZ0007. Such a result showed that some foreign key dependencies constraining

the identification codes stored in the table GZ0007 were in fact missing in the source

database, and that such a table should not been considered complete with respect to

such information.
We turn now to data inconsistency issues. In DL-LiteA,Id, inconsistencies are caused

by data that violate the assertions of the ontology, specifically disjointness assertions,
functionality constraints, identification constraints, and EQL constraints. Also, causes
of inconsistencies can be easily localized by retrieving the minimal set of data that
produce each single violation. We actually modified the classical consistency check of
MASTRO in order to identify the offending data, in particular exploiting the feature of
answering EQL queries (cf. Section 2) and their ability to express negation. Consider
for example the relation linkedTo, which is declared to be inverse functional (i.e.,
(funct linkedTo−)). In order to detect the violation of such constraint and the guilty
data, we use the following EQL query:

SELECT testview.l, testview.c1, testview.c2

FROM sparqltable (SELECT ?l ?c1 ?c2

WHERE{?c1:linkedTo?l. ?c2:linkedTo?l}) testview

WHERE testview.c1 <> testview.c2

Switching our attention to the performance of the system, there are two sources of

complexity to be considered in the query answering and consistency checking services

provided in MASTRO, the query reformulation and query unfolding procedures. Refor-

mulation introduces complexity since it may produce an exponential number of queries

to be answered. Nevertheless, in the case of the MPS ontology, this potential drawback

did not occur. Indeed, in most cases, the number of queries produced by this step was

small (between 1 and 25). In contrast, the query unfolding step presented challenges

that led to several important improvements in MASTRO, briefly discussed below.

In complex scenarios, such as the one we considered in our experimentation, we

found that the most critical aspect for performance is what we call query structure, i.e.,

28 Mastro at Work: Experiences on Ontology-Based Data Access

the form of the SQL queries issued to the source database. Query structure is character-

ized by the specific technique used to produce SQL queries out of queries formulated

over TBox predicates (T -predicates).

In MASTRO, query unfolding is based on the use of SQL views over the source

database. More specifically, the mapping is first pre-processed so as to have only as-

sertions in which the query over the ontology contains just one predicate (splitting).

Then, all assertions referring to the same T -predicate are combined together in order to

have one SQL view, which we call T -view, for each predicate. Essentially, the view is

obtained taking the union of the SQL queries occurring in the left-hand side of the as-

sertions, and pushing the construction of logic terms representing instances of concepts

and roles in the view itself. Unfolding a query specified over T -predicates amounts

therefore to simply unfold each query atom with the corresponding T -view. For exam-

ple, if the split mapping assertions for the role linkedTo are

m1: SELECT WHERE cd tp = 503 ; linkedTo(cus(idcus), link(linkid))
m2: SELECT WHERE cd tp = 501 ; linkedTo(cus(idcus), link(linkid))

then, the following view, linkedto Tview, is associated to the linkedTo predicate:

SELECT ‘cus(’||idcus||‘)’ as term1, ‘link(’||linkid||‘)’ as term2

FROM (SELECT WHERE cd tp = 503) view m1

UNION

SELECT ‘cus’(||idcus||‘)’ as term1, ‘link(’||linkid||‘)’ as term2

FROM (SELECT WHERE cd tp = 501) view m2

Notice that in the SELECT clause we build logical terms by means of simple SQL string

concatenation operations, indicated with the || operator. Then, the query q(X) ←
linkedTo(X,Y) is unfolded into SELECT term1 FROM linkedto Tview.

Despite its simplicity, we found out that, in scenarios characterized by a high vol-

ume of data and complex and numerous mapping assertions, this approach fail, due to

low performance of the generated queries. For example, in our test cases, queries with

a single atom that involve database relations with high volume of data often required

several minutes to be answered. More complex queries, with more than 2 atoms and

involving also big relations, would often require hours or would even not terminate.

The reason for this bad performance is in the limitations of DBMS query planners in

handling subqueries in the FROM clause, and joins between terms representing objects,

rather than directly on database values. What we observed is that, in order to deal with

subqueries, query planners rely on a process called query flattening, in which the query

planner attempts to rephrase a query with subqueries into a new query with no sub-

queries. If the query planner is not successful in this attempt, e.g., due to the complex-

ity of the subqueries, it will resort to subquery materialization, an extremely expensive

operation when the volume of data is high.
In order to avoid materialization and joins between object terms, and in general, to

increase the chances of the query planner to produce a good plan, we devised a strategy
that led us to produce queries that are as simple as possible with respect to subqueries.
This led us to adopt what we call anM-view approach to unfolding. In this approach,
we build simpler views, one for each SQL query in the split mapping assertions, and
we associate all of them to the corresponding T -predicate. For example, in the previous
case we would define the two views below

Domenico Fabio Savo, et al. 29

view m1 = SELECT WHERE cd tp = 503

view m2 = SELECT WHERE cd tp = 501

and the unfolding of the query q(X)← linkedTo(X,Y) would be as follows

SELECT ‘cus(’||idcus||‘)’ FROM view m1

UNION

SELECT ‘cus(’||idcus||‘)’ FROM view m2

Notice that in this case, the construction of the object term ‘cus(’||idcus||‘)’

is in the external SELECT clause and is not pushed into the views in the FROM clause.

What is important to note here is the exchange of simplicity of the unfolding pro-

cedure for simplicity of the structure of the queries being generated (i.e., less nesting

in the subqueries) and a new exponential growth in the amount of queries sent to the

database, e.g., now for every linkedTo atom in a query, we will produce an SQL query

taking the union of at least two queries, one where we only use view m1 and one with

view m2. Although this growth could seem problematic, we have found that the in-

crease in the performance of executing each individual query pays off the increase in

the number of queries to be executed. Moreover, since these queries are independent,

we can use parallelism in query execution to improve performance even more.

Fig. 2.M-views vs. T -views using an execution timeout of 1hr.

To give an idea of the effectiveness of the described optimizations, we present in Figure

2 the data about the execution of a collection of 8 representative queries (the units of the

vertical axis are seconds). These queries are all of interest to MPS, and challenging in

terms of number of atoms, complexity of the unfolding and the volume of data accessed.

6 Conclusions

From the point of view of MPS, the project has provided very useful results in various

areas of interest:

− Data integration, providing the capability of accessing application data in a uni-

fied way, by means of queries written at a logical/conceptual level by end-users not

necessarily acquainted with the characteristics of the application;

− Database quality improvement, providing tools for monitoring the actual quality

of the database, both at an intensional and an extensional level;

− Knowledge sharing, providing, with the ontology-based representation of the ap-

plication domain, an efficient means of communicating and sharing knowledge and

information throughout the company.

The plan is to continue the experience by extending the work to other MPS appli-

cations, with the idea that the ontology-based approach could result in a basic step for

the future IT architecture evolution, oriented towards Service-oriented architectures and

Business Process Management.

30 Mastro at Work: Experiences on Ontology-Based Data Access

References

1. P. A. Bernstein and L. Haas. Information integration in the enterprise. Comm. of the ACM,

51(9):72–79, 2008.

2. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro, and

R. Rosati. Ontologies and databases: The DL-Lite approach. In S. Tessaris and E. Fran-

coni, editors, Reasoning Web Summer School 2009, volume 5689 of LNCS, pages 255–356.

Springer, 2009.

3. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. EQL-Lite: Effective

first-order query processing in description logics. In Proc. of IJCAI 2007, pages 274–279,

2007.

4. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning

and efficient query answering in description logics: The DL-Lite family. J. of Automated

Reasoning, 39(3):385–429, 2007.

5. C. Corona, E. D. Pasquale, A. Poggi, M. Ruzzi, and D. F. Savo. When OWL met DL-Lite...

In SWAP-08, 2008.

6. J. Dolby, A. Fokoue, A. Kalyanpur, L. Ma, E. Schonberg, K. Srinivas, and X. Sun. Scalable

grounded conjunctive query evaluation over large and expressive knowledge bases. In Proc.

of ISWC 2008, volume 5318 of LNCS, pages 403–418. Springer, 2008.

7. L. M. Haas. Beauty and the beast: The theory and practice of information integration. In

Proc. of ICDT 2007, volume 4353 of LNCS, pages 28–43. Springer, 2007.

8. J. Henrard, D. Roland, A. Cleve, and J.-L. Hainaut. Large-scale data reengineering: Re-

turn from experience. In WCRE ’08: Proceedings of the 2008 15th Working Conference on

Reverse Engineering, pages 305–308. IEEE Computer Society, 2008.

9. M. Lenzerini. Data integration: A theoretical perspective. In Proc. of PODS 2002, pages

233–246, 2002.

10. C. Lutz, D. Toman, and F. Wolter. Conjunctive query answering in the description logic EL
using a relational database system. In Proc. of IJCAI 2009, pages 2070–2075, 2009.

11. H. Pérez-Urbina, B. Motik, and I. Horrocks. Tractable query answering and rewriting under

description logic constraints. J. of Applied Logic, 2009. To appear.

12. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking

data to ontologies. J. on Data Semantics, X:133–173, 2008.

13. A. Poggi, M. Rodriguez, and M. Ruzzi. Ontology-based database access with DIG-Mastro

and the OBDA Plugin for Protégé. In K. Clark and P. F. Patel-Schneider, editors, Proc. of

OWLED 2008 DC, 2008.

14. M. Rodriguez-Muro, L. Lubyte, and D. Calvanese. Realizing ontology based data access: A

plug-in for Protégé. In Proc. of IIMAS 2008, pages 286–289. IEEE CS Press, 2008.

Domenico Fabio Savo, et al. 31

