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Abstract. This paper presents a discussion on the phenomena of mask-
ing in the context of justifications for entailments. Various types of mask-
ing are introduced and a definition for each type is given.

1 Introduction

Many open source and commercial ontology development tools such as Protégé-
4, Swoop, The NeOn Toolkit and Top Braid Composer use justifications [5] as
a kind of explanation for entailments in ontologies. A justification for an entail-
ment, also known as a MinA [1, 2], or a MUPS [11] if specific to explaining why
a class name is unsatisfiable, is a minimal subset of an ontology that is sufficient
for the given entailment to hold. More precisely, a justification is taken to be a
subset minimal set of axioms that supports an entailment. Justifications are a
popular in the OWL world and, as the widespread tooling support shows, have
been used in preference to full blown proofs for explaining why an entailment
follows from a set of axioms.

However, despite the popularity of justifications, they suffer from several
problems. Some of these problems, namely issues arising from the potential su-
perfluity of axioms in justifications, were highlighted in [3]. Specifically, while all
of the axioms in a justification are needed to support the entailment in question,
there may be parts of these axioms that are not required for the entailment to
hold. For example, consider J = {A ⊑ ∃R.B, Domain(R,C), C ⊑ D⊓E} which
entails A ⊑ D. While J is a justification for A ⊑ D, and all axioms are required
to support this entailment, there are parts of these axioms that are superfluous
as far as the entailment is concerned: In the first axiom the filler of the existential
restriction is superfluous, in the third axiom the conjunct E is superfluous for
the entailment.

An important phenomenon related to superfluity has become known as justi-
fication masking. Recalling that there may be several justifications for an entail-
ment, which may but do not have to overlap, masking refers to the case where the
number of justifications for an entailment does not reflect the number of reasons
for that entailment. For example, consider J = {A ⊑ ∃R.C ⊓∀R.C,D ≡ ∃R.C}
which entails A ⊑ D. Clearly, J is a justification for A ⊑ D. It is also noticeable
that there are superfluous parts in this justification. Moreover, there are two dis-
tinct reasons why J |= A ⊑ D, the first being {A ⊑ ∃R.C,∃R.C ⊑ D} and the
second being {A ⊑ ∃R.⊤⊓ ∀R.C,∃R.C ⊑ D}. The work presented in the paper
describes how masking can occur within a justification, over a set of justifica-
tions, and over a set of justifications and axioms outside justifications. The main
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problems identified with masking are (i) it can hamper understanding—not all
reasons for an entailment may be salient to a person trying to understand the
entailment, and (ii) it can hamper the design or choice of a repair plan—not all
reasons for an entailment may be obvious, and if the plan consists of weakening
and removing parts of axioms it may not actually result in a successful repair of
the ontology in question.

In [3] laconic and precise justifications were presented as a tool for deal-
ing with the problems of superfluity and masking. However, while the basic
intuitions of masking were presented in [3], and it was shown that laconic jus-
tifications could be used as a tool for working with masking, only two types of
masking where discussed. This paper presents a comprehensive analysis of the
different types of masking, provides a characterisation of masking, and lays down
definitions and an analysis for the various types of masking.

2 Preliminaries

The work presented in this paper focuses on OWL 2. OWL 2 [8] is the latest
standard in ontology languages from the World Wide Web Consortium. An OWL
2 ontology roughly corresponds to a SROIQ(D) [4] knowledge base. For the
purposes of this paper, an ontology is regarded as a finite set of SROIQ axioms
{α0, . . . , αn}. An axiom is of the form of C ⊑ D or C ≡ D, where C and D are
(possibly complex) concept descriptions, or S ⊑ R or S ≡ R where S and R are
(possibly inverse or complex) roles.

It should be noted that OWL contains a significant amount of syntactic sugar,
such as DisjointClasses(C, D), FunctionalObjectProperty(R) or Domain(R,C).
However, these axioms can be represented using sub-class and sub-property ax-
ioms.

Justifications are a popular form of explanation in the OWL world. A jus-
tification for an entailment η in an ontology O, such that O |= η is a minimal
subset of that entails η.

Definition 1 (Justification). J is a justification for O |= η if J ⊆ O, J |= η

and for all J ′ ( J J ′ 6|= η.

By a slight abuse of notation, the nomenclature used in this paper also refers
to a minimally entailing set of axioms (that is not necessarily a subset of an
ontology) as a justification.

Much of the work presented in the remainder of the paper uses the “well
known” structural transformation — δ. This transformation takes a set of axioms
and flattens out each axiom by introducing names for sub-concepts, transforming
the axioms into an equi-satisfiable set of axioms. The structural transformation
was first described in Plaisted and Greenbaum [10], with a version of the rewrite
rules for description logics given in [9].

In what follows, A is the ABox of an ontology, R is the RoleBox, and T
is the TBox. A is an atomic concept in the signature of O, AD and A′

D are
fresh concept names that are not in the signature of O. Ci and D are arbitrary

Matthew Horridge, Bijan Parsia and Ulrike Sattler. 33



concepts, excluding ⊤, ⊥ and literals of the form X or ¬X where X is not in the
signature of O, C is a possibly empty disjunction of arbitrary concepts. C ≡ D

is syntactic sugar for C ⊑ D and D ⊑ C, as is =nR.D for ≥nR.D ⊓ ≤nR.D.
Domain and range axioms are GCIs so that Domain(R,C) means ∃R.⊤ ⊑ C,
and Range(R,C) means ⊤ ⊑ ∀R.C. The negation normal form of D is nnf(D).
The structural transformation δ is defined as follows:

δ(O) :=
⋃

α∈R∪A δ(α) ∪
⋃

C1⊑C2∈T δ(⊤ ⊑ nnf(¬C1 ⊔ C2))

δ(D(a)) := δ(⊤ ⊑ ¬{a} ⊔ nnf(D))

δ(⊤ ⊑ C ⊔ D) := δ(⊤ ⊑ A′
D ⊔ C) ∪

⋃i=n

i=1 δ(A′
D ⊑ Di) for D =

di=n

i=1Di

δ(⊤ ⊑ C ⊔ ∃R.D) := δ(⊤ ⊑ AD ⊔ C) ∪ {AD ⊑ ∃R.A′
D} ∪ δ(A′

D ⊑ D)

δ(⊤ ⊑ C ⊔ ∀R.D) := δ(⊤ ⊑ AD ⊔ C) ∪ {AD ⊑ ∀R.A′
D} ∪ δ(A′

D ⊑ D)

δ(⊤ ⊑ C ⊔ ≥nR.D) := δ(⊤ ⊑ AD ⊔ C) ∪ {AD ⊑ ≥nR.A′
D} ∪ δ(A′

D ⊑ D)

δ(⊤ ⊑ C ⊔ ≤nR.D) := δ(⊤ ⊑ AD ⊔ C) ∪ {AD ⊑ ≤nR.A′
D} ∪ δ(A′

D ⊑ D)

δ(A′
D ⊑ D) := A′

D ⊑ D (If D is of the form A or ¬A)

δ(A′
D ⊑ D) := δ(⊤ ⊑ ¬A′

D ⊔ D) (If D is not of the form A or ¬A)

δ(β) := β for any other axiom

The transformation ensures that concept names that are in the signature of
O only appear in axioms of the form X ⊑ A or X ⊑ ¬A, where X is some
concept name not occurring in the signature of O. Note that the structural
transformation does not use structure sharing. For example, given ⊤ ⊑ C⊔∃R.C,
two new names are introduced, one for each use of C, to give {⊤ ⊑ X0⊔X1, X0 ⊑
C, X1 ⊑ ∃R.X2, X2 ⊑ C}. The preclusion of structure sharing ensures that the
different positions of C are captured.

The definition of laconic justifications uses the notion of the length of an
axiom. Length is defined as follows: For X, Y a pair of concepts or roles, A a
concept name, and R a role, the length of an axiom is defined as follows:

|X ⊑ Y | := |X| + |Y |, |X ≡ Y | := 2(|X| + |Y |),

where
|⊤| = |⊥| := 0,

|A| = |{i}| = |R| = |R−| := 1,
|¬C| := |C|

|C ⊓ D| = |C ⊔ D| := |C| + |D|
|∃R.C| = |∀R.C| = | ≥ nR.C| = | ≤ nR.C| := |R| + |C|

It should be noted that this definition is slightly different from the usual
definition, but it allows cardinality axioms such as A ⊑ ≤ 2R.C to be weakened
to A ⊑ ≤ 3R.C without increasing the length of the axiom.

In what follows the standard definition of deductive closure is used, and O⋆

is used to denote the deductive closure of O.

Definition 2. J is a laconic justification for η over O if:
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1. J is a justification in O⋆.

2. δ(J ) is a justification in (δ(O))⋆

3. For each α ∈ δ(J ) there is no α′ such that

(a) α′ is weaker than α (α |= α′ but α′ 6|= α)

(b) |α′| ≤ |α|

(c) (δ(J ) \ {α}) ∪ δ(α′) is a justification for η

Intuitively, a laconic justification is a justification whose axioms do not contain
any superfluous parts and all of whose parts are are weak as possible.

3 Intuitions about Masking

The basic notion of masking is that when taken on their own, the weakest parts
of axioms in a justification may combine together with other parts of axioms
within the justification or external to the justification to reveal further reasons
that are not directly represented by the set of regular justifications, and do not
directly have a one-to-one “correspondence” with the set of regular justifications.

We define four important types of masking: Internal Masking, Cross Mask-
ing, External Masking and Shared Cores. The intuitions behind these types of
masking are explained below.

Internal Masking Internal masking refers to the phenomena where there are
multiple reasons within a single justification as to why the entailment in question
holds. An example of internal masking is shown below.

O = {A ⊑ B ⊓ ¬B ⊓ C ⊓ ¬C} |= A ⊑ ⊥

There is a single regular justification for O |= A ⊑ ⊥, namely O itself. However,
within this justification there are, intuitively, two reasons as to why O |= A ⊑ ⊥,
the first being {A ⊑ B ⊓ ¬B} and the second being {A ⊑ C ⊓ ¬C}.

Cross Masking Intuitively, cross masking is present within a set of justifica-
tions for an entailment when parts of axioms from one justification combine with
parts of axioms from another justification in the set to produce new reasons for
the given entailment. For example, consider the following ontology.

O = {A ⊑ B ⊓ ¬B ⊓ C

A ⊑ D ⊓ ¬D ⊓ ¬C} |= A ⊑ ⊥

There are two justifications for O |= A ⊑ ⊥, namely J1 = {A ⊑ B ⊓ ¬B ⊓ C}
and J2 = {A ⊑ D⊓¬D⊓¬C}. However, part of the axiom in J1, namely A ⊑ C

may combine with part of the axiom in J2, namely A ⊑ ¬C to produce a further
reason: J3 = {A ⊑ C, A ⊑ ¬C}.
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External Masking While internal masking and cross masking take place over a
set of “regular” justifications for an entailment, external masking involves parts
of axioms from a regular justification combining with parts of axioms from an
ontology (intuitively the axioms outside of the set of regular justifications) to
produce further reasons for the entailment in question. Consider the example
below,

O = {A ⊑ B ⊓ ¬B ⊓ C

A ⊑ ¬C} |= A ⊑ ⊥

There is just one justification for O |= A ⊑ ⊥, however, although A ⊑ ¬C

intuitively plays a part in the unsatisfiability of A it will never appear in a
justification for O |= A ⊑ ⊥. When O is taken into consideration, there are two
salient reasons for A ⊑ ⊥, the first being {A ⊑ B ⊓ ¬B} and the second being
{A ⊑ C, A ⊑ ¬C}

Shared Core Masking Finally, two justifications share a core if after stripping
away the superfluous parts of axioms in each justification the justifications are
essentially structurally equal. Consider the example below,

O = {A ⊑ B ⊓ ¬B ⊓ C

A ⊑ B ⊓ ¬B} |= A ⊑ ⊥

There are two justifications for O |= η, J1 = {A ⊑ B ⊓¬B ⊓C} and J2 = {A ⊑
B⊓¬B}. However, J1 can be reduced to the laconic justification {A ⊑ B⊓¬B}
(since C is irrelevant for the entailment), which is structurally equal to J2. With
regular justifications, it appears that there are more reasons for the entailment,
when in fact each justification boils down to the same reason.

3.1 Masking Due to Weakening

The above intuitions have been illustrated using simple propositional examples.
However, it is important to realise that masking is not just concerned with
boolean parts of axioms. Weakest parts of axioms must also be taken into con-
sideration. For example, consider

O = {A ⊑ ≥ 2R.C

A ⊑ ≥ 1R.D

C ⊑ ¬D} |= A ⊑ ≥ 2R

There is one regular justification for O |= A ⊑ ≥ 2R namely, J1 = {A ⊑
≥ 2R.C}. However, there are intuitively two reasons for this entailment. The
first is described by the justification obtained as a weakening of J1, and is
J2 = {A ⊑ ≥ 2.R}. The second is obtained by weakening the first axiom in O and
combining it with the second and third axioms in O to give {A ⊑ ≥ 1R.C, A ⊑
≥ 1R.D,C ⊑ ¬D}.

Of course, masking due to weakening can occur in internal masking, cross
masking, external masking and shared cores.
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3.2 Summary on Intuitions

As can be seen from the above examples, the basic idea is that when the weakest
parts of axioms in a justification, set of justifications or an ontology are taken into
consideration, there can be multiple reasons for an entailment that are otherwise
not exposed with regular justifications. These reasons take the form of laconic
justifications—justifications whose axioms do not contain any superfluous parts
and whose parts are as weak as possible. With internal masking, cross masking
and external masking, there are more laconic justifications (by some measure)
than there are regular justifications. With shared cores there are fewer laconic
justifications (by some measure) than there are regular justifications.

3.3 Detecting Masking

Given the above link between masking, weakest parts of axioms and laconic
justifications, it may seem fruitful to use laconic justifications as a mechanism
for detecting masking. Specifically, it may seem like a good idea to count laconic
justifications for the entailment in question. However, this is a flawed intuition
and several problems prevent laconic justification counting being used directly
as a masking detection mechanism. We begin by noting that there may be an
infinite number of laconic justifications for an entailment.

Lemma 1 (Number of Laconic Justifications). Let S be a set of SROIQ
axioms such that S |= η. In general, there may be an infinite number of laconic
justifications over S for S |= η.

Proof: Consider an ontology O such that O |= A ⊑ ⊥. Since laconic justifications
may be drawn from the deductive closure of an ontology it is possible to construct
an infinite set of justifications for the unsatisfiability of A of the form {A ⊑
≥ nR.⊤, A ⊑ ≤ (n − 1)R.⊤.

The Promiscuity of the Deductive Closure The first problem is that, in
general, there can be an infinite number of laconic justifications for a given en-
tailment (Lemma 1). The notion of counting the number of laconic justifications
over a set of axioms and comparing this to the number of regular justifications
over the same set of axioms is therefore useless when it comes to detecting and
defining masking. Even if the logic used did not result in an infinite number of la-
conic justifications, the effects of splitting and syntactic equivalence could result
in miscounting. For example, consider J1 = {A ⊑ B⊓C, B⊓C ⊑ D}, where J1 is
in itself laconic, however another justification J2 = {A ⊑ B, A ⊑ C, B⊓C ⊑ D}
can be obtained, which is also laconic. Clearly, masking is not present in J1, but
there are more laconic justifications than there are regular justifications.

Preferred Laconic Justifications Another approach might be to count the
number of preferred laconic justifications, which are laconic justifications that
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are made up of axioms which come from a filter on the deductive closure of
a set of axioms. The notion of preferred laconic justifications was introduced
in [3], where a filter called O+ is used to compute justifications that bear a
syntactic resemblance to the axioms from which they are derived. Unfortunately,
this idea is sensitive to the definition of the filter. Different filters, for different
applications, may give different answers and false positives. While a particular
filter could be verified to behave correctly and perhaps be used as an optimisation
for detecting masking in an implementation, this mechanism is not appropriate
for defining masking.

Preservation of Positional Information Another problem is that struc-
tural information can be lost with laconic justifications. Consider the {A ⊑
B ⊓ (C ⊓ B)} as a justification for A ⊑ B. Masking is clearly present within
this justification. If B@1 denotes the first occurrence of B, and B@2 denotes
the second occurrence of B then A is a subclass of B because of two reasons:
A ⊑ B@1 and A ⊑ B@2. However, this positional information is lost in all laconic
justifications for A ⊑ B. In essence, syntax is crucial when it comes to masking.

Splitting is Not Enough While syntax is very important when considering
masking, it does not suffice to consider syntax alone. The example of masking
due to weakening shows that simply splitting a set of axioms S into their con-
stituent parts, using the structural transformation δ(S), and then examining the
justifications for the entailment with respect δ(S) is not enough to capture this
notion of masking. Weakenings of the split axioms must be considered in any
mechanism that is used to detect masking.

4 Masking Defined

With the above intuitions and desiderata in mind the notion of masking can be
made more concrete. The basic idea is to pull apart the axioms in a justification,
set of justifications and an ontology, compute constrained weakenings of these
parts (inline with the definition of laconic justifications), and then to check
for the presence and number of laconic justifications within the set of regular
justifications for an entailment with respect to these parts and their weakenings.

4.1 Parts and Their Weakenings

We first define a function δ+(S), which maps a set of axioms S to a set of axioms
composed from the union of δ(S) with the constrained weakenings of axioms in
δ(S). The weakenings of axioms is constrained in that for an axiom α ∈ δ(S), a
weakening α′ of α is contained in δ+(S) only if α′ is no longer than α—i.e. the
weakening does not introduce any extra parts.

Definition 3 (δ+). For a set of SROIQ axioms, S,

δ+(S) := δ(S) ∪ {α′ | ∃α ∈ δ(S) s.t. α |= α′ and α′ 6|= α and |δ(α′)| = 1)}
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Lemma 2 (δ+justificatory finiteness). For a finite set of axioms S, the set
of justifications for an entailment in δ+(S) is finite.

Proof: δ+(S) is composed of the set of axioms in δ(S), which is finite, plus a
possibly infinite set of axioms taken from the deductive closure of each axiom in
δ(S). For a SROIQ axiom α, every axiom α′ in δ(α) must either be one of the
following forms:

⊤ ⊑ Xi ⊔ Xj

Xi ⊑ A

Xi ⊑ ¬A

Xi ⊑ ∃R.Xj

Xi ⊑ ∀R.Xj

Xi ⊑ {o}

Xi ⊑ ∃R.Self

Xi ⊑ ≥ nR.Xj

in which case the set of axioms in δ+(α) is finite since the set of weakenings (in
accordance with the definition of δ+) of α′ is finite. Or, α′ is of the form:

Xi ⊑ ≤ nR.Xj

in which case there is an infinite number of weakenings of α′ in δ+(α) since
A ⊑≤ (n + 1)R.C is weaker than A ⊑≤ nR.C for any n ≥ 0. If justifications are
made up solely of the axioms of the form corresponding to the first set then the
set of justifications is clearly finite. If justifications contain axioms of the second
form Xi ⊑ ≤nR.Xj then there is a finite upper bound m for n, where there are
no justifications containing an axiom of the from Xi ⊑ ≤ kR.Xj for some k > m.
This is because, for values of k, where k is equal to the maximum number in ≤
restrictions in the closure of S, or more, Xi ⊑ ≤ kR.Xj is too weak to participate
in a justification, and this follows as a straight forward consequence of SROIQ’s
model theory [4]. ⊓⊔

Next, a function which filters out laconic justifications for an entailment from
a set of justifications for the entailment is defined:

Definition 4 (Laconic Filtering). For a set of axioms S |= η, laconic(S, η)
is the set of justifications for S |= η that are laconic over S.

Notice that because of Lemma 2, the set of justifications laconic(S, η) is finite.

4.2 Masking Definitions

With the definition of δ+ and the definition of laconic filtering in hand, the
various types of masking can now be defined.
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Definition 5 (Internal Masking). For a justification J for O |= η, internal
masking is present within J if

∣

∣laconic(δ+(J ), η)
∣

∣ > 1

Lemma 3. Internal masking is not present within a laconic justification.

Proof: Assume that J is a laconic justification for η and that internal masking
is present within J . This means that there either must be (i) at least two laconic
justifications for δ+(J ) |= η, i.e. there exists some J1,J2 ( δ+(J ) where J1 6=
J2 and are both laconic. However, since J itself is laconic this violates condition
2 of Definition 2, or (ii) there is a non-length increasing weakening of one or
more axioms in δ(J ) that yields δ(J )′. However since J is laconic this violates
conditions 3a and 3b of Definition 2. ⊓⊔

Let O |= η and J1, . . . ,Jn be the set of all justifications for O |= η. Cross
masking and External masking are then defined as follows:

Definition 6 (Cross Masking). For two justifications Ji and Jj, cross mask-
ing is present within Ji and Jj if

∣

∣laconic
(

δ+(Ji ∪ Jj), η
)
∣

∣ >
(
∣

∣laconic
(

δ+(Ji), η
)
∣

∣ +
∣

∣laconic
(

δ+(Jj), η
)
∣

∣

)

Definition 7 (External Masking). External masking is present if

∣

∣laconic(δ+(O), η)
∣

∣ >
∣

∣laconic(δ+(

i=n
⋃

i=1

Ji), η)
∣

∣

Definition 8 (Shared Cores). Two justifications Ji and Jj for O |= η, share
a core if there is a justification J ′

i ∈ laconic(δ+(Ji), η) and a justification J ′
j ∈

laconic(δ+(Jj), η) and a renaming ρ of terms not in O such that ρ(J ′
i ) = J ′

j .

5 Examples

The issue of masking is indeed a real world problem with realistic ontologies. For
example, external masking is present in the DOLCE ontology. The entailment
quale ⊑ region has a single justification:

{quale ≡ region ⊓ ∃ atomicPartOf.region}

However, there are further justifications that are externally masked by this reg-
ular justification. There are three laconic justifications, the first being

{quale ⊑ region}

which is directly obtained as a weaker form of the regular justification. More
interestingly, there are two additional laconic justifications:

{quale ⊑ ∃atomicPartOf.region

atomicPartOf ⊑ partOf

partOf ⊑ part−

region ⊑ ∀part.region}
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and also

{quale ⊑ atomicPartOf.region

atomicPartOf ⊑ atomicPart−

atomicPart ⊑ part

region ⊑ ∀part.region}

Both of these justifications represent reasons for the entailment which are never
seen with regular justifications due to the presence of external masking.

A real ontology about pathway interactions1 contains an unsatisfiable class
called “Phosphate Acceptor”. There are 32 regular justifications for this class
being unsatisfiable. However, upon examination, these 32 justifications share a
single core. When trying to understand the reason for the unsatisfiable class, the
succinctness of the core provides a dramatic improvement in terms of usability.

6 Implementation Issues

The main focus of this paper has been to pin down the notions and types of
masking. At this stage no attention has been paid to the practicalities of detec-
tion masking. However, the definitions for the various types of masking make
use of the well known structural transformation δ—δ+ must be computed from
δ. Naturally, this raises the question of performance and scalability, since many
reasoners rely on the structure of axioms in real world ontologies for several
key optimisations. Normalising the axioms in an ontology using the structural
transformation, i.e. converting axioms to clausal form, raises the possibility of
negating these optimisations. While more investigation work needs to be done,
some preliminary experiments indicate that it is feasible to detect internal mask-
ing and cross masking. It is expected that an algorithm that transforms an on-
tology in an incremental manner, using techniques similar to those presented in
[3] for computing laconic justifications, could provide a practical mechanism for
detecting external masking.

7 Related Work

Various groups [6, 7, 11] have concentrated their efforts on what can be thought
of as fine-grained justifications. In particular, Kalyanpur et al. [6, 5] presented
work on fine-grained justifications, where axioms were split into smaller axioms
in order to obtain a more “precise” justification. This work discusses the reasons
for fine-grained justifications, one of which corresponds to the notion of external
masking presented here. However, no precise definitions of masking were given
in this work.

1
http://owl.cs.manchester.ac.uk/repository/download?ontology=http://purl.org/NET/biopax-
obo/examples/reaction.owl (courtesy Alan Ruttenberg)
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8 Conclusions

This paper has presented a discussion on the phenomenon of justification mask-
ing. The notion and types of masking have been discussed and defined. These
definitions basically identify the parts of axioms in a justification, over a set of
justifications and an ontology, weaken the parts and then look for the number of
laconic justifications that are present in the set of justifications over the axioms
that represent these weakened parts.
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