
Supporting the Development of Data Wrapping
Ontologies (Extended Abstract)⋆

Lina Lubyte and Sergio Tessaris

KRDB Research Centre, Free University of Bozen-Bolzano

1 Introduction

The use of a conceptual model or an ontology to wrap and describe relational
data sources has been shown to be very effective in several frameworks involving
management and access of data, such as information integration through medi-
ated schemata [1], and the Semantic Web [2]. Ontologies provide a conceptual
view of the application domain, which is closer to the user perspective, and au-
tomated reasoning can be leveraged to support exploration and querying of the
underlying data sources.

In this paper we focus on the problem of designing ontologies which describe
relational data sources, and whose purpose is to provide a semantically enriched
access to the underlying data. We use the term data wrapping ontologies to
distinguish these ontologies from domain ontologies; whose purpose is to model
a domain.

In order to maximise the benefits of using data wrapping ontologies, these
should be rich enough to ease their integration with the domain ontology and, at
the same time, precisely characterise the data they wrap. Ontologies extracted
automatically from data sources (e.g. by analysing the constraints in the logical
schema) are faithful representations of the data sources; however, they are usu-
ally shallow and with a limited vocabulary. For this reason, they can be used as
bootstrap ontologies, and the task of enriching the extracted ontology is crucial
in order to build a truly effective ontology-based information access system. The
process of enriching an ontology involves at least the introduction of new axioms
and/or new terms. While, from a purely ontological viewpoint, an ontology can
be arbitrarily modified, we need to bear in mind that the ultimate purpose of
the data wrapper is to access the information available from the data sources.
This means that newly introduced terms (concepts or roles) should be “backed”
by data in the sources; i.e. queries over these terms should be rewritable w.r.t.
data sources.

It is easy to provide examples where newly introduced terms will always
return empty answers, regardless the actual data contained in the sources (see
Section 3). This not necessarily because they are unsatisfiable in the usual model

⋆ This paper is an excerpt from the ASWC 2009 paper “Supporting the Development
of Data Wrapping Ontologies” by the same authors. The work presented in this
paper has been partially funded by the European project ONTORULE.

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

91

theoretic meaning, but because there is no way of mapping them into the data
sources.

In order to ensure that queries over ontologies wrapping data sources provide
sensible answers, these ontologies must be carefully handcrafted by taking into
account the query answering algorithm. To the best of our knowledge, little or
no research has been devoted to the support of the ontology engineer in such a
complex and error prone task. Our research is directed to techniques and tools
to support this modelling process.

In [3] we introduced the problem and presented some preliminary results. The
contribution of this paper is a generalisation of the these results, by providing
algorithms to verify term emptiness for a more expressive class of ontology lan-
guages (see [4]). In particular, a crucial gain in terms of expressive power of the
language adopted in this work is the ability to express inclusions among roles.
Moreover we provide a technique to support the user in the “repair” of the empty
terms and we present empirical study showing the benefits of our approach.

2 Preliminaries

To formalize ontologies, we use the DL ELHI [4]. For P an atomic role, an
ELHI basic role has the form P or P−. For A an atomic concept, an ELHI
basic concept has the form A,∃R,∃R.A or B1 ⊓B2, where R is a basic role. An
ELHI ontology is formalized in terms of a TBox, which is a set of inclusion
assertions of the form B1 ⊑ B2 or R1 ⊑ R2, with B1, B2 basic concepts and
R1, R2 basic roles. The actual data instances are instead stored in an ABox, that
consists of a set of membership assertions of the form A(a) or R(a, b), with A an
atomic concept, P an atomic role, and a, b constants1. An ELHI knowledge base
(KB) K is a tuple 〈T ,A〉, where T is a TBox and A is an ABox. We assume the
“standard” DL semantics, with the unique name assumption.

A datalog rule is an expression of the form α(x)← body(x,y), where α(x) is
the head atom and body(x,y) is a set of body atoms. A datalog program Π is a set
of datalog rules. The extensional database (EDB) predicates of Π are those that
do not occur in the head atom of any rule in Π; all other predicates are called
intentional database (IDB) predicates. A datalog query Q over an ELHI KB K
is a tuple 〈QΠ , Π〉, where QΠ is a query predicate and Π is a datalog program
whose predicates (except QΠ) are concept and role names occurring in K. Q is
a conjunctive query (CQ) if Π contains exactly one rule with QΠ as its head
predicate not occurring in the body. A tuple of constants a is a certain answer
to a datalog query Q over K iff K ∪Π |= QΠ(a), where Π is considered to be
a set of universally quantified implications with the usual first-order semantics.
We use cert(Q,K) to denote the set of all certain answers to Q over K.

1 As a matter of fact, an ABox is considered only virtually, while the actual data is
stored in a relational DBMS and wrapped by means of an ontology; see [5].

92 Supporting the Development of Data Wrapping Ontologies

3 Emptiness of Ontology Terms

The foundation of our technique is the problem of verifying the emptiness of
a given term w.r.t. a set of data source terms (i.e. terms “connected” to data
sources). Given a Description Logic (DL) theory composed by TBox and ABox
over a given vocabulary, we define a subset of the concepts and roles as data
source terms. Given a TBox, a concept or role term is empty iff the certain answer
of the query defined by the term is empty for all possible ABoxes whose assertions
are restricted to data source terms. The idea is that data (by means of ABox
assertions) can only be associated to data source terms. Clearly the problem is
different from classical (un)satisfiability, because we impose a restriction on the
kind of allowed ABox assertions. Note that the two problems coincide when all
the DL terms are considered as data sources.

To provide an intuition of the reasoning task let us consider a simple exam-
ple depicted in Figure 1, where the bottom part represents the logical schema,
the middle part the data source terms (connected with the relational sources by
means of mappings, depicted with dashed arrows) and the top part the enriched
fragment of the ontology. It is obvious that any query on Actor would always
return empty answer, whatever the data sources may contain; while the concept
represented by the same term would be satisfiable. The situation would be dif-
ferent if Actor was also restricted to elements whose range w.r.t. person_role was
bound to ActingRole2. In this case, there could be instances of the database for
which the same query on Actor would return a nonempty answer.

1,nPerson

S
o

u
rc

e

s
c
h

e
m

a
E

x
tr

a
c
te

d
 o

n
to

lo
g

y

E
n

ri
c
h

e
d

 o
n

to
lo

g
y

name

... ...

nameid

cast_info

... ...

role_idperson_id

Movie

Actor

Role

TVListing

... ...

nameid

role_type

person_role

actsIn

...... ...

yeartitleid

title

ActingRole

Fig. 1. Example of a simple data wrapper

Let ΣDB denote the subset of terms occurring in T as “coming” from the
data sources, i.e. data source terms. Given such ΣDB, a ΣDB-ABox is an ABox
defined over ΣDB only. Given a term η in T , we call a query for η a CQ of the
form Q(x)← η(x) (resp., Q(x, y)← η(x, y)), for η an atomic concept (resp., an
atomic role) in T . Our goal is to test whether η is empty w.r.t. the data at the

2 In DL terms this corresponds to an inclusion assertion ∃person_role.ActingRole ⊑

Actor.

Lina Lubyte and Sergio Tessaris. 93

sources, i.e., w.r.t. ΣDB. Clearly, such a test should involve the query answering
process. That is, to verify emptiness of η, we have to check whether a query for
η is empty given a TBox and a ΣDB-ABox.

Definition 1. Let T be an ELHI TBox and η a term in T with query Q for η.
Then, η is empty w.r.t. ΣDB iff cert(Q, 〈T ,A〉) = ∅ for every ΣDB-ABox A.

This defines the problem studied in this paper: given a term η in T with a CQ
Q for η, test whether cert(Q, 〈T ,A〉) = ∅ for every A whose assertions are over
ΣDB only. Note however that this does not imply that we will be necessarily
computing cert(Q, 〈T ,A〉).

It is well known that the problem of computing certain answers in the pres-
ence of an incomplete database is often solved via query rewriting under con-
straints. Specifically, from [6] we have that given a conjunctive query Q over an
ELHI KB K = 〈T ,A〉, we can compute another query Q′, a rewriting of Q,
such that the certain answers of Q over K and the answers of Q′ over A only
coincide, i.e., cert(Q, 〈T ,A〉) = cert(Q′,A). Thus, we have the following:

Lemma 1. Let T be an ELHI TBox and η a term in T with query Q for η.
Let Q′ be a rewriting of Q. Then, η is empty w.r.t. ΣDB iff cert(Q′,A) = ∅ for
every ΣDB-ABox A.

The above lemma shows that the problem of testing emptiness of a given term
amounts to verifying whether the rewriting of its query returns empty answer
for every possible ΣDB-ABox. We will see later that for this purpose we will
not need to compute the actual evaluation, however, we will employ the above
relationship as described in the sequel.

4 Testing Emptiness

The rewriting of a CQ over ELHI KB is a datalog query [6]. Therefore, according
to Lemma 1, our problem now comes down to testing emptiness of a query
predicate in the rewritten datalog program. The problem of verifying emptiness
of datalog predicates has been addressed by Vardi [7], showing that deciding
emptiness of IDB predicates can be done in polynomial time. The key idea
underlying this result is the observation that a datalog program can be viewed
as an infinite union of CQs that, in turn, can be described by means of expansion
trees. Importantly, [7] shows that we can get rid of variables when building
expansion trees, obtaining skeletons of expansion trees. Then, an IDB predicate
is empty in a datalog program, iff there is no skeleton tree for that predicate
having as leaves EDB predicates only. We build our approach on the results
of [7], and in particular on the possibility of building finitely labelled trees for
IDB predicates.

For a term η with a CQ Q for η in an ELHI TBox T , we devise our emptiness
testing algorithm in four steps: (i) rewrite Q using procedure of [6], obtaining
a datalog query Q′ = 〈QΠ , Π〉, (ii) add to Π auxiliary rules for making IDB

94 Supporting the Development of Data Wrapping Ontologies

and EDB predicates explicit, (iii) for the resulting Datalog program with a
query predicate QΠ , build an AND-OR skeleton tree for QΠ , and (iv) traverse
the obtained tree by marking its nodes as empty/nonempty corresponding to
empty/nonempty predicates, and, in turn, to empty/nonempty concepts and
roles in T . In the following we will elaborate on steps (ii)-(iv); for details on the
rewriting algorithm we refer to [6].

Given a datalog program Π with a query predicate QΠ resulting from rewrit-
ing a CQ for a given term over T , let Π∗ denote a datalog program obtained by
adding to Π rules of the form:

– A(x) ← A(x), P (x, y) ← P (x, y), for every predicate symbol A, P ∈ Π
corresponding to an atomic concept and role in T , respectively, such that
A, P /∈ ΣDB and A, P do not occur among the head atoms of any rule in Π;

– A(x) ← Adb(x), P (x, y) ← Pdb(x, y) for every predicate symbol A, P ∈ Π
such that A, P ∈ ΣDB.

Note that an auxiliary rule A(x) ← A(x) is equivalent to a tautology A(x) ∨
¬A(x); thus, from a logical point of view, we do not change the semantics of Π.

The following definition describes the AND-OR skeleton tree that is associ-
ated to a datalog program (we assume all rules in Π∗ are named).

Definition 2. Given a datalog program Π∗ and an IDB predicate QΠ in Π∗,
the associated AND-OR skeleton tree for QΠ in Π∗, denoted tree(QΠ , Π∗), is a
labelled tree consisting of alternating levels of and-nodes and or-nodes such that

– the root of tree(QΠ , Π∗) is a (and-)node labelled by QΠ ,
– for every and-node labelled by a predicate R in tree(QΠ , Π∗) and for every

rule r of Π∗ having R as its head predicate, there exists a child or-node of
R labelled by r,

– for every or-node labelled by a rule r in Π∗, tree(QΠ , Π∗) has an and-node
child for every atom g in the body of r, and the label of each such and-node
is the predicate symbol of g.

An and-node labelled by R in tree(QΠ , Π∗) is a leaf, if either (i) it is labelled
with an EDB predicate, (ii) there are no rules in Π∗ having R predicate in the
head, or (iii) there is some other and-node in tree(QΠ , Π∗) labelled by R that
has already been expanded; we refer to such node as the expanded equivalent of
R, denoted eq(R).

An or-subtree τ in tree(QΠ , Π∗) is a subtree of tree(QΠ , Π∗) such that (i) for
an and-node R ∈ τ , τ contains one of the child or-nodes of R in tree(QΠ , Π∗),
(ii) for an or-node r ∈ τ , τ contains all children of r in tree(QΠ , Π∗).

Example 1. Consider the data wrapping ontology from Figure 1. We list below
the relevant axioms:

Movie ⊑ TVListing ∃actsIn.Actor ⊑ Movie Actor ⊑ Person

Lina Lubyte and Sergio Tessaris. 95

q

r1

TVListing

r2

Movie

r3

actsIn

r10

actsIn

Actor

r11

Actor

r8

Moviedb

r7

actsIn Actor

r5

Movie

r6

actsIn Actor

Fig. 2. Skeleton tree corresponding to the Datalog program of Example 1.

As can be seen from the figure, Movie and Person are linked to the data sources,
i.e. they are data source terms. Suppose we want to test emptiness of TVListing
term in the above ontology. The (partial) datalog program resulting from rewrit-
ing the query q(x)← TVListing(x) is given below, together with auxiliary rules
r8 through r11 to make actsIn and Actor IDB predicates, and Person and Movie
EDB predicates.

r1 : q(x)← TVListing(x) r7 : TVLising(x)← actsIn(y, x),Actor(y)
r2 : TVListing(x)← Movie(x) r8 : Movie(x)← Moviedb(x)
r3 : Movie(x)← actsIn(y, x),Actor(y) r9 : Person(x)← Persondb(x)
r4 : Person(x)← Actor(x) r10 : actsIn(x, y)← actsIn(x, y)
r5 : q(x)← Movie(x) r11 : Actor(x)← Actor(x)
r6 : q(x)← actsIn(y, x),Actor(y)

The AND-OR skeleton tree for this datalog program is shown in Figure 2. Note
that the children and-nodes of r10, r11, r7, r5 and r6 are not further expanded,
since they have isomorphic nodes that have already been expanded. The tree has
5 distinct or-subtrees, one of them e.g. formed from the path of or-nodes r1, r2

and r8.

It is easy to show that each or-subtree of a given AND-OR skeleton tree
corresponds to a skeleton of expansion tree defined in [7]. Therefore, a query
predicate QΠ is empty, iff all or-subtrees of tree(QΠ , Π∗) are empty.

Definition 3. Given an AND-OR skeleton tree tree(QΠ , Π∗) for QΠ in Π∗, an
and-node R is empty in tree(QΠ , Π∗) if either (i) there is the expanded equiva-
lent of R, eq(R), that is empty in tree(QΠ , Π∗); (ii) R is a leaf in tree(QΠ , Π∗),
it is not an EDB predicate, and there is no eq(R) in tree(QΠ , Π∗); (iii) all chil-
dren or-nodes of R are empty. An or-node r is empty in tree(QΠ , Π∗) if at least
one child and-node of r is empty.

The above definition provides the basis for a procedure for traversing a given
AND-OR skeleton tree. While emptiness of QΠ node can be decided by inspect-
ing leaf nodes only, our algorithm traverses all the tree; this information will

96 Supporting the Development of Data Wrapping Ontologies

be the main input for suggesting the “repairs” of empty terms, as described in
Section 5. We illustrate this process with the following example.

Example 2 (Example 1 continued). We start with actsIn leaf, child of r10, and
mark it as empty (it is not an EDB predicate). This makes also its parent r10 and,
in turn, actsIn and r3 empty. To decide for Movie, we have to know emptiness of
r8. Moviedb is an EDB predicate, so it is nonempty. Consequently, we mark r8 and
Movie as nonempty, which determines non-emptiness for r2 and then TVListing,
r1 and finally q. Actor leaf, child of r11, is empty as well. Consequently, children
of r7 and r6 are empty. In contrary, Movie, child of r5 is marked as nonempty,
because its expanded equivalent, child of r2, is nonempty.

Indeed, we can construct a CQ q(x)← Moviedb(x) from the AND-OR skele-
ton tree that witnesses non-emptiness for TVListing.

According to [6] and due to the fact that the input query for a given term has
always single atom in its body, we have that the number of rules generated by
the rewriting algorithm is exponential w.r.t. T . Given n distinct IDB predicates
in Π∗, the size of the AND-OR tree generated from Π∗ is at most nm, where
m is the maximum number of atoms in the body of a rule in Π∗. Thus, we have
the following.

Theorem 1. Let K = 〈T ,A〉 be a ELHI KB, η a term in T and ΣDB set of
data source terms. Emptiness of η w.r.t. ΣDB can be decided in time exponential
in the size of T .

Note that the above result is optimal w.r.t. the complexity bounds from [8]:
deciding emptiness of a term in ELI there is shown to be ExpTime-complete.

Finally, we stress the fact that, due to the rewriting algorithm [6], the tech-
nique presented in this section is applicable to ontology languages in the full
spectrum of DLs from ELHI to DL-Litecore [9].

5 Repairing Empty Terms

So far, we have devised a procedure for verifying whether a given term in a
data wrapping ontology is empty w.r.t. the database terms at the sources. We
now present a method for supporting the repair of empty concepts and roles,
consisting of a set of repairing axioms that can be seen as guidelines for ontology
engineers.

To suggest a repair for an empty term, we naturally resort to the datalog
program Π∗ and the skeleton tree generated from Π∗ by our emptiness testing
algorithm. Indeed, the skeleton tree for a term η, by virtue of its construction,
contains as nodes all and only relevant terms for η: those that contribute or
could contribute to its non-emptiness. So an intuitive way to fix an empty term
is to focus on the relevant nodes of its corresponding skeleton tree and to pos-
sibly expand those nodes by rendering them nonempty. The expansion should
obviously be in correspondence with an addition or refinement of a term or/and
assertion in the actual ontology.

Lina Lubyte and Sergio Tessaris. 97

Given an or-subtree τ in an AND-OR skeleton tree tree(QΠ , Π∗) with all
nodes marked, let Ω = [ω1, . . . , ωn] denote the sequence of distinct sets of and-
nodes3 in τ , such that, intuitively, each ωi contains a set of and-nodes that are
empty in tree(QΠ , Π∗) and are grouped in a bottom-up fashion by their depth.
The next example illustrates this notion.

Example 3. Suppose rule r8 was not present in the tree of Figure 4. Hence,
TVListing is no longer nonempty. Ω defined above for the or-subtree following
r2, r3 ancestors of TVListing is the following sequence: [{actsIn,Actor}, {Movie},
{TVListing}]. The intuition here is that, in order for TVLisintg to become nonempty,
besides rendering TVListing itself nonempty, also Movie or both, actsIn and Ac-
tor, if rendered nonempty, would make TVListing nonempty as well. Instead the
reason for a depth based ordering is that if both, actsIn and Actor were made
nonempty, then the remaining terms in the sequence Movie and TVListing would
become nonempty as well.

Thus, for each and-node R in ω, we consider R as a leaf in the tree and examine
its possible expansions. In turn, to expand a leaf we need a new rule with its
corresponding atom in the head. Given such a rule, we can track down the needed
terms and assertions in the ontology and provide those repairs as guidelines to
the user. We exploit axioms in the ontology, rather than rules in the program,
because, by virtue of [6], not all axioms are in one-to-one correspondence with
rules in the computed rewriting.

For a node R corresponding to an atomic concept, say A, our repair service
provides the following guidelines. First, it suggests to add an inclusion asser-
tion with A on the right-hand side (line 6). This, from the modeling point of
view, results in either defining role typing constraints (or domain and range)
for a relationship defined by role P , if such is detected by means of manda-
tory participation constraints (and similarly if range restriction is given for P).
Second, if A ⊑ B is present in T and B is nonempty, the user is warned with
misplaced is-a relationship, i.e., possibly B ⊑ A should have been added instead
of A ⊑ B. Third, given A ⊑ B in T such that B has participation constraints
to a nonempty role P , the algorithm suggests to assert participation constraints
for A to P as well (and similarly if range restriction is known for P). Moreover,
given a range concept, say C for P , if C is specialized by some concept D in
the ontology, then the suggested axiom for A can also be specialized to D. Fi-
nally, the service suggests to assert A as a superclass of some concept B, and as
a participating class to some role P , provided both A and P are known to be
nonempty in T . When T is small, such axioms could be included in the set of
repairing axioms for every nonempty concept and role in T . Otherwise, the task
of selecting appropriate concepts and roles is left to the user.

If a given node R corresponds to a role, say P , the service generates axioms in
a similar fashion. First, as before, it warns for misplaced role inclusions, provided
such an axiom is present in T . Then, if a root node being considered for repair

3 Two and-nodes are considered distinct if their labels are distinct.

98 Supporting the Development of Data Wrapping Ontologies

is a concept and not a role4, then for every nonempty atomic concept A in T
acting as a domain or range of P , the service suggests to add an axiom stating
mandatory participation for A to the relationship defined by P (and the same for
more specific concepts, as above). Finally, it hints to add an inclusion assertion
between roles with P on the right-hand side, i.e. to make P more general than
some role S that is nonempty in T .

Note that the set of repairing axioms may also be empty, if there are no
nonempty nodes in the tree that can be used for repair. In this case, we suggest
to explicitly map to the sources either the actual empty term or any of its relevant
terms.

Example 4 (Example 3 continued). Consider a data wrapping ontology from Fig-
ure 1 and suppose Movie is not mapped to the sources. To repair actsIn the user
will be suggested to assert it as more general than person_role. This is obviously
not meaningful, so there is no repair for actsIn. As for Actor, our repair service
suggests the following axioms:

Person ⊑ Actor ∃person_role.Role ⊑ Actor

∃person_role ⊑ Actor ∃person_role.ActingRole ⊑ Actor

6 Evaluation

We have implemented services discussed in Sections 4 and 5 as a plug-in for
Protégé 3.35 (we are in the process of porting them to Protégé 4) and evaluated
their effectiveness with a usability study involving ten external users (see [5] for
details).

We used showbiz domain for the study. In particular, for the sources, we used
IMDB movie database, retrieved using IMDbPY6. The wrapping ontology, that
we call showbiz, was obtained by first automatically extracting the bootstrap
ontology from IMDB database together with mappings [10] (21 in total), and
then by manually enriching it with terms and assertions to (partly) describe TV
programmes. The obtained ontology contained 24 classes and 14 properties.

The subjects were randomly divided into two groups: five subjects without
the support for testing emptiness of ontology terms and repairing them (group
1), and five subjects with the support of the above described plug-in (group
2). Then, each subject was given four simple queries over showbiz ontology but
having empty answers: e.g. asking for all movies that have a genre, all TV list-
ings and their kinds, etc. Given that, the subjects were asked to add to the
ontology new assertions so that the given queries were no longer empty. This
involved identifying atoms responsible for query emptiness and repairing the
corresponding terms. The subjects in group 2 were additionally asked to fill in a
questionnaire concerning their experience using the tool. The goal of this study

4 While our procedure computes repairs for a contributive node, with a root node here
we mean the node that one actually aims to repair, as e.g. TVListing in Example 3.

5 http://protege.stanford.edu
6 http://imdbpy.sourceforge.net/

Lina Lubyte and Sergio Tessaris. 99

was to compare the time taken and effort needed to complete the task between
the two groups, and to evaluate user experience in using the plug-in.

The results of the study are promising. While the assertions added to an
ontology in order to arrive to a solution were mostly correct and alike in both
groups, the time taken to do it in group 2 was between 2-3 times less than in
group 1. Specifically, the average time taken for group 1 was 39 minutes, and 20
minutes for group 2. The average number of changes made to the ontology in
order to repair given queries, which we consider to be as key sub-task, for group
1 was 11, and 6 for group 2. The total number of changes needed for all queries
was 5. This means that, in average, each subject in group 1 made 5 erroneous
changes to repair the given queries, while in group 2 – 1 erroneous change.

As mentioned, we have also collected user reactions to the tool. The ques-
tionnaire used for this purpose was composed of 10 short statements (e.g., “I
found repair guidelines to be adequate”), each accompanied by a 5-point scale of
“strongly disagree” (1 point) to “strongly agree” (5 points). Thus, given 5 subjects
in group 2, each statement scores to maximum of 25 points. The key aspects,
from the usability point of view, are that subjects in group 2 felt that they could
effectively identify the reason for query emptiness using the tool (rated a total
score of 19) and effectively repair empty terms using the tool (21 points), and
strongly agreed that they could identify empty classes/properties and fix them
using the tool faster than without it (25 points). Finally, the overall satisfaction
of using the plug-in scores to 25.

7 Conclusions

This paper presents a technique for supporting ontology engineers in the de-
velopment of ontologies for accessing relational data sources. We introduced the
notion of emptiness of a given term w.r.t. a DL theory where data can be accessed
only through a subset of the concepts and roles (analogously to the EDB/IDB
predicates distinction in datalog programs). We have presented an optimal prac-
tical algorithm for deciding emptiness of terms in ELHI ontologies. Moreover,
we have shown how the information generated by this algorithm can be exploited
in order to support the engineer in “repairing” the ontology. The algorithm pre-
sented can be applied in other scenarios, e.g. for optimizing the rewriting by
removing rules with empty predicates, or for guiding module extraction based
on nonempty terms only (see [8]).

Recently there has appeared a contribution [8], carried out independently,
that tackles a very similar problem but comes up in a different context. The
authors study the computational complexity for the problem of predicate (and
query) emptiness for a wide range of DLs. For the DLs EL and DL-Lite, they
provide algorithms for verifying emptiness, taking a different approach from
ours. While our algorithm is via translation to emptiness of IDB predicates
in datalog, [8] instead uses reduction to standard ABox reasoning. Using their
simple technique, emptiness of a term in EL can be decided in PTime. For ELI,
testing emptiness is shown to be already ExpTime-complete, by reduction to

100 Supporting the Development of Data Wrapping Ontologies

subsumption/instance checking, but no algorithm is provided for this problem.
As we mentioned, our practical algorithm is optimal w.r.t. the complexity bounds
established there.

Levy [12] defined, in the context of datalog optimization, so-called irrelevance
claims stating that a formula is irrelevant to a query w.r.t. a knowledge base
and proposed algorithms for deciding irrelevance. However, this notion is rather
different in nature from the emptiness problem we studied in this paper. In
particular, it is a premise of a proof which may or may not be relevant to the
deduction of a given formula. Therefore, those techniques cannot be directly
applied.

Finally, we refer to the work in [13] as related, where, for queries having
answers solely determined by the database predicates (the so-called DBox pred-
icates with closed semantics, as apposed to the ABox), the authors show how
to find a rewriting over such predicates. The restriction to determinacy may
be however in some cases too strong, as for instance TVListing in Figure 1 is
not determined by the database predicates but can be (in the classical setting)
rewritten to a database term.

References

1. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of PODS’02,
ACM (2002) 233–346

2. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
(2001)

3. Lubyte, L., Tessaris, S.: Supporting the design of ontologies for data access. In:
Workshop Notes of DL’08. (2008)

4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. of IJCAI’05.
(2005) 364–369

5. Lubyte, L., Tessaris, S.: Supporting the development of data wrapping ontologies.
In: Proc. of ASWC’09. (2009) 31–45

6. Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable query answering and rewriting
under description logic constraints. J. of Applied Logic (2009)

7. Vardi, M.Y.: Automata theory for database theoreticians. In: Proc. of PODS’89,
ACM (1989) 83–92

8. Baader, F., Bienvenu, M., Lutz, C., Wolter, F.: Query and predicate emptiness in
description logics. In: Proc. of KR’10. (2010) To appear.

9. Calvanese, D., Giacomo, G.D., Lembo, D., et al.: Tractable reasoning and effi-
cient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3) (2007) 385–429

10. Lubyte, L., Tessaris, S.: Automatic extraction of ontologies wrapping relational
data sources. In Bhowmick, S., Küng, J., Wagner, R., eds.: Proc. of DEXA 2009.
Volume LNCS 5690 of Springer. (2009) 128–142

11. Levy, A.Y.: Irrelevance Reasoning in Knowledge Based Systems. PhD thesis,
Stanford University (1993)

12. Seylan, I., Franconi, E., de Bruijn, J.: Effective query rewriting with ontologies
over DBoxes. In: Proc. of IJCAI’09. (2009) 923–930

Lina Lubyte and Sergio Tessaris. 101

