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Abstract. The least common subsumer (lcs) w.r.t general EL-TBoxes
does not need to exists in general due to cyclic axioms. In this paper we
present an algorithm for computing role-depth bounded EL-lcs based on
the completion algorithm for EL. We extend this computation algorithm
to a recently introduced probabilistic variant of EL: Prob-EL01.

1 Introduction

The least common subsumer (lcs) inference yields a concept description, that
generalizes a collection of concepts by extracting their commonalities. This in-
ference was introduced in [8]. Most prominently the lcs is used in the bottom-up
construction of knowledge bases [5], where a collection of individuals is selected
for which a new concept definition is to be introduced in the TBox. This is can
be achieved by first generalizing each selected individual into a concept descrip-
tion (by computing the most specific concept) and then applying the lcs to these
concept descriptions. Further applications of the lcs include similarity-based In-
formation Retrieval or learning from examples.

The lightweight Description Logic EL and many of its extensions enjoy the
nice property that concept subsumption and classification of TBoxes can be
computed in polynomial time [3]. Thus, despite of its limited expressiveness,
EL is used in many practical applications – most prominently in the medical
ontology Snomed [15] – and is the basis for the EL profile of the OWL 2.0
standard.

However, some practical applications such as medical or context-aware appli-
cations need to represent information that holds only with a certain probability.
For instance, context-aware applications may need to represent sensor data in
their ontology, which is correct only with a certain probability. This sort of in-
formation can be represented by the probabilistic DLs recently introduced in
[12], which allows to represent subjective probabilities. These DLs are based on
Halpern’s probabilistic FOL variant called Type-2 [9] and they allow to assign
probabilistic information to concepts (and roles) and not, as in other probabilis-
tic DLs, to concept axioms [11, 10]. In particular, in [12] the DL Prob-EL01 was
introduced, which allows to express limited probability values for EL-concepts,
and it was shown that instance checking is in PTime.

If in applications different information sources supply varying information on
the same topic, the generalization of this information by the lcs gives a descrip-
tion of what the sources agree upon. For both, EL and Prob-EL, the computation
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of the lcs is a desirable task. Unfortunately, the lcs w.r.t. general TBoxes does
not need to exist in this setting (see [1]), due to cyclic definitions in the TBox.

In this paper we present practical algorithms for computing the lcs up to a
certain role-depth for EL and Prob-EL01. The concept obtained is still a gen-
eralization of the input concepts, but not necessarily the least one w.r.t. sub-
sumption. Our computation algorithms are based on the completion algorithms
for classification in EL and Prob-EL01 and thus can be implemented on top of
reasoners for these two DLs. Due to space limitations most of the proofs can be
found in [14].

2 EL and Prob-EL

Starting from two disjoint sets NC and NR of concept and role names, respec-
tively, EL-concept descriptions are built using the concept top (⊤) and the con-
structors conjunction (⊓), and existential restriction (∃r.C). We will often call
concept descriptions simply concepts for brevity. The semantics of EL is defined
with the help of interpretations I = (∆I , ·I) consisting of a non-empty domain
∆I and an interpretation function ·I that assigns binary relations on ∆I to role
names and subsets of ∆I to concepts.

A TBox is a set of concept inclusion axioms of the form C ⊑ D, where
C, D are concept descriptions. An interpretation I satisfies the concept inclusion
C ⊑ D, denoted as I |= C ⊑ D iff CI ⊆ DI . I is a model of a TBox T if it
satisfies all axioms in T . A concept C is subsumed by a concept D w.r.t. T
(denoted C ⊑T D) if, for every model I of T it holds that I |= C ⊑ D.

We now introduce Prob-EL01, a probabilistic logic that extends EL with
the probabilistic constructors P>0 and P=1. Intuitively, the concepts P>0C and
P=1C express that the probability of C being satisfied is greater than 0, and equal
to 1, respectively. This logic was first introduced, along with more expressive
probabilistic DLs in [12]. Formally, Prob-EL01 concepts are constructed as

C ::= ⊤ | A | C ⊓ D | ∃r.C | P∗C,

where A is a concept name, r is a role name, and ∗ is one of {> 0,= 1}.
In contrast to previously introduced probabilistic DLs, uncertainty in Prob-

EL01 is expressed by assigning probabilities to concepts, instead of axioms. Thus,
the semantics of Prob-EL01 generalize the interpretation-based semantics of EL
towards the possible worlds semantic used by Halpern [9]. A probabilistic inter-
pretation is of the form

I = (∆I , W, (Iw)w∈W , µ),

where ∆I is the (non-empty) domain, W is a set of worlds, µ is a discrete
probability distribution on W , and for each world w ∈ W , Iw is a classical
EL interpretation with domain ∆I . The probability that a given element of the
domain d ∈ ∆I belongs to the interpretation of a concept name A is given by

pId (A) := µ({w ∈ W | d ∈ AIw}).
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The functions Iw and pId are extended to complex concepts in the usual way for
the classical EL constructors, where the extension to the new constructors P∗ is
defined as

(P>0C)Iw := {d ∈ ∆I | pId (C) > 0},

(P=1C)Iw := {d ∈ ∆I | pId (C) = 1}.

A probabilistic interpretation I satisfies a concept inclusion C ⊑ D, denoted as
I |= C ⊑ D if for every w ∈ W it holds that CIw ⊆ DIw . It is a model of a
TBox T if it satisfies all concept inclusions in T . Let C, D be two Prob-EL01

concepts and T a TBox. We say that C is subsumed by D w.r.t. T (denoted as
C ⊑T D) if for every model I of T it holds that I |= C ⊑ D.

Intuitively, the different worlds express the different possibilities for the do-
main elements to be interpreted (in the sense of crisp EL interpretations), and
the probability of a concept C being satisfied by a given individual a is given by
the probabilities of the different worlds in which a belongs to C.

An interesting property of this logic is that subsumption between concepts
can be decided in polynomial time [12]. Moreover, as we will see in the following
section, an algorithm for deciding subsumption can be obtained by extending
the completion algorithm for (crisp) EL.

3 Completion-based Subsumption Algorithms

We briefly sketch the completion algorithms for deciding subsumption in EL [3]
and in Prob-EL01 [12]. Completion-based methods compute not only subsump-
tion relations for a pair of concept names, but classify the whole TBox.

3.1 Completion-based Subsumption Algorithm for EL

Given an EL-TBox T , we use BCT to denote the set of basic concepts for T , i.e.,
the smallest set of concept descriptions which contains (1) ⊤ and (2) all concept
names used in T . A normal form for EL-TBoxes can be defined as follows.

Definition 1 (Normal Form for EL-TBoxes). An EL-TBox T is in normal
form if all concept inclusions have one of the following forms, where C1, C2, D ∈
BCT :

C1 ⊑ D, C1 ⊓ C2 ⊑ D, C1 ⊑ ∃r.C2 or ∃r.C1 ⊑ D.

Any EL-TBox T can be transformed into a normalized TBox T ′ by introducing
new concept names. EL-TBoxes can be transformed into normal form by applying
the normalization rules displayed in Figure 1 exhaustively. These rules replace
the GCI on the left-hand side of the rules with the set of GCIs on the right-hand
side of the rule.

Let T be a TBox in normal form to be classified and let RT denote the set
of all role names appearing in T . The completion algorithm works on two kinds
on completion sets: S(C) and S(C, r) for each C ∈ BCT and r ∈ RT , which

Anni-Yasmin Turhan and Rafael Penaloza. 257



NF1 C ⊓ D̂ ⊑ E −→ { D̂ ⊑ A, C ⊓ A ⊑ E }

NF2 ∃r.Ĉ ⊑ D −→ { Ĉ ⊑ A, ∃r.A ⊑ D }

NF3 Ĉ ⊑ D̂ −→ { Ĉ ⊑ A, A ⊑ D̂ }

NF4 B ⊑ ∃r.Ĉ −→ { B ⊑ ∃r.A, A ⊑ Ĉ }

NF5 B ⊑ C ⊓ D −→ { B ⊑ C, B ⊑ D }

where Ĉ, D̂ 6∈ BCT and A is a new concept name.

Fig. 1. EL normalization rules

CR1 If C′ ∈ S(C), C′ ⊑ D ∈ T , and D 6∈ S(C)
then S(C) := S(C) ∪ {D}

CR2 If C1, C2 ∈ S(C), C1 ⊓ C2 ⊑ D ∈ T , and D 6∈ S(C)
then S(C) := S(C) ∪ {D}

CR3 If C′ ∈ S(C), C′ ⊑ ∃r.D ∈ T , and D /∈ S(C, r)
then S(C, r) := S(C, r) ∪ {D}

CR4 If D ∈ S(C, r), D′ ∈ S(D), ∃r.D′ ⊑ E ∈ T , and E /∈ S(C)
then S(C) := S(C) ∪ {E}

Fig. 2. EL completion rules

contain concept names from BCT . The intuition is that the completion rules
make implicit subsumption relationships explicit in the following sense:

– D ∈ S(C) implies that C ⊑T D,

– D ∈ S(C, r) implies that C ⊑T ∃r.D.

By ST we denote the set containing all completion sets of T . In the algorithm,
the completion sets are initialized as follows:

– S(C) := {C,⊤} for each C ∈ BCT ,

– S(C, r) := ∅ for each r ∈ RT .

The sets S(C) and S(C, r) are extended by applying the completion rules shown
in Figure 2 until no more rule applies. After the completion has terminated,
the subsumption relation between two basic concepts A and B can be tested by
checking whether B ∈ S(A). Soundness and completeness of the EL-completion
algorithm has been shown in [4] as well as that it runs in polynomial time. This
algorithm has recently been extended for a probabilistic variant of EL, which we
introduce next.

258 Role-depth Bounded Least Common Subsumers



PCR1 If C′ ∈ S∗(C, v), C′ ⊑ D ∈ T , and D 6∈ S∗(C, v)
then S∗(C, v) := S∗(C, v) ∪ {D}

PCR2 If C1, C2 ∈ S∗(C, v), C1 ⊓ C2 ⊑ D ∈ T , and D 6∈ S∗(C, v)
then S∗(C, v) := S∗(C, v) ∪ {D}

PCR3 If C′ ∈ S∗(C, v), C′ ⊑ ∃r.D ∈ T , and D /∈ S∗(C, r, v)
then S∗(C, r, v) := S∗(C, r, v) ∪ {D}

PCR4 If D ∈ S∗(C, r, v), D′ ∈ Sγ(v)(D, γ(v)), ∃r.D′ ⊑ E ∈ T , and E /∈ S∗(C, v)
then S∗(C, v) := S∗(C, v) ∪ {E}

PCR5 If P>0A ∈ S∗(C, v), and A /∈ S∗(C, P>0A)
then S∗(C, P>0A) := S∗(C, P>0A) ∪ {A}

PCR6 If P=1A ∈ S∗(C, v), v 6= 0, and A /∈ S∗(C, v)
then S∗(C, v) := S∗(C, v) ∪ {A}

PCR7 If A ∈ S∗(C, v), v 6= 0, P>0A ∈ PT
0 , and P>0A /∈ S∗(C, v′)

then S∗(C, v′) := S∗(C, v′) ∪ {P>0A}

PCR8 If A ∈ S∗(C, 1), P=1A ∈ PT
1 , and P=1A /∈ S∗(C, v)

then S∗(C, v) := S∗(C, v) ∪ {P=1A}

Fig. 3. Prob-EL01 completion rules

3.2 Completion-based Subsumption Algorithm for Prob-EL

In Prob-EL01, basic concepts also include the probabilistic constructors; that is,
the set BCT of Prob-EL01 basic concepts for T is the smallest set that contains
(1) ⊤, (2) all concept names used in T , and (3) all concepts of the form P∗A,
where A is a concept name in T .

Definition 2 (Normal Form for Prob-EL01-TBoxes). A Prob-EL01-TBox
T is in normal form if all its axioms are of one of the following forms

C ⊑ D, C1 ⊓ C2 ⊑ D, C ⊑ ∃r.A, or ∃r.A ⊑ D,

where C, C1, C2, D ∈ BCT and A is a new concept name.

The normalization rules in Figure 1 can also be used to transform a Prob-EL01-
TBox into this extended notion of normal form. We denote as PT

0 and PT
1 the

set of all concepts of the form P>0A and P=1A, respectively, occurring in a
normalized TBox T .

The completion algorithm for Prob-EL01 follows the same idea as the algo-
rithm for EL, but uses several completion sets to deal with the information of
what needs to be satisfied in the different worlds of a model. We define the set
of worlds V := {0, ε, 1} ∪ PT

0 , where the probability distribution µ assigns a
probability of 0 to the world 0, and the uniform probability 1/(|V | − 1) to all
other worlds. For each concept name A, role name r and world v, we store the
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completion sets S0(A, v), Sε(A, v), S0(A, r, v), and Sε(A, r, v). These completion
sets are simple generalizations of the completion sets for crisp EL. Intuitively,
D ∈ S0(C, v) implies C ⊑ D if v = 0, C ⊑ P=1D if v = 1, and C ⊑ P>0D,
otherwise. Likewise, D ∈ Sε(C, v) implies P>0C ⊑ D if v = 0, P>0C ⊑ P=1D if
v = 1, and P>0C ⊑ P>0D, otherwise.

The algorithm initializes the sets as follows for every A ∈ BCT and r ∈ RT :

– S0(A, 0) = {⊤, A} and S0(A, v) = {⊤} for all v ∈ V \ {0},
– Sε(A, ε) = {⊤, A} and Sε(A, v) = {⊤} for all v ∈ V \ {ε},
– S0(A, r, v) = Sε(A, r, v) = ∅ for all v ∈ V .

These sets are then extended by exhaustively applying the rules shown in Fig-
ure 3, where ∗ ∈ {0, ε} and γ : V → {0, ε} is defined by γ(0) = 0, and γ(v) = ε
for all v ∈ V \ {0}.

The first four rules are simple adaptations of the completion rules for EL,
while the last four rules deal with probabilistic concepts. This algorithm ter-
minates in polynomial time. After termination it holds that, for every pair of
concept names A, B, B ∈ S0(A, 0) if and only if A ⊑T B [12].

4 Computing Least Common Subsumers using

Completion

The least common subsumer was first mentioned in [8] and has since been inves-
tigated for several DLs. However, most lcs computation algorithms were devised
for concept descriptions only or for unfoldable TBoxes (see e.g. [5]) and are not
capable of handling general TBoxes. In case of EL the lcs has been investigated
for cyclic TBoxes: the lcs does not need to exist w.r.t. descriptive semantics [2],
which is the usual semantics for DLs. One approach to compute the lcs even in
the presence of GCIs is to use different semantics for the underlying DL, e.g.,
greatest fixed-point semantics have been employed in [1, 7]. A different approach
was followed in [6, 16], where the lcs was investigated for unfoldable TBoxes
written in a “small” DL using concepts from an expressive general background
TBox.

All approaches for proving the (non-)existence of the lcs or devising com-
putation algorithms for the lcs are built on a characterization of subsumption
for the respective DL and for the underlying TBox formalism. For instance, the
lcs algorithm for EL-concept descriptions [5] uses homomorphisms between so-
called EL-description trees. The work on the lcs w.r.t. cyclic EL-TBoxes [1, 2]
uses (synchronized) simulations between EL-description graphs to characterize
subsumption. In this paper we use the completion algorithm from [3] as the un-
derlying characterization of subsumption to obtain a role-depth bounded lcs in
EL.

Formally the lcs is defined as follows. Let T be a TBox and C, D concept
descriptions in the DL L, then the L-concept description L is the least common
subsumer (lcs) of C, D w.r.t. T (written lcsT (C, D)) iff
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1. C ⊑T L and D ⊑T L, and

2. for all L-concept descriptions E it holds that,
C ⊑T E and D ⊑T E implies L ⊑T E.

Note, that the lcs is defined w.r.t. to a certain DL L. In cases where the lcs is
computed for concept descriptions, we can simply use an empty TBox T . Due to
the associativity of the lcs operator, the lcs can be defined as a n-ary operation.
However, we stick to its binary version for simplicity of the presentation.

4.1 Role-depth bounded lcs in EL

As mentioned, the lcs does not need to exist due to cycles in the TBox. Consider
the TBox T = {A ⊑ ∃r.A ⊓ C, B ⊑ ∃r.B ⊓ C}. The lcs of A and B is then
C ⊓ ∃r.(C ⊓ ∃r.(C ⊓ ∃r.(C ⊓ · · · and cannot be expressed by a finite concept
description. To avoid such infinite nestings, we limit the role-depth of the concept
description to be computed. Let C, D be EL-concept descriptions, then the role-
depth of a concept description C (denoted rd(C)) is:

– 0 for concept names and ⊤
– max(rd(C), rd(D)) for a conjunction C ⊓ D, and

– 1 + rd(C) for existential restrictions of the form ∃r.C.

Now we can define the lcs with limited role-depth for EL.

Definition 3 (Role-depth bounded EL-lcs). Let T be an EL-TBox and C, D
EL-concept descriptions and k ∈ IN. Then the EL-concept description L is the
role-depth bounded EL-least common subsumer of C, D w.r.t. T and role-depth
k (written k-lcs(C, D)) iff

1. rd(L) ≤ k,

2. C ⊑T L and D ⊑T L, and

3. for all EL-concept descriptions E with rd(E) ≤ k it holds that,
C ⊑T E and C ⊑T E implies L ⊑T E.

4.2 Computing the Role-depth Bounded EL- lcs

The computation algorithm for the role-depth bounded lcs w.r.t. general EL-
TBoxes, constructs the concept description from the set of completion sets. More
precisely, it combines and intersects the completion sets in the same fashion as in
the cross-product computation in the lcs algorithm for EL-concept descriptions
from [5].

However, the completion sets may contain concept names that were intro-
duced during normalization. The returned lcs-concept description should only
contain concept names that appear in the initial TBox, thus we need to “de-
normalize” the concept descriptions obtained from the completion sets.
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De-normalizing EL-concept Descriptions. The signature of a concept de-
scription C (denoted sig(C)) is the set of concept names and role names that
appear in C. The signature of a TBox T (denoted sig(T )) is the set of concept
names and role names that appear in T .

Clearly, the signature of T may be extended during normalization. To capture
the relation between T and its normalized variant, we introduce the notion of a
conservative extension as in [13].

Definition 4 (sig(T )-inseparable, conservative extension). Let T1, T2 be
EL-TBoxes.

– T1 and T2 are sig(T1)-inseparable w.r.t. concept inclusion in EL, iff for all
EL-concept descriptions C, D with sig(C) ∪ sig(D) ⊆ sig(T1), we have T1 |=
C ⊑ D iff T2 |= C ⊑ D.

– T2 is a conservative extension of T1 w.r.t. concept inclusion in EL, if
• T1 ⊆ T2, and
• T1 and T2 are sig(T1)-inseparable w.r.t. concept inclusion in EL.

However, the extension of the signature by normalization according to the nor-
malization rules from Figure 1 does not affect subsumption tests for EL-concept
descriptions formulated w.r.t. the initial signature of T .

Lemma 1. Let T be an EL-TBox and T ′ the TBox obtained from T by applying
the EL normalization rules, C, D be EL-concept descriptions with sig(C) ⊆ sig(T )
and sig(D) ⊆ sig(T ′) and D′ be the concept description obtained by replacing all
names A ∈ sig(T ′) \ sig(T ) from D with ⊤. Then C ⊑T ′ D iff C ′ ⊑T D′.

Proof. Since T ′ is a conservative extension of T w.r.t. concept inclusion in EL,
it is implied that T and T ′ are sig(T )-inseparable w.r.t. concept inclusion in EL.
Thus the claim follows directly. ⊓⊔

Lemma 1 guarantees that subsumption relations w.r.t. the normalized TBox
T ′ between C and D, also hold w.r.t. the original TBox T for C and D′, which is
basically obtained from D by removing the names introduced by normalization,
i.e., concept names from sig(T ′) \ sig(T ).

A Computation Algorithm for k-lcs. We assume that the role-depth of each
input concept of the lcs has a role-depth less or equal to k. This assumption is
motivated by the applications of the lcs on the one hand and on the other by
the simplicity of presentation, rather than a technical necessity. The algorithm
for computing the role-depth bounded lcs of two EL-concept descriptions is de-
picted in Algorithm 1. It consists of the procedure k-lcs, which calls the recursive
procedure k-lcs-r.

The procedure k-lcs first adds concept definitions for the input concept de-
scriptions to (a copy of) the TBox and transforms this TBox into the normalized
TBox T ′. Next, it calls the procedure apply-completion-rules, which applies the
EL completion rules exhaustively to the TBox T ′, and stores the obtained set of
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Algorithm 1 Computation of a role-depth bounded EL-lcs.

Procedure k-lcs (C, D, T , k)
Input: C, D: EL-concept descriptions; T : EL-TBox; k: natural number
Output: k-lcs(C, D): role-depth bounded EL-lcs of C and D w.r.t T and k.

1: T ′ := normalize(T ∪ {A ≡ C, B ≡ D})
2: ST ′ := apply-completion-rules(T ′)
3: L := k-lcs-r (A, B, ST ′ , k)
4: if L = A then return C
5: else if L = B then return D
6: else return remove-normalization-names(L)
7: end if

Procedure k-lcs-r (A, B, S, k)
Input: A, B: concept names; S: set of completion sets; k: natural number
Output: k-lcs(A, B): role-depth bounded EL-lcs of A and B w.r.t T and k.

1: if B ∈ S(A) then return B
2: else if A ∈ S(B) then return A
3: end if

4: common-names := S(A) ∩ S(B)

5: if k = 0 then return
d

P∈common−names

P

6: else return
d

P∈common−names

P ⊓

d

r∈RT

` d

(E,F ) ∈ S(A,r)×S(B,r)

∃r. k-lcs-r (E, F, S, k − 1)
´

7: end if

completion sets in S. Then it calls the function k-lcs-r with the concept names
A and B for the input concepts, the set of completion sets S, and the role-
depth limit k. The result is then de-normalized and returned (lines 4 to 6). More
precisely, in case a complex concept description is returned from k-lcs-r, the
procedure remove-normalization-names removes concept names that were added
during the normalization of the TBox.

The function k-lcs-r gets a pair of concept names, a set of completion sets
and a natural number as inputs. First, it tests whether one of the input concepts
subsumes the other w.r.t. T ′. In that case the name of the subsuming concept
is returned. Otherwise the set of concept names that appear in the completion
sets of both input concepts is stored in common-names (line 4).1 In case the
role-depth bound is reached (k = 0), the conjunction of the elements in common-

names is returned. Otherwise, the elements in common-names are conjoined with
a conjunction over all roles r ∈ RT , where for each r and each element of the
cross-product over the r-successors of the current A and B a recursive call to
k-lcs-r is made with the role-depth bound reduced by 1 (line 6). This conjunction
is then returned to k-lcs.

1 Note, that the intersection S(A) ∩ S(B) is never empty, since both sets contain ⊤.
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For L = k-lcs(C, D, T , k) it holds by construction that rd(L) ≤ k.2 We now
show that the result of the function k-lcs is a common subsumer of the input
concept descriptions.

Lemma 2. Let C and D be EL-concept descriptions, T an EL-TBox, k ∈ IN and
L = k-lcs(C, D, T , k). Then C ⊑T L and D ⊑T L.

Lemma 1 justifies to replace “normalization names” in the concept description
constructed from the normalization sets in the fashion described earlier and still
preserve the subsumption relationships. Lemma 2 can be shown by induction on
k. For the full proof see [14].

Next, we show that the result of the function k-lcs obtained for EL-concept
descriptions C and D is the least (w.r.t. subsumption) concept description of
role-depth up to k that subsumes the input concepts, see [14].

Lemma 3. Let C and D be EL-concept descriptions, T an EL-TBox, k ∈ IN
and L = k-lcs(C, D, T , k) and E an EL-concept description with rd(E) ≤ k. If
C ⊑T E and D ⊑T E, then L ⊑T E.

We obtain together with Lemma 2 and Lemma 3 that all conditions of Defi-
nition 3 are fulfilled for k-lcs(C, D, T , k).

Theorem 1. Let C and D be EL-concept descriptions, T an EL-TBox, k ∈ IN,
then k-lcs(C, D, T , k) ≡ k-lcs(C, D).

For cases where k-lcs returns a concept description with role-depth of less than
k we conjecture that it is the exact lcs.

The complexity of the overall method is exponential. However, if a com-
pact representation of the lcs with structure sharing is used, the lcs-concept
descriptions can be represented polynomially. In contrast to the lcs algorithm
for EL-concept descriptions, the algorithm k-lcs does not need to copy concepts3

that are referenced several times, but proceeds by structure sharing by re-using
the completion sets. Thus completion-based algorithm is even advantageous for
unfoldable EL-TBoxes such as Snomed.

Moreover, if a k-lcs is too general and a bigger role depth of the k-lcs is
desired, the completion of the TBox does not have to be redone for a second
computation. The completion sets can simply be “traversed” further.

4.3 Computing the Role-depth Bounded Prob-EL
01-lcs

The computation of the role-depth bounded Prob-EL01-lcs follows the same steps
as in Section 4.2. First, it adds concept definitions for the input concepts to the
TBox and normalizes it. It then applies the completion rules from Figure 3
exhaustively to produce the set of completion sets S. It then calls a variation of
the function k-lcs-r that can deal with probabilistic concepts. The new function

2 Recall our assumption: the role-depth of each input concept is less or equal to k.
3 as typically done during unfolding
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k-lcs-r is identical to the one presented in Algorithm 1, except that in line 6 it
now returns:

l

P∈common−names

P ⊓
l

r∈RT

(

l

(E,F )∈S0(A,r,0)×S0(B,r,0)

∃r.k-lcs-r(E,F, S, k − 1)⊓

l

(E,F )∈S>0

0
(A,r)×S>0

0
(B,r)

P>0(∃r.k-lcs-r(E,F, S, k − 1))⊓

l

(E,F )∈S0(A,r,1)×S0(B,r,1)

P=1(∃r.k-lcs-r(E,F,S, k − 1))
)

,

where S>0
0 (A, r) :=

⋃

v∈V \{0} S0(A, r, v). The result is then de-normalized by re-
moving all concept names that were introduced during the normalization phase.
The correctness of this procedure can be shown in a similar way as it was done
for EL before.

Theorem 2. Let C and D be Prob-EL01-concept descriptions, T a Prob-EL01-
TBox, and k ∈ IN; then k-lcs(C, D, T , k) ≡ k-lcs(C, D).

Again, the proof is given in [14].

5 Conclusions

In this paper we have presented a practical method for computing the role-
depth bounded lcs of EL-concepts w.r.t. a general TBox. Our approach is based
on the completion sets that are computed during classification of a TBox. Thus,
any of the available implementation of the EL completion algorithm can be eas-
ily extended to an implementation of the lcs computation algorithm. We also
showed that the same idea can be adapted for the computation of the lcs in the
probabilistic DL Prob-EL01.

As future work, we want to investigate the computation of the most specific
Prob-EL01 concept (msc) that describes a given individual in an ABox. We also
plan to investigate the bottom-up constructions (i. e. lcs and msc computations)
in more expressive probabilistic DLs. One possible extension is by studying Prob-
ALE . A second approach is to weaken the restrictions imposed in Prob-EL01,
allowing for different probabilistic constructors.
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