
Second-Order Description Logics: Semantics,

Motivation, and a Calculus

Simona Colucci1, Tommaso Di Noia1, Eugenio Di Sciascio1, Francesco M. Donini2,

Azzurra Ragone1

1: SisInfLab & DEE, Politecnico di Bari, Bari, Italy
2: DISCOM, Università della Tuscia, Viterbo, Italy

1 Introduction

Eight years ago, Tim Berners-Lee, James Hendler and Ora Lassila published their sem-

inal paper [6] describing the evolution of the current web from a human-processable

environment to a machine-processable one. The basic idea was to annotate web re-

sources and give them a machine-processable meaning; the Semantic Web was born.

Many efforts have been placed in the last years by the Semantic Web community in the

attempt to standardize both the language for representing the content of web resources

and the production of annotations/metadata. On the one hand, such efforts successfully

led to the affirmation of standard languages for machine-processable representation of

web pages content, like the recent W3C recommendation OWL2. On the other hand, it

produced the Linked Data initiative: a set of best practices for publishing and connect-

ing data on the Web. These two initiatives are tightly connected. In fact, data published

following the Linked Data best practices are interpreted thanks to the ontological layer

developed using OWL2. Despite a large effort in annotating and representing the se-

mantic content of a resource (in a semi-automatic way) we see the lack of reasoning

engines able to fully exploit such representation power. During the last years highly op-

timized reasoning engines have been developed for classical deductive reasoning tasks

such as subsumption/classification, consistency checking and instance retrieval. At the

same time, non-standard reasoning tasks have been proposed in the Description Logics

literature as an answer to new issues related to knowledge-based domains especially in

retrieval scenarios, ontology design and maintenance and automated negotiation. The

most relevant reasoning tasks we may cite are: explanation [18], interpolation [23],

concept abduction and concept contraction [10], concept unification [3], concept differ-

ence [25], concept similarity [8], concept rewriting [2], negotiation [22], least common

subsumer [5], most specific concept [1] and knowledge base completion [4].

For each of the above mentioned tasks a specific algorithmic approach has been

proposed and very often only for a particular (sometimes simple) Description Logic.

Although the need for such reasoning tasks has been widely recognized, there is not

yet a unified view—at least from an algorithmic perspective. Indeed, some of the above

mentioned tasks share some properties from a computational point of view and some-

times are very related to each other. Moreover, most of the problems in the cited reason-

ing tasks are of the form: “Find one or more concept(s) C such that {sentence involving

C }” and we are really interested in exhibiting such a concept, not just proving its ex-

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

67

istence. In other words, many of the above mentioned reasoning tasks, known as non-

standard reasoning, deal with finding—or constructing—a concept. This is the main

reason why we refer to such reasoning as constructive reasoning. By contrast, “stan-

dard” reasoning is about checking some property (true or false) such as subsumption or

satisfiability (also query answering can be reduced to instance checking).

In this paper we propose a new second-order framework and a related calculus able

to express, in a uniform way, many of the abovementioned constructive reasoning tasks.

The remainder of the paper is structured as follows: in Section 2 we introduce the

framework and its formal semantics. Section 3 is devoted to the reformulation of some

relevant contructive reasoning tasks in terms of second order formulas. The general

calculus is presented in Section 4, before providing a section on “discussion and future

directions”.

2 Semantics

We denote by DL a generic Description Logic. Only in order to exemplify our frame-

work, consider the presentation of the DL SHIQ.

Let Nr be a set of role names. A general role R can be either a role name P ∈ Nr,

or its inverse, denoted by P−. We admit a set of role axioms, formed by: (1) a role

hierarchy H, which is a set of role inclusions of the form R1 ⊑ R2, and (2) a set of

transitivity axioms for roles, denoted by Trans(R). We denote by ⊑∗ the transitive-

reflexive closure of H ∪ {R− ⊑ S− | S ⊑ R ∈ H}. A role S is simple if it is not

transitive, and for no R such that R ⊑∗ S, R is transitive.

In the following syntax for concepts, let A be a generic concept name in a set Nc of

concept names.

C −→ ⊤ | ⊥ | A | >n S.C | 6n S.C | C1 ⊓ C2 | ¬C (1)

We consider the other well-known constructs as abbreviations: C1 ⊔ C2 = ¬(¬(C1) ⊓
¬(C2)), ∃R.C = > 1 R.C, ∀R.C = 6 0 R.¬C. For computability reasons, only in

∃R.C,∀R.C the role R can be a general role (i.e., also a transitive role, or a super-role

of a transitive role), while in other number restrictions R must be a simple role.

Every DL is equipped with a model-theoretic semantics. Again, exemplifying our

discussion for SHIQ, an interpretation I is a pair 〈∆I , ·I〉 where ∆I is a set of indi-

viduals, and ·I is an interpretation function mapping ⊤ into ∆I , ⊥ into ∅, each concept

name A ∈ Nc into a subset of ∆I , and each role name P ∈ Nr into a subset of

∆I × ∆I , and extended to concept and role expressions as follows (let ♯{. . .} denote

the cardinality of a set):

¬CI = ∆I − AI (2)

>n R.CI = {a ∈ ∆I | ♯{b ∈ ∆I | 〈a, b〉 ∈ RI ∧ b ∈ CI} > n} (3)

6n R.CI = {a ∈ ∆I | ♯{b ∈ ∆I | 〈a, b〉 ∈ RI ∧ b ∈ CI} 6 n} (4)

(C1 ⊓ C2)
I = (C1)

I ∩ (C2)
I (5)

(P−)I = {〈b, a〉 ∈ ∆I × ∆I | 〈a, b〉 ∈ P I} (6)

68 Second-Order Description Logics: Semantics, Motivation, and a Calculus

As usual, we denote by C ⊑ D the proposition “for every interpretation I (satisfying

role axioms), CI ⊆ DI”. We also denote non-subsumption by C 6⊑ D, meaning the

proposition “there exists an interpretation I satisfying role axioms such that CI 6⊆
DI”. Observe that C ⊑ D, C 6⊑ D are propositions (true or false), so they can be

combined by ∧,∨ in a propositional formula Γ . We say that Γ is true iff the composition

of truth values of subsumptions and non-subsumptions yields true.

Second-order Concept Expressions. In order to write second-order formulas, we

need a set Nx = {X0, X1, X2, . . .} of concept variables, which we can quantify over.

A concept term is a concept formed according to the rules in (1) plus the rule C −→
X for X ∈ Nx. For example, A⊓X0⊓∀(P−).(X1⊓∃Q.X2) is a concept term. Although

also role variables could be conceived, we do not need them here. We stress the fact that

concept terms could be defined starting from the syntax of every Description Logic DL,

not just SHIQ. We denote by DLX the language of concept terms obtained from DL
by adding concept variables.

We use general semantics [15]—also acknowledged as Henkin structures [27]—for

interpreting concept variables. In such a semantics, variables denoting unary predicates

can be interpreted only by some subsets among all the ones in the powerset of the

domain 2∆I

—instead, in standard semantics a concept variable could be interpreted as

any subset of ∆I . Note that Baader and Narendran [3] use standard semantics in their

paper on concept unification.

Adapting general semantics to our problem, the structure we consider is exactly the

sets interpreting concepts in DL. That is, the interpretation XI of a concept variable X
must coincide with the interpretation EI of some concept E ∈ DL. Moreover, since

we are interested in particular existential second-order formulas, we limit our definition

to such formulas.

Definition 1 (General Semantics). Let C1, . . . , Cm, D1, . . . , Dm ∈ DL be concept

terms containing concept variables X0, X1, . . . , Xn, and let Γ be a conjunction of

concept subsumptions and non-subsumptions, of the form

Γ = (C1 ⊑ D1) ∧ · · · ∧ (Cℓ ⊑ Dℓ) ∧ (Cℓ+1 6⊑ Dℓ+1) ∧ · · · ∧ (Cm 6⊑ Dm) (7)

for 1 ≤ ℓ ≤ m. We say that Γ is satisfiable in DL if and only if there exist n+1 concepts

E1, . . . , En ∈ DL such that, extending the semantics (2)–(6) for each interpretation I,

with: (Xi)
I = (Ei)

I for i = 0, . . . , n, it holds that

1. for every j = 1, . . . , ℓ, and for every interpretation I, (Cj)
I ⊆ (Dj)

I and

2. for every j = ℓ + 1, . . . ,m, there exists an interpretation I s.t. (Cj)
I 6⊆ (Dj)

I .

Otherwise, Γ is said to be unsatisfiable in DL . Moreover, we say that the formula

∃X0 · · · ∃Xn.Γ (8)

is true in DL if Γ is satisfiable in DL, otherwise it is false.

Note that we are considering here only a particular form of closed second-order

formulas in Description Logics. This is because we are not interested here in Second-

order Description Logics by themselves, but only in their use to express and compute

the “constructive” reasoning services of the next section.

Simona Colucci, et al. 69

3 Modeling Constructive Reasoning Tasks

Hereafter we show how to model some constructive reasoning tasks in trems of formula

(8). In this section we only show the constructive formulation of the task and we leave

discussion on optimality criteria at the end of the section. The computation of the Most

Specific Concept as well as a Knowledge Base Completion could be easily modeled if

we allowed in Γ formulas involving an ABox or a TBox.

We introduce the notion of signature of a concept that is used in Interpolation and

Concept Unification. Given a concept C we define:

sign(C)Nc
= {A | A ∈ Nc, A appears syntactically in C}

sign(C)Nr
= {P | P ∈ Nr, P appears syntactically in C}

sign(C) = sign(C)Nc
∪ sign(C)Nr

Least Common Subsumer. A concept D ∈ DL is a Common Subsumer of two

concepts C1, C2 ∈ DL if (C1 ⊑ D) ∧ (C2 ⊑ D). The Least Common Subsumer

(LCS) of C1, C2 is the least element w.r.t. ⊑ of the set of concepts which are Common

Subsumers of C1, C2 and is unique up to equivalence. A concept L is not the Least

Common Subsumer of C1, C2 iff the following formula (of the form (8)) is true in DL:

∃X.(C1 ⊑ X) ∧ (C2 ⊑ X) ∧ (X ⊑ L) ∧ (L 6⊑ X)

that is, L is not the LCS if there exists a concept X which is a Common Subsumer, and

is strictly more specific than L. By finding a concept satisfying the above formula, and

iterating the process, an algorithm for computing the LCS in a sublanguage of SHIQ
has been proposed [12].

Interpolation. Interpolation have been proposed in Description Logics for different

purposes. In [23], the computation of an interpolant is used to explain subsumption, if it

exists, between two concepts C and D. Konev et al. [16] use the notion of interpolation

for a TBox T in order to forget part of the vocabulary adopted in T and reason on a

smaller ontology. Seylan et al. [24] need the computation of an interpolant between two

concepts to rewrite a query in terms of DBox predicates.

Definition 2 (Interpolation). Given two concepts C and D in DL such that C ⊑ D,

an interpolant of C and D is a concept I such that:

– sign(I) ⊆ sign(C) ∪ sign(D);
– both C ⊑ I and I ⊑ D.

Given two concepts C and D such that C ⊑ D, the corresponding interpolant satisfies

the formula (C ⊑ X) ∧ (X ⊑ D) of the form (7).

Abduction. Abduction in Description Logics has been recognized as an interesting

reasoning procedure for a set of heterogeneous tasks [10, 17, 24, 7, 21]. Here we mainly

concentrate on Concept Abduction as defined in [10] and Structural Abduction [11] but

the formalization can be easily extended to other abductive procedures [13]. Concept

Abduction is a straight adaptation of Propositional Abduction.

70 Second-Order Description Logics: Semantics, Motivation, and a Calculus

Definition 3 (Concept Abduction). Let C, D, be two concepts in DL where both C
and D are satisfiable. A Concept Abduction Problem (CAP) is finding a concept H ∈
DL such that C ⊓ H 6⊑ ⊥, and C ⊓ H ⊑ D.

Every solution H of a CAP satisfies the formula

(C ⊓ X 6⊑ ⊥) ∧ (C ⊓ X ⊑ D)

Such solutions can be compared by ⊑, preferring the subsumption-maximal ones, since

they are the solutions hypothesizing the least. Moreover, a formula of the form (8) can

characterize the complement of being subsumption-maximal. A concept H is not a

subsumption-maximal solution of a CAP iff the formula is true in DL:

∃X.(C ⊓ X 6⊑ ⊥) ∧ (C ⊓ X ⊑ D) ∧ (H ⊑ X) ∧ (X 6⊑ H)

In order to deal with Abduction for expressive Description Logics, a more fine

grained definition of Abduction was introduced in [11] with the name of Structural Ab-

duction. The notion of Structural Abduction relies on the notion of Adbucible Concept

and Hypotheses List we report here for the sake of completeness.

Definition 4 (Abducible Concept – Hypotheses List). Let C and D be two con-

cepts in DL. We define abducible concept Ch .
= H0 ⊓ Rew(C), where the rewrit-

ing Rew(C) is defined recursively as Rew(A) = A; Rew(¬A) = ¬A; Rew(C1 ⊓
C2) = Rew(C1)⊓Rew(C2);Rew(C1 ⊔C2) = Rew(C1)⊔Rew(C2); Rew(∃R.C) =
∃R.(Hnew ⊓ Rew(C)); Rew(∀R.C) = ∀R.(Hnew ⊓ Rew(C)) where by Hnew we

mean a concept variable not yet appearing in the rewriting. We call hypotheses list of

Ch the list H = 〈H0, H1, H2, . . .〉.

Definition 5 (Structural Abduction). Let C, D ∈ DL, be two concepts where both C
and D are satisfiable C ⊓ D 6⊑ ⊥. Let H = 〈H0, . . . ,Hℓ〉 be the hypotheses list of

the abducible concept Ch and Ã = 〈A0, . . . ,Aℓ〉 (for Assumptions) be a list of DL
concept sets. A Structural Abduction Problem (SAP) for DL is finding a list of concepts

H = 〈H0, . . . ,Hℓ〉 such that

Hi ∈ Ai for every i = 0, . . . , ℓ (9)

T 6|= σ[H/H](Ch) ⊑ ⊥ (10)

T |= σ[H/H](Ch) ⊑ D (11)

We call a SAP General when Ai = DL, for every i = 0, . . . , ℓ.

Let Cx be as Ch with Xi in place of Hi for i = 0, . . . , ℓ. Then, H0, . . . ,Hℓ is a solution

of a SAP iff it satisfies the formula (Cx 6⊑ ⊥) ∧ (Cx ⊑ D) by letting (Xi)
I = (Hi)

I

for every I and every i = 0, . . . , ℓ.

Concept Contraction. Gärdenfors [14] distinguishes three main kinds of belief

changes: (i) expansion, (ii) revision, (iii) contraction. Given two concepts C and D
such that C ⊓ D ⊑ ⊥, Concept Contraction is the DL-based version of contraction.

Definition 6 (Concept Contraction). Let C, D both satisfiable. A Concept Contrac-

tion Problem (CCP) is finding a pair of concepts 〈G, K〉 (Give up, Keep) such that

C ≡ G ⊓ K, and K ⊓ D 6⊑ ⊥. We call K a contraction of C according to D.

Simona Colucci, et al. 71

Every solution 〈G, K〉 of a CCP satisfies the formula

(C ≡ X0 ⊓ X1) ∧ (X1 ⊓ D 6⊑ ⊥)

Such solutions can be compared by ⊑, preferring the ones whose G’s are subsumption-

maximal, since they are the solutions contracting the least. Moreover, a formula of

the form (8) can characterize the non-preferred contractions. A pair 〈G, K〉 is not a

preferred solution of a CCP iff the following formula is true in DL:

∃X0∃X1.(C ≡ X0 ⊓ X1) ∧ (X1 ⊓ D 6⊑ ⊥) ∧ (G ⊑ X0) ∧ (X0 6⊑ G)

Concept Unification. Concept Unification [3] between two concepts C and D
arises when one wants to rewrite some concept names occurring in C and D in order to

make the relation C ≡ D true.

Definition 7. Let C and D be two concepts in DL such that C 6≡ D. We define the

two sets XC = {AC
i | i = 1, . . . , l} and XD = {AD

j | j = 1, . . . ,m} such that

XC ⊆ sign(C)Nc
and XD ⊆ sign(D)Nc

. A Unification Problem is finding the set of

rewriting rules M: AC
1 → C1; . . . ;A

C
l → Cl, A

D
1 → D1; . . . ;A

D
m → Dm such that

sign(Ci) ⊆ sign(C) ∪ sign(D), with i = 1, . . . , l

sign(Dj) ⊆ sign(C) ∪ sign(D), with j = 1, . . . ,m

C ≡M D

The Unification problem is solvable iff the following formula (of the form (8)) is true

in DL:

∃AC
1 , . . . , AC

l , AD
1 , . . . , AD

m.(C ⊑ D) ∧ (D ⊑ C)

treating XC ,XD as concept variables interpreted in General Semantics.

Concept Difference. Following the algebraic approaches adopted in classical infor-

mation retrieval, Concept Difference [25] was introduced as a way to measure concept

similarity.

Definition 8. Let C and D be two concepts such that C ⊑ D. The Concept Difference

C − D is defined by max⊑{B ∈ DL such that D ⊓ B ≡ C}.

We can use a formula of the form (8) to check whether a concept B is not a difference

between C and D, namely, B is not a Difference iff the formula below is true:

∃X.(C ⊑ D ⊓ X) ∧ (D ⊓ X ⊑ C) ∧ (X ⊑ B) ∧ (B 6⊑ X)

Negotiation. The aim of a negotiation process is to find an agreement between

two competitive parties. Both agreement and requirements from the two parties can be

represented as (a conjunction of) concepts [22]. Usually, in a negotiation the parties

requirements are in conflict with each other. Hence, in order to reach an agreement they

have to give up some parts of their requirements. During a negotiation the two parties

have to agree on and follow a protocol (i.e., a set of rules that characterize the specific

process). Here we define a simple protocol where given the initial requirements W c
0

and W d
0 , if they are in conflict with each other, then the two parties c and d propose a

72 Second-Order Description Logics: Semantics, Motivation, and a Calculus

relaxed version W
c

and W
d

of W c
0 and W d

0 . The final aim of the protocol is to satisfy

as much as possible both agents with the final agreement. At the first round they relax

their requirements keeping the minimal information they want to be satisfied by the

final agreement and propose W c
⊤ and W d

⊤ such that W c
0 ⊑ W c

⊤ and W d
0 ⊑ W d

⊤. For

each following round i they propose least relaxed version of W c
0 and W d

0 which are

more specific of the proposals at round i − 1 1. The protocol stops either if the max

number MAX of rounds has been reached or when it does not exist a concept both

more specific than the one found at the previous round and less specific than the initial

requirements.

Input: concepts W c

0 , W d

0 such that W c

0 ⊓ W d

0 ⊑ ⊥
Output: the final outcome of the negotiation after n rounds. If c and d reach an agreement

the returned value is 〈W c

n, W d

n〉, NULL otherwise.

begin1

W c = W c

⊤;2

W d = W d

⊤;3

i = 0; flag = continue;4

while (i < MAX) ∧ (flag == continue) do5

if ∃W
c

, W
d

.(W
c

⊓ W
d

6⊑ ⊥) ∧ (W
c

⊑ W c) ∧ (W
d

⊑ W d) ∧ (W c

0 ⊑6

W
c

) ∧ (W d

0 ⊑ W
d

) then

W c = W
c

;7

W d = W
d

;8

else9

flag = stop;10

i = i + 1;11

if flag == stop then12

return 〈W c, W d〉;13

else14

return NULL;15

end16

Algorithm 1: A simple negotiation protocol

Optimal Solutions. We may classify the above reasoning tasks into two main cat-

egories: tasks for which we just need to compute a concept (or a set of concepts) as

Concept Unification and Interpolation and those for which we need to find a concept

(or a set of concepts) according to some minimality/maximality criteria such as LCS,

Concept Difference, Concept Abduction, Concept Contraction and Negotiation. In the

first case, we have a set of solutions while in the second one we also have a set of

sub-optimal solutions to the main problem. As an example, for LCS we have the set of

sub-optimal solution represented by “common subsumers”. Based on this observation,

we may think of a procedure that computes a sub-optimal solution Xi at step i and then

1 The way W
c

and W
d

are computed at each step should take into account also agents’ prefer-

ences. For the sake of conciseness we omit such details.

Simona Colucci, et al. 73

iteratively computes a better solution Xi+1 at the next step. The procedure stops (if de-

cidable) when no better solution can be found according to the minimality/maximality

criterion. In case the procedure is not decidable, we may decide to iterate for a maxi-

mum number of steps. In this case, the procedure returns a sub-optimal solution to the

problem. In other words, this means that we may apply a procedure similar to the nego-

tiation protocol described above to other constructive reasoning every time we need to

satisfy optimal criteria.

4 A Calculus

Definition 9 (Substitutions).

1. Let DL be a Description Logic, {i1, . . . , ik} ⊆ {0, 1, . . . , n} be a set of distinct

indexes, Xi1 , . . . , Xik
be concept variables, and Di1 , . . . , Dik

∈ DLX be concept

terms. A substitution σ is a set of pairs {[Xi1/Di1], . . . , [Xik
/Dik

]}. A substitution

is ground if every Dij
contains no variables, i.e., Dij

∈ DL.

2. For a concept term C ∈ (SHIQ)X , we inductively define σ(C) as σ(Xi) = Di,

σ(¬Xi) = ¬(σ(Di)), σ(A) = A, σ(C1⊓C2) = σ(C1)⊓σ(C2), σ(⊲⊳ nR.C) =⊲⊳
nR.σ(C) for ⊲⊳∈ {6,>}.

3. For concept terms C, D, we define also σ(C ⊑ D) = σ(C) ⊑ σ(D), σ(C 6⊑ D) =
σ(C) 6⊑ σ(D), and for a boolean conjunction Γ of the form (7), σ(Γ) is the result

of applying σ to every subsumption and non-subsumption statement.

By using substitutions, a formula of the form (8) is true according to Def.1 if and only if

there exists a ground substitution making it valid, as formalized by the theorem below.

Theorem 1. A formula ∃X0 · · · ∃Xn.Γ is true in DL iff there exists a ground substitu-

tion σ = {[X0/E0], . . . , [Xn/En]} with E0, . . . , En ∈ DL, such that σ(Γ) is true.

Observe that since σ is ground, and substitutes every variable in Γ , σ(Γ) is just a

boolean combination of [non-]subsumptions in SHIQ. Observe also that if standard

semantics is adopted for concept variables [3] instead of Def.1—that is, if XI can be

any subset of ∆I—then the “only if” part of the above theorem no longer holds, since

there can be statements for which XI is not expressible in the target DL, yielding no

substitution. For example, formula ∃X.(A ⊑ X) ∧ (B ⊑ X) ∧ (⊤ 6⊑ X) is false in a

DL without ⊔ (disjunction), but it would be true in standard semantics: just let for every

I, XI = AI ∪ BI .

We present now a simple calculus, obtained by combining Analytic Tableaux for

ordinary concept constructors, and substitutions for concept variables. Then we prove

its soundness and completeness. Again, we present the calculus for the DL SHIQ,

but only for sake of clarity; the same framework could be adopted for other DLs. We

borrow Tableaux rules (T-rules; see below) from well-known results of Tobies [26].

Since inverse roles are present in SHIQ, we use pairwise blocking for individuals [26,

p.125].

All rules are applicable only if x is not blocked. For each i = 1, ..., n, Li is a branch

in τi. Rules above the separating line have precedence over rules below it.

74 Second-Order Description Logics: Semantics, Motivation, and a Calculus

⊓-rule : if C ⊓ D ∈ Li(x),

then add both C and D to Li(x)

⊔-rule : if C ⊔ D ∈ Li(x),

then add either C or D to Li(x)

∀-rule : if ∀R.C ∈ Li(x), and there exists an individual y such that y is an R-

successor of x,
then add C to Li(y)

6-rule : if 6n S.C ∈ Li(x) with n > 1, and

there are m > n S-neighbors (say) y1, . . . , ym of x with C ∈ Li(yj)
for j = 1, . . . ,m,

y, z ∈ {y1, . . . , ym} with y being an S-successor of x and not y 6= z
then (1) add Li(y) to Li(z),

(2) for every R ∈ Li(x, y) if z is a predecessor of x then add R−

to Li(z, x) else add R to Li(x, z),
(3) let Li(x, y) = ∅, and

(4) for all u with u 6= y, set u 6= z

∀+-rule : if ∀S.C ∈ Li(x), with Trans(R) and R ⊑∗ S, there exists an individ-

ual y such that y is an R-successor of x, and ∀R.C 6∈ Li(y),
then add ∀R.C to Li(y)

choose-rule : if ⊲⊳ nS.D ∈ Li(x), with ⊲⊳∈ {>,6} and there is an S-neighbor y of x

then add either D or ¬D to Li(y)

∃-rule : if ∃R.C ∈ Li(x), and x has no R-successor y with C ∈ Li(y),

then pick up a new individual y, add R to L(x, y), and let Li(y) :=
{C}

>-rule : if >n S.C ∈ Li(x), and x has not n S-neighbors y1, . . . , yn with yℓ 6=
yj for 1 6 ℓ < j 6 n,

then create n new successors y1, . . . , yn of x with Li(x, yℓ) = {S},

Li(y) := {C}, and yℓ 6= yj , for 1 6 ℓ < j 6 n

A branch L is closed if, for some individual x, either ⊥ ∈ L(x), or {A,¬A} ⊆
L(x) for some concept name A, or 6n S.C ∈ L(x) and x has in L m S-neighbors

y1, . . . , ym with m > n, with C ∈ L(yj) and yi 6= yj for 1 6 i < j 6 m. We call such

a situation a clash. A tableau is closed if all its branches are closed. A branch is open if

it is not closed, and no T-rule can be applied to it. A tableau is open if it has at least one

open branch.

In order to prove a formula of the form (8), each [non-]subsumption in Γ is associ-

ated with a tableau. For a sentence Ci ⊑ Di, the calculus aims at closing the tableau τi

that starts with the single branch

Li(ai) = {Ci,¬Di} (12)

Simona Colucci, et al. 75

with ai being an individual. For a sentence Ci 6⊑ Di, the calculus, starting with τi as be-

fore, aims at obtaining an open tableau. We call system the n + 1-tuple 〈τ1, . . . , τm, σ〉,
made of the n tableaux and the substitution on the variables. The system always starts

with σ = ∅. Substitution rules (S-rules) are presented below. We denote the appli-

cation of the substitution θ to 〈τ1, . . . , τm, σ〉 by θ〈τ1, . . . , τm, σ〉 and its result is

〈θ(τ1), . . . , θ(τn), θ ∪ σ〉.

All rules are applicable only if L is open, and the substitution is not σ-blocked.

Rules above the separating line have precedence over rules below it.

σ⊤-rule : apply [X/⊤] to 〈τ1, . . . , τm, σ〉
σN-rule : apply [X/A] to 〈τ1, . . . , τm, σ〉

σ¬-rule : apply [X/¬Y] to 〈τ1, . . . , τm, σ〉, where Y denotes a concept variable not

appearing in 〈τ1, . . . , τm, σ〉
σ>-rule : apply [X/>m R.Y] to 〈τ1, . . . , τm, σ〉, where Y denotes a concept variable

not appearing in 〈τ1, . . . , τm, σ〉, and if m > 1 then R is a simple role

σ6-rule : apply [X/6n R.Y] to 〈τ1, . . . , τm, σ〉, where Y denotes a concept variable

not appearing in 〈τ1, . . . , τm, σ〉, and if n > 0 then R is a simple role

σ⊓-rule : apply [X/Y1⊓Y2] to 〈τ1, . . . , τm, σ〉, where Y1, Y2 denote concept variables

not appearing in 〈τ1, . . . , τm, σ〉

Note that T-rules are applied separately to each branch of each tableau, while S-rules

are applied to all branches of all tableaux at the same time.

An S-rule r is σ-blocked for X ∈ Li(x) in 〈τ1, . . . , τm, σ〉 if 〈τ1, . . . , τm, σ〉 derives

from some 〈τ ′
1, . . . , τ

′
m, σ′〉, in which there is some individual x′ such that: (i) X ′ ∈

L′
i(x

′), (ii) Li(x) = L′
i(x

′), (iii) for every R-successor y of x in Li, there exists an

R-successor y′ of x′ in L′
i such that Li(y) = L′

i(y
′), (iv) for every S, the number of

different S-neighbors of x in Li is the same as the number of different S-neighbors of

x′ in L′
i, and (v) Rule r has been applied to L′

i in 〈τ ′
1, . . . , τ

′
m, σ′〉.

Theorem 2 (Soundness). Let Γ be as in (7). If the calculus of T- and S-rules, starting

with τi as in (12) and σ = ∅, yields a system 〈τ1, . . . , τm, σ〉 in which τi is closed for

i = 1, . . . , ℓ, and τj is open for j = ℓ + 1, . . . ,m, then there exists a substitution σ′

such that σ′(Γ) is true.

Proof. Let σ′ be σ in which every remaining unsubstituted concept variable is substi-

tuted with a different concept name A never appearing in Γ . Since T-rules are sound,

each closed tableau τi for i = 1, . . . , ℓ is a proof that σ(Ci) ⊑ σ(Di), and the same

is also a proof for σ′(Ci) ⊑ σ′(Di). Moreover, since T-rules are complete, each open

tableau τj for j = ℓ+1, . . . ,m is a proof that σ(Cj) 6⊑ σ(Dj), and the same remains a

proof for σ′(Cj) 6⊑ σ′(Dj), since remaining variables are substituted by unconstrained

concept names. 2

76 Second-Order Description Logics: Semantics, Motivation, and a Calculus

Theorem 3 (Completeness). Let Γ be as in (7). If there exists a substitution σ such

that σ(Γ) is true, then there is a way of applying T- and S-rules that yields a system

〈τ1, . . . , τm, σ〉 in which τi is closed for i = 1, . . . , ℓ, and τj is open for j = ℓ +
1, . . . ,m.

Proof. Since S-rules mimic SHIQ syntax (1), every ground substitution σ can be re-

constructed by repeated applications of S-rules. If one decides to apply all these S-

rules at once, one gets a system 〈τ ′
1, . . . , τ

′
m, σ′〉 in which each τi has one branch

Li(ai) = {σ(Ci), σ(¬Di)}, and σ′ = σ. Now since T-rules are sound and complete,

their application yields closed tableaux τi for i = 1, . . . , ℓ, and open tableaux τj for

j = ℓ + 1, . . . ,m. 2

Soundness and completeness of the above calculus, together with undecidability re-

sults for specific problems such as unification in SHI [28], imply that there are infinite

instances in which the calculus does not terminate. However, for specific classes of for-

mulas of the form (8), a termination proof can be devised on the basis of σ-blocking

[12], which prevents the application of S-rules.

5 Discussion and Future Work

Some related work [3, 12] has been already compared within the technical sections of

the paper. In addition, some researchers proposed and studied the use of Higher-order

DLs for meta-modeling purposes. More specifically, Pan& Horrocks [20] propose a

stratified Higher-order DL (OWL FA) to cope with meta-assertions about concepts and

roles; OWL FA is incomparable with any DLX , since on one side, higher-order asser-

tions can be made, but on the other side, concept variables are not admitted. Motik [19]

proves that satisfiability in Higer-order ALCO, which is a fragment of OWL Full, is un-

decidable; his proof could not be rephrased in (SHIQ)X , since it exploits the feature

O to construct concepts starting from individuals. Motik also proposes a Higher-order

DL with two possible semantics, but again, he does not consider concept variables. De

Giacomo et al. [9] augment a DL with variables that may be interpreted—in a Henkin

semantics—as individuals, concepts, and roles at the same time, obtaining a new logic

Hi(DL). Also this extension is incomparable with any DLX , since on one side one can

express in Hi(DL) arbitrarily higher-order concepts that are not expressible in DLX ,

while in DLX one can form complex concept terms that are not allowed in Hi(DL),
such as ∃R.X .

The innovative potential of the paper mainly lays in the investigation on non-standard

reasoning services apparently far from each other under a unifying lens. Such a unifica-

tion effort paves the way to important generalization results both in the definition and in

the solution of problems expressible according to the proposed framework. In particu-

lar, on the one hand we exploit the property that many non-standard reasoning services

are devoted to the “construction of an objective concept” in order to model all of them

as Constructive Reasoning Tasks trough special Second-order sentences in DLs; on the

other hand we propose a unified calculus aimed at the design and implementation of a

unique system able to solve any non-standard reasoning tasks, whose investigation is

object of our current and future research work.

Simona Colucci, et al. 77

References

1. F. Baader, ‘Least common subsumers and most specific concepts in a description logic with

existential restrictions and terminological cycles’, in IJCAI 2003.
2. F. Baader, R. Küsters, and R. Molitor, ‘Rewriting concepts using terminologies’, in KR 2000.
3. F. Baader and P. Narendran, ‘Unification of concept terms in description logics’, J. of Sym-

bolic Computation, 31, 277–305, (2001).
4. F. Baader and B. Sertkaya, ‘Usability issues in description logic knowledge base comple-

tion’, in ICFCA-2009.
5. F. Baader, B. Sertkaya, and A.-Y. Turhan, ‘Computing the least common subsumer w.r.t. a

background terminology’, J. of Applied Logic, 5(3), 392–420, (2007).
6. T. Berners-Lee, J. Hendler, and O. Lassila, ‘The semantic web’, Scient. Amer., (2001).
7. M. Bienvenu, ‘Complexity of abduction in the EL family of lightweight description logics’,

in KR 2008.
8. A. Borgida, T. Walsh, and H. Hirsh, ‘Towards measuring similarity in description logics’, in

DL 2005.
9. G. De Giacomo, M. Lenzerini, and R. Rosati, ‘On higher-order description logics’, in DL

2009. CEUR-WS.org.
10. T. Di Noia, E. Di Sciascio, and F. M. Donini, ‘Semantic matchmaking as non-monotonic

reasoning: A description logic approach’, J. of Artif. Intell. Res., 29, 269–307, (2007).
11. T. Di Noia, E. Di Sciascio, and F. M. Donini, ‘Computing information minimal match expla-

nations for logic-based matchmaking’, in WI/IAT 2009.
12. F. M. Donini, S. Colucci, T. Di Noia, and E. Di Sciascio, ‘A tableaux-based method for

computing least common subsumers for expressive description logics’, in IJCAI 2009.
13. C. Elsenbroich, O. Kutz, and U. Sattler, ‘A case for abductive reasoning over ontologies’, in

OWLED Workshop.
14. P. Gardenfors, Knowledge in Flux, Mit Press, Bradford Book, 1988.
15. L. Henkin, ‘Completeness in the theory of types’, J. of Symbolic Logic, 15(2), 81–91, (1950).
16. B. Konev, D. Walther, and F. Wolter, ‘Forgetting and uniform interpolation in large-scale

description logic terminologies’, in IJCAI 2009.
17. F. Lécué, A. Delteil, and A. Léger, ‘Applying abduction in semantic web service composi-

tion’, in ICWS 2007.
18. D. L. McGuinness and A. Borgida, ‘Explaining subsumption in description logics’, in IJ-

CAI’95.
19. B. Motik, ‘On the properties of metamodeling in OWL’, J. of Log. and Comp., 17(4), 617–

637, (2007).
20. J. Z. Pan and I. Horrocks, ‘Owl fa: a metamodeling extension of OWL DL’, in WWW’06.

ACM.
21. I. S. E. Peraldi, A. Kaya, and R. Möller, ‘Formalizing multimedia interpretation based on

abduction over description logic aboxes’, in DL 2009.
22. A. Ragone, ‘OWL-DL as a power tool to model negotiation mechanisms with incomplete

information’, in ISWC/ASWC 2007.
23. S. Schlobach, ‘Explaining subsumption by optimal interpolation’, in JELIA 2004.
24. I. Seylan, E. Franconi, and J. de Bruijn, ‘Effective query rewriting with ontologies over

dboxes’, in IJCAI 2009.
25. G. Teege, ‘Making the difference: A subtraction operation for description logics’, in KR’94.
26. S. Tobies, Complexity Results and Practical Algorithms for Logics in Knowledge Represen-

tation, Ph.D. dissertation, RWTH Aachen, 2001.
27. J. Väänänen, ‘Second-order logic and foundations of mathematics’, The Bulletin of Symbolic

Logic, 7(4), 504–520, (2001).
28. F. Wolter and M. Zakharyaschev, ‘Undecidability of the unication and admissibility problems

for modal and description logics’, ACM Trans. on Computational Logic, 9, (2008).

78 Second-Order Description Logics: Semantics, Motivation, and a Calculus

