
Query Algebra and Query Optimization for

Concept Assertion Retrieval

Jeffrey Pound, David Toman, Grant Weddell and Jiewen Wu

Cheriton School of Computer Science, University of Waterloo, Canada
{jpound, david, j55wu, gweddell}@uwaterloo.ca

Abstract. We develop a query algebra that supports efficient assertion
retrieval—a natural extension of instance retrieval. The algebra is based
on previously developed techniques for indexing concept descriptions.
We show how relational-style query processing, including the use of sec-
ondary indices, of multiple cascaded indices, and so on, can be used to
improve query performance, and also develop general conditions that
enable query reformulation.

1 Introduction

Instance retrieval is a well known problem in which individual names from an
ABox are retrieved in response to a query. The utility of a list of individual names
however, has limitations in the context of end user applications. For example,
displaying a list of individual identifiers may carry little useful information for a
user of a DL-based information system. In this work, we focus on a generaliza-
tion of the instance retrieval problem, concept assertion retrieval. In the concept
assertion retrieval problem, a concept describing ABox individuals is retrieved
in addition to the individual names. The concept is a least subsumer in a re-
stricted language syntax specified as a parameter to the query. This parameter,
a projection description, is used to specify the format of the returned concept
description for each individual retrieved.

Concept assertion retrieval enables new possibilities for DL-based informa-
tion systems as compared to tradition instance retrieval. Queries can now provide
syntactically formatted concept descriptions suitable for communicating infor-
mation about ABox individuals to end users. Also, concept-based ABox repre-
sentations can allow efficient evaluation of queries by using tree-based search
indices. In particular, query optimization may be performed in order to exploit
available indices, making query evaluation efficient by avoiding general TBox
reasoning in certain scenarios.

In our model, a query consists of a concept C describing individuals of inter-
est, and a projection description Pd describing the desired information about an
individual. The queries are processed over a knowledge base K = (T ,A), where
T is a TBox in a chosen DL dialect, and A is an ABox containing assertions on
individuals of interest. An evaluation of a query produces a set of assertions of
the form a : Ca such that K |= a : (C ⊓ Ca) where Ca is a least subsumer in the
language defined by Pd.

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

303

As a driving application for efficient concept assertion retrieval, we consider
the case of a collection of web objects with DL-based semantic annotations
as an ABox, in addition to a terminology encoding general axioms over the
concepts used to annotate web objects. In this scenario, a web application may
embed concept assertion queries in a dynamic web page. An end user supplies
search values for the queries through an interface. The evaluation of the query
takes place with the resulting ABox individual names and associated concept
descriptions inlined in the web page.

Example 1. Consider the case of an online dealer of photography equipment.
As part of a web presence, the dealer maintains (1) a knowledge base K with
a terminology for digital cameras and an ABox of assertions about particular
cameras available for purchase through the dealer, and (2) a collection of web
pages with embedded queries over this knowledge base. For example, one of the
web pages might have a query Q with a query concept C of the form

ProductCode = “digicam” ⊓ Price < 300

paired with a projection description Pd of the form

(Name? ⊓ ∃Supplier.(OnlineAddress? ⊓ Rating?)). (1)

Consequently, when browsing this page, a user sees in place of Q a list of in-
expensive digital cameras, with each list element displaying the name of the
camera together with a sublist of supplier URL addresses and ratings for that
supplier.2

The example illustrates how assertions computed by our query language can
resemble nested relations. Note that this is beyond the scope of more general
conjunctive query languages. But also note that conjunctive queries can compute
joins which are not expressible in our language. However, we believe that this is
not really a requirement for browsing applications such as the above which focus
on finding particular information about “objects of interest”.

Our contributions are as follows:

1. We investigate the query optimization problem for a query algebra used in
concept assertion retrieval. We show how concept-based index structures can
be used to efficiently evaluate queries.

2. We show how query plans can be composed which eliminate the need for
general TBox reasoning, by making use of precomputed information stored
in indices.

Subsequent sections are organized as follows. Section 2 focuses on presenting
a formal definition of our concept assertion retrieval problem. In Section 3, we
show how basic operations for index scanning and projection can be extended
to an algebra for manipulating sets of descriptions, and consider index-based
query rewriting and index selection in this framework. Section 4 shows how
purely relational algebraic expressions can be derived. Our summary comments
then follow in Section 5. Note that all lemmas and the main theorem are stated
without proof, but that all are straightforward (but tedious) inductions on the
structure of various expressions.

304 Query Algebra and Query Optimization for Concept Assertion Retrieval

1.1 Related Work

Our notion of concept assertion retrieval derives from an earlier notion of instance
retrieval by Horrocks et al. [2] and of certain answer descriptions by ourselves
in which we introduced the idea of a projection description [6]. We have also
incorporated earlier work on an ordering language for DL concepts, introduced
in [4], that attempts to distill comparison based reasoning that happens during
search. Extensions to this language have also been explored, along with some
initial experimental validation of the approach [5, 3].

2 Definitions

We presume the DL dialect ALC(S) whenever we mention a knowledge base K,
concept C, and so on, for the remainder of the paper. However, our results apply
to any dialect that has the following definition of ALC(S) as a fragment. (This
requirement can be relaxed without harm: the dialect need not support concept
negation.)

Definition 1 (Description Logic ALC(S)). Let {A, A1, . . .}, {R,R1, . . .},
{f, g, f1, . . .} and {a, b, . . .} denote countably infinite and disjoint sets of con-
cept names, role names, concrete features and individual names, respectively. A
concept is defined by:

C, D ::= ⊤ | ⊥ | A | ¬C | C ⊓ D | ∃R.C

| f = k (equality over S)
| f < g (linear order over S)

where k is a finite string. A constraint C is an inclusion dependency, concept
assertion, or role assertion with the respective forms C ⊑ D, a : C and R(a, b).
A knowledge base K is a finite set of constraints. We write T to denote the
inclusion dependencies in K, called a terminology or TBox, and write A to
denote the assertions in K, called an ABox (where K is understood from context
in both cases).

The semantics of ALC(S) is defined in the standard way based on interpretations
of the form (△ ⊎ S, ·I) where S is a totally ordered concrete domain of finite
strings that serves as range of concrete features. We use standard abbreviations
such as C ⊔ D for ¬(¬C ⊓ ¬D) and f ≤ k for (f = k) ⊔ ((f < g) ⊓ (g = k)).
Also, given a finite set S of ALC(S) concepts, we write ⊓S to denote ⊤ if S is
empty and the concept D1 ⊓ · · · ⊓ Dn otherwise, when S = {D1, ..., Dn}.

Recall from our introductory comments that a user query (C, Pd) consists of
a query concept C paired with a so-called projection description Pd. The syntax
for a Pd and the sublanguage of concepts in ALC(S) that are induced by a Pd

are defined as follows.

Definition 2 (Projection Description). Let f , R and C be a concrete fea-
ture, role and concept, respectively. A projection description Pd is defined by the
grammar:

Pd ::= C? | f? | Pd1 ⊓ Pd2 | ∃R.Pd (2)

Jeffrey Pound, David Toman, Grant Weddell and Jiewen Wu. 305

Definition 3 (Induced Concepts). Let Pd be a projection description. We
define the sets L|Pd and LTUP

|Pd
, the L concepts generated by Pd and L tuple

concepts generated by Pd, respectively, as follows:

L|Pd = {⊓S | S ⊆fin LTUP
|Pd

}, and

LTUP
|Pd

=

{C,⊤} if Pd = “C?”;
{f = k | k ∈ S} ∪ {⊤} if Pd = “f?”;
{C1 ⊓ C2 | C1 ∈ LTUP

|Pd1
∧ C2 ∈ LTUP

|Pd2
} if Pd = “Pd1 ⊓ Pd2”; and

{∃R.C | C ∈ L|Pd1
} if Pd = “∃R.Pd1”.

Thus, for a given Pd, any concept occurring in L|Pd satisfies a syntactic for-
mat conforming to Pd independently of any terminology T . Among all possible
elements of L|Pd are the most informative concepts for a given concept.

Definition 4 (Least Subsuming Concepts). Let C, S and K be a concept,
set of concepts and knowledge base, respectively. We write ⌊S⌋K(C) to denote
the set of concepts D ∈ S that are a least subsumer of C in S with respect to
K, that is, where K |= C ⊑ D, and for which there is no other concept D′ ∈ S

such that K |= C ⊑ D′, K |= D′ ⊑ D and K 6|= D ⊑ D′.

Lemma 1. Let K be an ALC(S) knowledge base and Pd a projection description.
Then the following hold for any concept C:

1. ⌊L|Pd⌋K(C) is non-empty;
2. K |= C1 ≡ C2, for any {C1, C2} ⊆ ⌊L|Pd⌋K(C); and
3. ⌊⌊L|Pd⌋K(C)⌋{ }(⊥) is singleton.

Parts 1 and 2 of Lemma 1 ensure that at least one least subsuming concept
exists in L|Pd and that they are are semantically equivalent with respect to a
given K. Note that some such L restriction of ALC(S) is essential to ensure part
1, e.g., that a more general fragment that simply excludes concept negation from
ALC(S) may not have this property [1]. Also note that, although L|Pd is infinite
in general, for any fixed and finite terminology T and concept C, the language
L|Pd restricted to the symbols used in T and C is necessarily finite.

Part 3 of Lemma 1 ensures that, among the least subsuming concepts in
L|Pd with respect to K, there is a unique least subsuming concept that is the
most informative when no knowledge of K is presumed. For example, let K =
{A ⊑ (f = 1)} and Pd = (A? ⊓ f?). Then ⌊L|Pd⌋K(A) = {A ⊓ (f = 1), A ⊓ ⊤},
and ⌊{A ⊓ (f = 1), A ⊓ ⊤}⌋{ }(⊥) = {A ⊓ (f = 1)}.

To simplify notation in the remainder of the paper, we write πPd,K(C) as
shorthand for the concept C1 such that ⌊⌊L|Pd⌋K(C)⌋{ }(⊥) = {C1}. The formal
semantics of a user query now follows.

Definition 5 (Query Semantics). Let K be an ALC(S) knowledge base and
Q = (C, Pd) a user query over K. Then Q computes the ABox

{a : πPd,K(⊓{D | (a : D) ∈ A}) | a occurs in A and K |= a : C}. (3)

306 Query Algebra and Query Optimization for Concept Assertion Retrieval

This semantics ensures that concept assertion retrieval generalizes instance re-
trieval. In particular, an instance retrieval query C over K can be formulated
as query (C,⊤?) (effectively retrieving no further information about qualifying
individual names in K).

In this paper and in our current implementation, we make the simplifying
assumption that a knowledge base does not contain any role assertions, a con-
dition justified in, e.g., [2]. We also assume without loss of generality that a
knowledge base will have at most one concept assertion in its ABox for any in-
dividual name a. Considered together, these assumptions imply that (3) above
can be equivalently formulated as

{a : πPd,T (D) | (a : D) ∈ A and T |= D ⊑ C},

which suggests two key problems for computing the results of a concept assertion
query: computing least subsumers in L|Pd for an arbitrary projection description
Pd, and finding all concept assertions a : D from a potentially large set of
concepts assertions, e.g., comprising an ABox, that satisfy a selection condition
given by a query concept. We consider these problems in the next section.

3 Indices and Query Algebra

We now introduce a query algebra for manipulating sets of concept descriptions.
Concept assertions (and, in turn, ABoxes) are therefore encoded as concepts by
a simple protocol based on the use of the special concrete feature Oid that is
reserved for this purpose as follows (and we assume this correspondence for the
remainder of the paper):

(a : C) encodes as ((Oid = “a”) ⊓ C). (4)

The algebra is centered around the operations for index-based selection [4] and
for concept projection [6]; however, additional operators are included that al-
low basic boolean combinations of queries. We show how expressions in this
algebra can describe a variety of query plans for evaluating a user query that
can vary widely in the cost of their evaluation, and we outline how several stan-
dard relational-style query optimization techniques can be accommodated in this
framework.

3.1 Concept Assertions and the use of Indices

The basic leaf operator of our algebra is an index scan as introduced in [6]. This
assumes that all data, including the original ABox, are stored and organized
with the help of so-called concept trees [4]. These are search trees in which nodes
correspond to concepts and in which search order is defined by an ordering
description (or Od for short): an expression conforming to the grammar “Od ::=
Un | f : Od | D(Od1, Od2)”. Intuitively, the productions in this grammar have
the respective semantics: no explicit ordering, ordering by the value of a concrete
feature f , and partition by a description D. The nesting of these constructs
allows, e.g., for lexicographical ordering by several concrete features, etc. (again,
see [4] for further details).

Jeffrey Pound, David Toman, Grant Weddell and Jiewen Wu. 307

Definition 6 (Concept Index). Let A and Od be a finite set of concept as-
sertions and an ordering description, respectively. A concept index for A and
Od is a concept tree with a node for each element of A, encoded as a concept,
that is well-formed with respect to Od. Given a knowledge base K:

1. The primary index PK is a concept index for A and Oid : Un;
2. A secondary index SK is a concept index for the result of a user query

(C, Oid? ⊓ Pd) and some Od.

In the second case we write SK := (C, Oid? ⊓ Pd) :: Od to specify (or declare)
such a secondary index over K.

The primary index for a knowledge base always exists and is organized by the
names (i.e., by the Oid feature in our representation) of the individuals described
by the given ABox (hence the ordering description Oid : Un). Such an index
provides an efficient way to retrieve the description associated with an individual
in the ABox, given the individual’s name. Also, the above definition permits
the existence of any number (including zero) of secondary indices, that can be
organized in various ways to support user queries1. Note that secondary indices
are essential in our approach: they enable query evaluation to avoid (or reduce)
the amount of general DL reasoning during query evaluation.

Example 2 (Concept Indices for Digital Cameras). To continue with our run-
ning example: we assume three additional secondary indices, in addition to the
primary index P CM, are available:

SCM
1 := (⊤, Oid? ⊓ ProductCode?) :: ProductCode : Oid : Un,

SCM
2 := (Price < 1000, Oid? ⊓ Price?) :: Price : Oid : Un, and

SCM
3 := (⊤, Oid?⊓Name?⊓ ∃Supplier.(OnlineAddress?⊓Rating?)) :: Oid :
Un.

The first index, SCM
1 , enables an efficient search for individuals by the value

of the feature ProductCode, the second by Price for products costing under
$1000, and the third index enables search by the individual’s name, and also
stores a more elaborate projection of the concept description associated with
that individual in the original ABox. 2

3.2 Query Algebra

Recall that users specify concept assertion retrieval queries as pairs (C, Pd)
where C is a concept that specifies a search condition and Pd is a projection
description that specifies the format of the assertions in the answer to the query.
To facilitate efficient evaluation of such requests we introduce a more complex
query algebra to manipulate sets of concepts (usually encoding concept asser-
tions). The algebra allows for the use of indices to speed-up search for qualifying
individuals and to retrieve appropriate concepts needed to construct answer con-
cept assertions.

1 Similar to relational systems, multiple specialized indices are typically defined to
support queries; this is in contrast to approaches that aspire to developing an “uni-
versal” search structure(s) to represent semantic data.

308 Query Algebra and Query Optimization for Concept Assertion Retrieval

Definition 7 (Query Algebra). The Query Algebra consists of the six opera-
tors below, called constant query, index scan, selection, projection, intersection,
union, and difference, respectively. Its syntax and semantics are as follows:

(semantics)

Q ::= C {C}

| ScanX(Q) {D1 ∈ X | ∃D2 ∈ Q : T |= D1 ⊑ D2}

| σC(Q) {D ∈ Q | T |= D ⊑ C}

| πPd(Q) {πPd,T (D) | D ∈ Q}

| Q1 ∩ Q2 {D1 ⊓ D2 | D1 ∈ Q1, D2 ∈ Q2, T 6|= (D1 ⊓ D2) ⊑ ⊥}

| Q1 ∪ Q2 {D1 ⊓ D2 | D1 ∈ Q1, D2 ∈ Q2, T 6|= (D1 ⊓ D2) ⊑ ⊥}
∪ {D1 ⊓ ⊤ | D1 ∈ Q1,∀D2 ∈ Q2 : T |= (D1 ⊓ D2) ⊑ ⊥}
∪ {⊤ ⊓ D2 | D2 ∈ Q2,∀D1 ∈ Q1 : T |= (D1 ⊓ D2) ⊑ ⊥}

| Q1 − Q2 {D1 ∈ Q1 | ∀D2 ∈ Q2 : T |= (D1 ⊓ D2) ⊑ ⊥}

where C is a concept description and X is either a primary index or secondary
index. The semantics of the queries is defined the context of the primary index
PK and zero or more secondary indices {SK

1 , . . . , SK
n } and with respect to a given

knowledge base K with a TBox T .
We say that a query is pure if all occurrences of the C construct appear only

in the scope (i.e., as subexpressions) of the ScanX(Q) operator.
We use the notation Q[T] in the remainder of the paper to make the particular

TBox used in the above definition of semantics explicit.

Intuitively, each of the operators maps sets of concepts to a set of concepts,
with ScanX(C) the only leaf operator that links the algebra to the underlying
concept indices. While not mandated by our definitions, the argument Q of
a given ScanX(Q) operator is expected to be related to the Od part of the
specification of the underlying concept index X to facilitate efficient index search.
For example, the index SCM

1 from Example 2 can only be efficiently searched with
descriptions of the form (ProductCode = k) for some string k.

3.3 Concept Assertion Queries as Algebraic Expressions

In this setting, a given user query (C, Pd) can always be expressed by the alge-
braic expression π(Oid?⊓Pd)(σC(ScanPK

(⊤))) in our algebra2. However, to ben-
efit from the performance gains made possible by secondary indices, the algebra
allows a richer space of expressions:

Lemma 2. Let (C, Pd) be a given query. Then the expression

π(Oid?⊓Pd)(σC((ScanSK
1

(C1) ∩ · · · ∩ ScanSK
n
(Cn)) ∩ (ScanPK(⊤))) (5)

is equivalent to the original query, provided that (i) SK
i := (Di, (Oid? ⊓ Pdi)) ::

Odi, (ii) T |= C ⊑ (D1 ⊓ ... ⊓ Dn), and (iii) Ci = π(Oid?⊓Pdi),T (C), for all
0 < i ≤ n.

2 Note the explicit request for retrieving the individual’s identifier by expanding the
original projection description to (Oid? ⊓ Pd).

Jeffrey Pound, David Toman, Grant Weddell and Jiewen Wu. 309

Conditions (i) and (ii) ensure that the combination (intersection) of the indices
SK

i contains sufficient data to answer the original query. The last condition is
necessary to supply a sufficiently general search concept to each of the indices.
(Note that using the original search concept C instead would lead to loosing
answers since the concept assertions stored in the secondary indices are more
general than those in the ABox, in general.)

We can also check whether an index that satisfies the conditions in Lemma 2
is useful in pruning the search; it is easy to see, e.g., that indices for which T |=
⊤ ⊑ Di and T |= ⊤ ⊑ Ci always return all ABox individuals and thus cannot be
useful in pruning answers to the original query. In practice, the above condition
can be refined to judge applicability of an index based, e.g., on selectivity (the
fraction of individuals retrieved using the particular selection condition Ci).

The general form of (5) can be further simplified using the analogues of
relational-style query rewrites that allow the use of secondary indices as follows:

Removing Redundant Selections: The selection operation σC(·) can be re-
moved from (5) to obtain the expression

π(Oid?⊓Pd)((ScanSK
1

(C1) ∩ · · · ∩ ScanSK
n
(Cn)) ∩ (ScanPK(⊤)), (6)

if T |= (C1 ⊓ . . . ⊓ Cn) ⊑ C. Since the primary index PK is sorted by the
names of the individuals (Un), the last intersection operation in the above
expression can be efficiently realized by an index nested loop join.

Index-Only Query Evaluation and Simplifying Projections: The expres-
sion (6) can be further simplified if one of the secondary indices provides
assertions that conform to the final projection description (Oid? ⊓ Pd):

π(Oid?⊓Pd)(πOid?((ScanSK
1

(C1) ∩ · · · ∩ ScanSK
n−1

(Cn−1))) ∩ (ScanSK
n
(Cn)),

(7)
assuming the projection description in the declaration of SK

n is the same
as (Oid? ⊓ Pd). Note that this rewriting completely avoids the use of the
primary index.

The rewriting coupled with the ability to store and search efficiently among
descriptions yields a path to defining appropriate physical data layout designs in
the form of concept indices and in turn to efficient plans for answering concept
assertion retrieval queries; we elaborate on this in Section 4.

Example 3. Recall the running example query (1). With the help of the sec-
ondary indices defined in Example 2, we can obtain the following equivalent
query expression in our algebra:

π(Oid?⊓Pd)(πOid?(ScanSCM
1

(ProductCode = “digicam”) ∩

ScanSCM
2

(Price < 300)) ∩ ScanSCM
3

(⊤)). (8)

The indices SCM
1 and SCM

2 fully qualify the individuals needed to answer the
query and can be efficiently accessed using the concepts (ProductCode = “digicam”)
and (Price < 300), respectively. The expression then uses the index SCM

3 to form
the concept assertions for the answer since SCM

3 stores the (most specific) de-
scriptions conforming to Pd. 2

Index only rewriting can be generalized to cases in which the final projection
description Pd is contained in the combination of the projection descriptions

310 Query Algebra and Query Optimization for Concept Assertion Retrieval

Pdi associated with the indices SK
i , i.e, πPd,T (D) = πPd,T (π(⊓Pdi),T (D)) for

all qualifying D 3. Similarly, general selections can in principle be replaced by
boolean combinations of index scans rather than by mere index intersections
(the algebra provides the union and set difference operations) and DL reasoning
can be used to test for soundness of such a rewrite. This arrangement can sup-
port, e.g., horizontal partitioning of indices and other advanced data partitioning
schemes.

Now observe that SCM
3 is organized by the ordering description Oid : Un,

and therefore that the last intersection in the expression should reduce to an
efficient index look-up for each qualifying individual. Here we utilize the explicit
representation of the individual names in the descriptions manipulated by the
algebra: the name can now be used as a search condition for an index.

Example 4. The final algebraic version of our running example thus yields the
following expression:

ScanSCM
3

(πOid?(ScanSCM
2

(Price < 300 ∩

πOid?(ScanSCM
1

(ProductCode = “digicam”))))) (9)

Note that all the selections are now performed through an appropriate index
scan operation, rather than by explicit set intersections.2

4 On Purely Structural Reasoning

There are a variety of cases in which the operators in our algebra can be evaluated
with simple structural subsumption testing in place of general TBox reasoning.
In this section, we characterize a general condition in which this holds for various
operators in a given concept assertion query Q. Recall from Definition 7 that this
happens, for example, when an evaluation of Q must correspond to an evaluation
of Q[{ }].

We begin by introducing a notion of typing for queries in terms of projec-
tion descriptions, and a normal form for projection descriptions that suffices
for characterizing the relationship between the information content of concept
projections and structural subsumption testing.

Definition 8 (Query Typing and Projection Normalization). Let Q and
Pd be a query in the concept assertion algebra and a projection description,
respectively. The type of Q, written α(Q), is a set of projection descriptions
defined as follows:

α(Q) =

{⊤} if Q = “ScanP (Q1)”;
{Pd} if Q = “ScanS :=(C,Pd)::Od(Q1)”;
α(Q1) if Q = “σC(Q1)” or , “Q1 − Q2”;
{Pd} if Q = “πPd(Q1)”;
{Pd1 ⊓ Pd2 | Pdi ∈ α(Qi)} if Q = “Q1 ∩ Q2”;
α(Q1) ∪ α(Q2) if Q = “Q1 ∪ Q2”;
{C?} if Q = “C” otherwise.

3 This condition is called projection description refinement ; the full exploration of its
properties is beyond the scope of this paper.

Jeffrey Pound, David Toman, Grant Weddell and Jiewen Wu. 311

Also, the normal form of Pd, written norm(Pd) is an exhaustive application of
the following rules to any subexpression.

1. (f = k)? ; f?,
2. (C1 ⊓ C2)? ; (C1? ⊓ C2?), and
3. ∃R.(Pd1 ⊓ Pd2) ; (∃R.Pd1) ⊓ (∃R.Pd2).

Note that α(Q) denotes a set of projection description. This is necessary to
adequately account for our union operator. Also note that norm(Pd) contains
conjunctions only at the top-level and thus can be treated as a set of conjunction-
free projection descriptions with component descriptions of the form C? or f?
at the end of a (possibly empty) existential role path. For example, norm(A? ⊓
∃R.(B?⊓∃S.(f = 1)?)) denotes a conjunction of the set of projection descriptions
{A?,∃R.B?,∃R.∃S.f?}.

With query typing and projection normalization, we are now able to state
our main result of the paper:

Theorem 1. Let K and Q be a respective knowledge base and query in the con-
cept assertion algebra. Then Q = Q[{ }] if at least one of the following conditions
hold for any subquery Q1 of Q, where op is one of ∩, ∪ or −:

1. Q1 = “C”;
2. Q1 = “ScanS (Q2)” and norm(Pd1) ⊆ norm(Pd2) for any Pd1 ∈ α(Q2),

where S is defined by (C, Pd2) :: Od;
3. Q1 = “σC(Q2)” and norm(Pd1) ⊆ norm(Pd2) for any Pd2 ∈ α(Q2) and

Pd1 ∈ α(C);
4. Q1 = “πPd1

(Q2)” and norm(Pd1) ⊆ norm(Pd2) for any Pd2 ∈ α(Q2);
5. Q1 = “(Q2 op Q3)” and both Q2 and Q3 are pure; and
6. Q1 = “Q2[K]”.

To see how the theorem applies, consider the following hypothetical query and its
evaluation over a knowledge base K = {A ⊑ B} consisting of a single inclusion
dependency.

(π(Oid?⊓B?)(π(Oid?⊓A?⊓B?)(((Oid = “a”) ⊓ A)
︸ ︷︷ ︸

{a:A}

(1) ∪ ((Oid = “b”) ⊓ B)
︸ ︷︷ ︸

{b:B}

(2)

︸ ︷︷ ︸

{a:A,b:B}

)(3)

︸ ︷︷ ︸

{a:(A⊓B),b:(⊤⊓B)}

)(4)

︸ ︷︷ ︸

{a:B,b:B}

)(5)

The reader can confirm from our definitions that the same evaluation ensues if
“[{ }]” is inserted at positions (1), (2), (3) and (5) and “[T]” at position (4),
that is, that general TBox reasoning is required only for the π(Oid?⊓A?⊓B?)(·)
operator. We conclude with a more concrete example relating to our running
online digital camera case.

Example 5. Theorem 1 now allows a reformulation of query (9) to the form

ScanSCM
3

(πid?(ScanSCM
2

(Price < 300 ∩

πOid?(ScanSCM
1

(ProductCode = “digicam”)))))[{ }] (10)

that completely avoids TBox reasoning.2

312 Query Algebra and Query Optimization for Concept Assertion Retrieval

5 Summary and Conclusions

The framework for concept assertion retrieval proposed in this paper provides
a basis to introducing efficient relational-style query processing to querying the
semantic web data. The main cornerstones of the approach are the ability to
compute projections of general concepts to make properties of individuals syntac-
tically explicit, to store such assertions in efficient tree-based search structures—
indices, and to use such data structures to efficiently evaluate queries, in partic-
ular to sidestep the need for general DL reasoning at query evaluation time.

Future research can use the proposed query algebra to develop additional
tools and techniques facilitating efficient query execution, for example:

– Optimization techniques that determine optimal (or nearly optimal reformu-
lations of user queries in the algebra or its extensions; and

– Tools that allow the users to determine what indices to create for a given
set of queries.

Another direction of research is whether more complex user queries, e.g., an
equivalent of conjunctive queries, can be accommodated by modest extensions
to the proposed framework.

A preliminary implementation of the proposed query algebra has been com-
pleted and an experimental evaluation of engineering feasibility is underway. The
full source code for this implementation, along with an evaluation workload and
test data is available online at http://projection-alcd.googlecode.com/.

References

1. Franz Baader, Baris Sertkaya, and Anni-Yasmin Turhan. Computing the least com-
mon subsumer w.r.t. a background terminology. J. App. Logic, 5(3):392–420, 2007.

2. Ian Horrocks, Lei Li, Daniele Turi, and Sean Bechhofer. The Instance Store: DL
Reasoning with Large Numbers of Individuals. In Volker Haarslev and Ralf Möller,
editors, Description Logics, volume 104 of CEUR Workshop Proceedings, 2004.

3. Jeffery Pound. Ordering, indexing, and searching semantic data: A terminology
aware index structure. University of Waterloo, MMath Thesis. 2008.

4. Jeffrey Pound, Lubomir Stanchev, David Toman, and Grant Weddell. On Ordering
Descriptions in a Description Logic. In 20th International Workshop on Description

Logics, pages 123–134. CEUR-WS vol. 250, 2007.
5. Jeffrey Pound, Lubomir Stanchev, David Toman, and Grant Weddell. On Ordering

and Indexing Metadata for the Semantic Web. In 21st International Workshop on

Description Logics. CEUR-WS vol. 353, 2008.
6. Jeffrey Pound, David Toman, Grant Weddell, and Jiewen Wu. Concept Projection

in Algebras for Computing Certain Answer Descriptions. In 22nd International

Workshop on Description Logics. CEUR-WS vol. 477, 2009.

Jeffrey Pound, David Toman, Grant Weddell and Jiewen Wu. 313

