
Generating Referring Expressions with OWL2

Yuan Ren, Kees van Deemter, and Jeff Z. Pan

Department of Computing Science

University of Aberdeen

Aberdeen, UK

Abstract. The task of generating referring expressions, an important subtask of

Natural Language Generation is to generate phrases that uniquely identify do-

main entities. Until recently, many GRE algorithms were developed using only

simple and essentially home-made formalisms. Following the fast development

of ontology-based systems, reinterpretations of GRE in terms of description logic

have been studied. However, the quantifiers generated are still limited, not ex-

ceeding the works covered by existing GRE approaches. In this paper, we propose

an DL-based approach to GRE that exploits the full power of OWL2 to generate

referring expressions that goes beyond the expressivity of previous GRE algo-

rithms. The potential of DL reasoning in GRE is also discussed.

1 GRE and KR: the story so far

Generation of Referring Expressions (GRE) is the subtask of Natural Language Gener-

ation (NLG) that focuses on the identification of objects in natural language. For exam-

ple, Fig.1 depicts the relations between several individuals of women, dogs and cats. In

such a scenario, a GRE system might identify a given object as “Dog” or, if this fails to

identify the referent uniquely, “the Dog that loves a Cat”, which is literally unique for

d1. Reference has long been a key issue in theoretical linguistics and psycholinguistics,

and GRE is a crucial component of almost every practical NLG system [5, 4]. Accord-

ingly, GRE has become one of the best developed areas of NLG, with links to many

other areas of Cognitive Science.

Fig. 1. An example of women, dogs and cats, in which edges from women to dogs denote feed

relations, from dogs to cats denote love relations.

Traditional GRE algorithms are usually based on very simple, essentially home-

made, forms of Knowledge Representation (KR); in many cases all properties are ex-

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

428

pressed in a simple 〈Attribute : V alue〉 format, e.g 〈Type : Dog〉. This is perhaps

justifiable as long as the properties expressed by these algorithms are simple one-place

predicates (being a cat, being a Dog, etc.), but when logically more complex descrip-

tions are involved, the potential advantages of “serious” KR become overwhelming. A

few proposals in recent years have started to combine GRE with well-developed KR.

Following on from earlier work based on labelled directed graphs [9, 14], for exam-

ple, analyzed GRE as a projection problem in Conceptual Graphs. More recently, [1]

reinterpreted GRE as a problem in Description Logic (DL), producing a formula such

as Dog ⊓ ∃love.Cat to refer to the (unique) Dog who loves at least one Cat. It is this

last approach that forms the basis of the present paper, which aims to show that when a

principled, logic based approach is chosen, it becomes possible to refer to objects which

no existing approach to GRE has so far been able to refer to.

In doing so, we shall follow Areces et al (and many other researchers in GRE) in

focussing on the semantic core of the GRE problem: we shall be content to generate

descriptions of logical/semantic content, leaving the decision of what English (or other

languages) words to use for expressing this content (e.g., ‘the ancient dog’, or ‘the dog

which is old’) to later stages in the NLG pipeline. Secondly, we shall assume that all

domain objects are equally salient [8]. Perhaps most importantly, we do not consider

here the important matter of the naturalness or efficacy of the descriptions generated. We

shall be content proposing an algorithm that produces uniquely referring expressions

whenever such expressions are possible, leaving the choice of the optimal referring

expression in each given situation for later.

In what follows we start by explaining how DL has been applied in GRE (Sec.2),

pointing out the limitations of existing works. In Sec.3 we discuss which kinds of ad-

ditional expressivity are required and how they can be achieved through modern DL.

In Sec.4 we present an generic algorithm to compute these expressive REs. Sec.5 con-

cludes the paper by comparing its aims and achievements with current practise in GRE.

2 DL for GRE

2.1 Description Logics

Description Logic (DLs) come in different flavours, based on decidable fragments of

first-order logic. A DL-based KB represents the domain with descriptions of concepts,

relations, and their instances. DLs underpin the Web Ontology Language (OWL), whose

latest version of OWL2 [11] is based on DL SROIQ [7].

An SROIQ ontology Σ usually consists of a TBox T and an ABox A. T contains

a set of concept inclusion axioms such as C ⊑ D, relation inclusion axioms such as

R ⊑ S, R1 ◦ . . . ◦ Rn ⊑ S, and other axioms saying that a particular relation is

functional, or reflexive, or symmetric, etc.; A contains axioms about individuals, e.g.

a : C (a is an instance of C), (a, b) : R (a has an R relation with b).

Given a set of atomic concepts, the entire set of concepts expressible by SROIQ is

defined recursively. Assuming that C and D are concepts, then so are ⊤ |⊥ |A | ¬C |C⊓
D | C ⊔ D | ∃R.C | ∀R.C | ≤ nR.C | ≥ nR.C | ∃R.Self | {a1, . . . , an}, where

⊤ is the top concept, ⊥ the bottom concept, A an atomic concept, n a non-negative

Yuan Ren, Kees van Deemter and Jeff Z. Pan. 429

integer number, ∃.Self the self-restriction, ai individual names and R a relation which

can either be an atomic relation r or the inverse of another relation (R−).

An interpretation I is a pair 〈∆I , �I〉 where ∆I is a non-empty set and �
I is a

function that maps atomic concept A to AI ⊆ ∆I , atomic role r to rI ⊆ ∆I × ∆I

and individual a to aI ∈ ∆I . The interpretation of complex concepts and axioms can

be defined inductively based on their semantics, e.g. (C ⊓ D)I = CI ∩ DI , etc.

I is a model of Σ, written I |= Σ, iff the semantics of all the axioms in Σ are

satisfied. It should be noted that one Σ can have multiple models. For example when

T = ∅,A = {a : A ⊔ B}, there can be a model I1 s.t. aI1 ∈ AI1 , aI1 6∈ BI1 , and

another model I2 s.t. aI2 6∈ AI2 , aI2 ∈ BI2 . In other word, the world is open. For

details, we refer the readers to [2].

When dealing with a closed world, people usually (partially) close the ontology with

a DBox D [12], which is syntactically similar to the A. However, D contains only a : A

((a, b) : r) where A (r) is atomic. Furthermore, every concept or relation appearing in

D is closed. Its extension is exactly defined by the contents of D, i.e. if A (r) appearing

in D and a : A 6∈ D ((a, b) : r 6∈ D), then a : ¬A ((a, b) : ¬r), thus is the same in all

the models. The concepts and relations not appearing in D are still open.

DL reasoning can be exploited to infer implicit information from ontologies. For

example, given T = {Dog ⊑ ∃feed−.Woman} and A = {d1 : Dog,w1 : Woman},

we know that there must be some Woman who feeds d1. When the domain is closed

as D = A we can further infer that this Woman is w1 although there is no explicit

relation between w1 and d1. The complexity of such reasoning services is normally

2NEXPTIME-complete.

2.2 Background Assumptions

When applying DL to GRE, people usually impose the following assumptions.

– Identifiers cannot be used in REs. For example, “the Woman who feeds d1” would

be invalid, because d1 is an identifier. Such identifiers are typically outlawed in

GRE because, in many applications, many objects do not have identifiers that read-

ers/hearers would be familiar with: e.g. chairs, trees, or time periods seldom have

commonly known identifiers.

– Closed Domain Assumption (CWA): In existing works regarding DL and GRE, peo-

ple assume that D = A. Furthermore, the domain is usually considered to be finite

and containing individuals only visible in D. As we will show, this “partially” close

the interpretation of the atomic symbols mentioned in A but will still allow the rest

open.

– Unique Name Assumption (UNA): Different names denote different individuals. If,

for example, w1 and w2 may potentially be the same woman, then we can not

distinguish one from the other.

We follow these assumptions when discussing existing works and presenting our ap-

proach. We will also show how our approach can be extended to achieve more when

these assumptions are not imposed. In addition, we consider the entire KB, including

both A (D) and T .

430 Generating Referring Expressions with OWL2

It is worth mentioning that, in the syntax of SROIQ, negation of relations are

not allowed in concept expressions, e.g. you can not compose a concept ∃¬feed.Dog.

However, if we impose the CWA and close feed, then we can interpret (¬feed)I =
∆I × ∆I \ feedI . In the rest of the paper, we use this as a syntactic sugar.

2.3 Using DL for GRE

Every DL concept can be interpreted as a set. If the KB allows one to prove that this

set is a singleton then the concept is a referring expression. It is this simple idea (earlier

expounded by [6]) that [1] explored. In doing so, they say little about the TBox, appear-

ing to consider only the ABox (DBox), which contains only axioms about instances of

atomic concepts and relations. For example, the domain in Fig.1 can be described as

KB1: T1 = ∅, A1 = {w1 : Woman, w2 : Woman, d1 : Dog, d2 : Dog,

c1 : Cat, c2 : Cat, (w1, d1) : feed, (w2, d1) : feed, (w2, d2) : feed,

(d1, c1) : love}

Assuming that this represents a Closed World, the authors propose an algorithm

that is able to generate descriptions by partitioning the domain.1 More precisely, the

algorithm first finds out which objects are describable through increasingly large con-

junction of (possibly negative) atomic concepts, then tries to extend these conjunctions

with complex concepts of the form (¬)∃R.Concept, then with concepts of the form

(¬)∃R1.(Concept⊓ (¬)∃R2.Concept), and so on. At each stage, only those concepts

that have been acceptable through earlier stages are used. Consider, for instance, KB1

above. Regardless of what the intended referent is, the algorithm starts partitioning the

domain with atomic concept (suppose staring with Dog) in (1), then the ones in (2),

then the ones in (3). Each stage makes use of all previous stages. During stage (3), for

example, the object w2 could only be identified because d2 was identified in phase (2).

(1). Dog = {d1, d2}, ¬Dog ⊓ Woman = {w1, w2},

¬Dog ⊓ ¬Woman = {c1, c2}.

(2). Dog ⊓ ∃love.(¬Dog ⊓ ¬Woman) = {d1},

Dog ⊓ ¬∃love.(¬Dog ⊓ ¬Woman) = {d2}.

(3). (¬Dog ⊓ Woman) ⊓ ∃feed.(Dog ⊓ ¬∃love.(¬Dog ⊓ ¬Woman)) =
{w2},

(¬Dog⊓Woman)⊓¬∃feed.(Dog⊓¬∃love.(¬Dog⊓¬Woman)) = {w1}.

As before, we disregard the important question of the quality of the descriptions gen-

erated, other than whether they do or do not identify a given referent uniquely. Other

aspects of quality depend in part on details, such as the question in which order atomic

properties are combined during phase (1), and analogously during later phases.

1 Areces et al. [1] consider several DL fragments (e.g., ALC and EL). Which referring expres-

sions are expressible, in their framework, depends on which DL fragment is chosen. Their

analysis of the differences between fragments is perhaps the most valuable aspect of their

paper. Existential quantification, however, is the only quantifier that was used, and inverse

relations are not considered either.

Yuan Ren, Kees van Deemter and Jeff Z. Pan. 431

Although this demonstrates how DL can be used in GRE, it does not extend the

expressive power of GRE. This is not because of some specific lapse on the part of the

authors: it seems to have escaped the GRE community as a whole that relations can

enter REs in a variety of alternative ways. Also, the above algorithm considers only the

ABox therefore some background information will not be used. For example, suppose

we extend Fig.1 with background knowledge saying that one should care about thoes

beloved by whom he/she is feeding, and an additional love relation (Fig.2).

Fig. 2. An extended example of Fig.1. Edges from women to cats denote care relations. Dashed-

edge indicates implicit relations.

Together, the domain can be described as:

KB2: T2 = {feed ◦ love ⊑ care}, A2 = A1 ∪ {(d2, c2) : love}

The TBox axiom should allow the inference of additional facts: the facts (w1, c2) :
care, (w2, c1) : care, and (w2, c2) : care can be inferred using ontology reasoning.

Our own approach will allow this kind of reasoning to be brought to GRE. Continuing

to focus on the materialised KB2, we note another limitation of existing works: if only

existential quantifiers are used then some objects are unidentifiable (i.e., it is not pos-

sible to distinguish them uniquely). These objects would become identifiable if other

quantifiers and inverse relations were allowed. For example,

The cat who is cared by at least 2 women = Cat⊓ ≥ 2feed−.Woman =
{c1},

The woman feeding only those fed by at least 2 women = Woman⊓∀feed. ≥
2.feed−.Woman = {w1},

The woman who feeds all the dogs = {w2}.

It thus raises the question: which quantifiers will be appreciated and how to use DL

to realise them in GRE?

3 Beyond Existential Descriptions

In this section, we show how more expressive DLs can make objects referable that were

previously unreferable. Far from being a minor modification of existing works, this will

amount to a substantial reformulation which will allow the DL-based approach to move

beyond other GRE algorithms in its expressive power and representational efficiency.

432 Generating Referring Expressions with OWL2

3.1 Expressing Generalized Quantifiers in OWL2

Because the proposal in [1] uses only existential quantification, it fails to identify any

individual in Fig.2. Before attempting to fill this gap, we briefly pause to ask what level

of expressivity might be achievable. In doing so, we shall make use of a conceptual

apparatus developed in the formal study of natural language. The most general format

for REs that involve a relation R is, informally, the N1 who R Q N2’s, where

N1 and N2 denote sets and Q is a quantifier. (Thus for example the women who

feed SOME dogs.) An expression of this form is a uniquely identifying expression

if it corresponds to exactly one element in the domain. Using a slightly more formal

set-theoretic notation, this means that the following set has a cardinality of 1:

{y ∈ N1 : Qx ∈ N2 | Ryx}

where Q is a generalized quantifier (GQ [10]). For example, if Q is the existential

quantifier, while N1 denotes the set of women, N2 the set of dogs, and R the relation

of feeding, then this says that the number of women who feed SOME dog is just one.

If Q is the quantifier Exactly three, however, then it says that the number of women

who feed exactly THREE dogs is just one. It will be convenient to write the formula

above in the standard GQ format where quantifiers are seen as relations between sets of

domain objects A, B. For example, using the universal quantifier as an example, instead

of writing ∀x ∈ A | x ∈ B, we write ∀(AB). Thus, the formula above is written

{y ∈ N1 : Q(N2{z : Ryz})}.

Instantiating this as before, we get {y ∈ Woman : ∃(Dog{z : Feed yz})}, or “women

who feed a dog”, where Q is ∃, A = Dog and B = {z : Feed yz} for some y.

Mathematically characterizing the class of all quantifiers that can be expressed in

referring expressions is a complex research programme to which we do not intend to

contribute directly, partly because this class includes quantifiers that are computation-

ally problematic; for example, quantifiers such as most (i.e., more than 50%) and many

(which is vague) are not first-order expressible, as is well known.

To make transparent which quantifiers are expressible in the logic that we are using,

let us think of quantifiers in terms of simple quantitative constraints on the sizes of the

sets A ∩ B, A − B, and B − A, as is often done in GQ theory, asking what types of

constraints can be expressed in referring expressions based on SROIQ. The findings

are illustrated in Tab.1. The table shows that OWL2 can express any of the following,

plus disjunctions and conjunctions of anything it can express.

Let us call the class of quantifiers defined by the table NatGQ. To see how large

and general NatGQ is, a few examples will be useful. When n = 1, for example, type

1 becomes ∃R.N2, i.e. the existential quantifier. When n = 0 type 7 becomes ∀R.N2,

i.e. the only quantifier. When n = 0 type 6 becomes ∀¬R.¬N2, i.e. the all quantifier.

In types 2, 4, 6 and 8, negation of relation is used in a concept expression. This is not

directly supported in SROIQ but, as we indicated earlier, given a closed KB Σ, when

relation R is closed, ¬R is valid in concepts.

Together, this allows the expression of a description such as “women who feed at

least one but at most 7 dogs”, by conjoining a quantifier of type 1 (with n = 1) with

one of type 5 (with n = 7). It even allows expression of “women who do not feed

Yuan Ren, Kees van Deemter and Jeff Z. Pan. 433

Table 1. Expressing GQ in DL

QAB DL

1 ≥ nN2{z : Ryz} y :≥ nR.N2

2 ≥ nN2¬{z : Ryz} y :≥ n¬R.N2

3 ≥ n¬N2{z : Ryz} y :≥ nR.¬N2

4 ≥ n¬N2¬{z : Ryz} y :≥ n¬R.¬N2

5 ≤ nN2{z : Ryz} y :≤ nR.N2

6 ≤ nN2¬{z : Ryz} y :≤ n¬R.N2

7 ≤ n¬N2{z : Ryz} y :≤ nR.¬N2

8 ≤ n¬N2¬{z : Ryz} y :≤ n¬R.¬N2

all dogs and who feed at least one non-dog”, which can be expressed as Woman ⊓
¬∀¬Feed.¬Dog ⊓ ∃Feed.¬Dog. In addition to Tab.1, SROIQ can even represent

reflexive relation such as “the dog who loves itself” by Dog ⊓ ∃love.Self , which used

to be regarded infeasible [6].

Comparing the quantifiers that become expressible through OWL2’s apparatus with

classes of quantifiers studied in the theory of GQ, it is clear that OWL2 is highly ex-

pressive: it does not only include quantifiers expressible in Van Benthem’s binary tree

of numbers [13] – which is often regarded as sufficient – but much else besides. Wider

classes of referring expressions can certainly be conceived – for example by moving

into intensionally or higher-order logic – but these are not likely to have overwhelming

practical utility in todays’s NLG applications.

4 Generating SROIQ-enabled REs

In this section, we present an algorithms that is able to compute the descriptions we

presented in sect.3. A GRE algorithm should have the following behaviour: if an entity

is distinguishable from all the others, the algorithm should find a unique description;

otherwise, the algorithm should say there exists no unique description. There are two

major tasks in a GRE program:

1. Finding possible descriptions: Generating syntactically valid descriptions.

2. Validating a description: Checking whether a description can be satisfied by a par-

ticular object.

These two tasks can be done simultaneously for all the domain elements, or for a target

referent. In the former case, candidate descriptions are generated and then tested for

each domain element. If a description holds for only one element, then it is the RE for

that element. This generate & test cycle is repeated until all the REs can be found. In the

later case, candidate descriptions are generated and tested for a particular target referent

until a valid RE is found or such a target referent can not be distinguished from some

other element. In this paper, we follow the strategy of Areces et.al work to generate REs

in a simultaneous way.

Since we consider more constructs than any previous treatment of relational de-

scriptions, the combination of them can result in an enormously large search space. To

measure the complexity of these descriptions, we define their depth:

434 Generating Referring Expressions with OWL2

Definition 1. (Depth) Given a description d, its depth |d| is calculated as follows:

1. |d| = 1 for d := ⊤|⊥|A|¬A.

2. |d ⊓ d′| = |d ⊔ d′| = max(|d|, |d′|) + 1.

3. |∃r.d| = |∀r.d| = | ≤ nr.d| = | ≥ nr.d| = | = nr.d| = |d| + 1.

Syntactically different descriptions can have same semantics, e.g. ¬∀R.A ≡ ∃R.¬A.

We leave aside the question which syntactic variant should be used and focus on gen-

erating one form, assuming all the concepts are in their unique negation normal form

(NNF). A NNF has ¬ in front of only atomic concepts (include ⊤ and ⊥) or nominals.

The NNF of ¬C is denoted by ~C.

To ensure we can generate proper descriptions w.r.t. particular requirements, we

present the following abstract algorithm A-1. Given an ontology Σ, we initialise the

algorithm with the following sets:

1. The concept name set CN is the minimal set satisfying:

– ⊤ ∈ CN ;

– if A is an atomic concept in Σ, then A ∈ CN ;

– if R is an atomic role in Σ, then ∃r.Self ∈ CN ;

– if A ∈ CN , then ~A ∈ CN ;

2. The relation name set RN is the minimal set satisfying:

– if R is an atomic relation in Σ, then R ∈ RN ;

– if R ∈ RN , then ~R ∈ RN ;

– if R ∈ RN , then R− ∈ RN ;

3. The number set N = {1, 2, . . . , n} where n is the number of individuals in Σ.

4. The construct set S contains all the constructs that supported by a particular lan-

guage. For SROIQ, S = {¬,⊓,⊔,∃,∀,≤,≥,=}. Usage of names is disallowed

(cf sect.2).

Obviously, ~(~A) = A, ~(~R) = R, (R−)− = R, and (~R)− =~R−. Then the

algorithm takes an ontology Σ as its input and output a queue D of descriptions.

Algorithm A-1: Construct-description(Σ, CN, RN,N, S)

INPUT: Σ,CN, RN, N, S

OUTPUT: Description Queue D

1: D := CN

2: for d = fetch(D) do

3: for each s ∈ S do

4: if s = ⊓ or s = ⊔ then

5: for each d′ ∈ D do

6: D := Add(D, d ⊓ d′(d ⊔ d′))
7: if s = ∃ or s = ∀ then

8: for each r ∈ RN do

9: D := Add(D,∃r.d(∀r.d))
10: if s =≤ or s =≥ or s is = then

11: for each r ∈ RN , each k ∈ N do

12: D := Add(D,≤ kr.d(≥ kr.d,= kr.d))

Yuan Ren, Kees van Deemter and Jeff Z. Pan. 435

13: return D

Algorithm A-2:Add(D, e)

INPUT: D, e

OUTPUT: (Extended)Description Queue D

1: for d ∈ D do

2: if |d| < |e| and d ⊑Σ e then

3: return D

4: else if |d| = |e| and d ⊏Σ e then

5: return D

6: if |[[e]]|Σ > 0 then

7: D := D ∪ {e}
8: return D

In Step 1, D is initialised by CN . From Step 2, we recursively process elements of

D one by one. We use fetch(D) to retrieve the first unprocessed element of D and new

elements are added to the end of D. Thus D is a first-come-first-server queue (note that

processed elements are not removed from D). For each element d of D, Step 3 to 12

extend it with a construct s:

1. If s is ⊓ or ⊔, in Step 5 and 6, we extend d with all the elements of D and add new

descriptions to D.

2. If s is ∃ or ∀, in Step 8 and 9, we extend d with all relations of RN and add new

descriptions to D. In Areces et el.’s work, ∀ is also available when using ¬ and ∃
together, however due to their algorithm they can never generates descriptions like

∀r.A.

3. If s is ≤,≥ or =, in Step 11 and 12, we extend d with all relations of RN and all

numbers of N , and add new descriptions to D.

In this step, = kr.d ≡≥ kr.d⊓ ≤ kr.d, which means = construct can be equiva-

lently substituted by the combination of ≤,≥ and ⊓ constructs.

Therefore, it is an modelling choice to use either ≤,≥, or only =, or all of them. In

this algorithm we present all of them from a syntactic point of view.

Because we compute only the NNF and we disallow the usage of individual iden-

tifiers, negation ¬ appears only in front of atomic concept names, which have all been

included in CN . Thus in extension, we do not consider s = ¬. The ordering of choosing

constructs, relations, integers and conjuncts/disjuncts is not the topic of this paper.

Obviously, at any time, D,RN,N, S are all finite, thus Step 3 to 12 terminates for a

particular d ∈ D. Because Step 3 to 12 generates descriptions with incremental depth,

for a particular n, there are finite d ∈ D such that |d| = n. Thus, the termination of

Algorithm A-1 depends on the increment of D. This is controlled by the Add procedure,

which determines whether a new generated description is added into D or not.

The mechanism of Add depends on the requirements of the application. In this paper

we control the addition by following a simple heuristic: more complex descriptions

should have smaller extension.

436 Generating Referring Expressions with OWL2

In Algorithm A-2, Step 2 ensures that, when adding a new description e into D, its

extension should be smaller than any existing description d ∈ D with a smaller depth

than e. Step 4 ensures that when adding a new description e into D, its extension should

be no larger than any existing description d ∈ D with same depth as e. Step 6 to 7 adds

a new description when its extension is non-empty. The subsumption checking in Step

2 and 4, the instance retrieval in Step 6, must be realised by DL reasoning.

A-2 guarantees that when the complexity of descriptions increases, their extensions

are getting smaller and smaller (but still non-empty). Because descriptions of a particu-

lar depth is always finite, when the domain is finite, Algorithm A-1 always terminates.

It can be shown that, our approach is an extension of the algorithm presented in

Areces et al.’s work. The example in Fig.2 shows that some referring expressions gen-

erated by our algorithm cannot be generated by our predecessors; more importantly

even, some objects that are not referable for them are referable for us.

It is worth stressing here that our algorithm focusses on finding uniquely referring

expressions, leaving aside which of all the possible ways in which an object can be

referred to is “best”. For this reason, empirical validation of our algorithm – a very

sizable enterprise in itself, which should probably be based on descriptions elicited by

human speakers – is not yet in order.

Discussion Now we revisit the basic assumptions to see what can be achieved with-

out them.

1. Using names in REs, e.g. “the husband of Marie Curie”. Here “Marie Curie” servies

as both the identifier of the individual and the name of its interpretation. In this case,

we extend our Algorithm A-1 by including {Maria Curie} in CN .

2. An open world: when the domain is not restricted to be closed, traditional GRE

approaches may fail because they have always been assuming a single model with

complete knowledge. In this case, interesting REs can still be found by our ap-

proach. For example, if someone is known to be the only Chinese or Japanese,

we can refer to him/her as Chinese ⊔ Japanese although the exact nationality is

unknown.

3. Individual with multiple names. DL imposes the UNA by explicit asserting the

inequality of each two individuals. Without UNA, reasoning can still infer some

results, e.g. {Woman⊓Man ⊑ ⊥, David : Man, May : Woman} |= David 6=
May. Thus we can refer to David as “the man” if the domain is closed.

5 Conclusion: widening the remit of GRE

This paper has shown some of the benefits that arise when the power of KR is brought to

bear on an important problem in NLG, namely the generation of referring expressions

(GRE). We have done this by using DL as a representation and reasoning formalism,

extending previous work in GRE in two ways. In order to explain what class of referring

expressions is covered by our proposal, we have related our algorithm to the theory of

Generalized Quantifiers, which allowed us to formally characterize the set of quanti-

fiers that are used by our algorithm, thereby making exact how much expressive power

we have gained. Secondly, we have demonstrated the benefits of implicit knowledge

Yuan Ren, Kees van Deemter and Jeff Z. Pan. 437

through inferences that exploit TBox-information, thereby allowing facts to be repre-

sented more efficiently and elegantly, and allowing GRE to tap into kinds of generic (as

opposed to atomic) knowledge that it had so far left aside, except for hints in [6] and

in [3].

Current work on reference is overwhelmingly characterized by an emphasis on em-

pirical accuracy, often focussing on very simple referring expressions, which are con-

stituted by conjunctions of 1-place relations (as in “the grey poodle”, “the Swedish

woman”), and asking which of these conjunctions are most likely to be used by human

speakers (or sometimes, which of these would be most useful to a human hearer or

reader). The present work stresses entire different concerns: we have focussed on ques-

tions of expressive power, focussing on relatively complex descriptions, asking what

referring expressions are possible when relations (such as “love” or “feed”) between

domain objects are used. We believe that, at the present stage of work in GRE, it is of

crucial importance to gain insight into questions of this kind, since this will tell us what

types of reference are possible in principle. Once these questions are answered, we shall

explore how the newly gained expressive power can be put to practical use.

References

1. Carlos Areces, Alexander Koller, and Kristina Striegnitz. Referring expressions as formulas

of description logic. In Proceedings of the 5th International Natural Language Generation

Conference, Salt Fork, Ohio, 2008.

2. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-

Schneider, editors. The Description Logic Handbook: Theory, Implementation, and Appli-

cations. Cambridge University Press, 2003.

3. Madalina Croitoru and Kees van Deemter. A conceptual graph approach to the generation of

referring expressions. In Proceedings of the 20th International Joint Conference on Artificial

Intelligence, 2007.

4. Robert Dale. Cooking up referring expressions. In Proceedings of the 27th annual meeting

on Association for Computational Linguistics, pages 68–75, 1989.

5. Robert Dale and Ehud Reiter. Computational interpretations of the gricean maxims in the

generation of referring expressions. CoRR, cmp-lg/9504020, 1995.

6. Claire Gardent and Kristina Striegnitz. Generating bridging definite descriptions. Computing

Meaning, 3:369–396, 2007.

7. Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The Even More Irresistible SROIQ. In KR

2006, 2006.

8. Emiel Krahmer and Mari?t Theune. Efficient context-sensitive generation of descriptions in

context. Information Sharing: Givenness and Newness in Language, pages 223–264, 2002.

9. Emiel Krahmer, Sebastiaan van Erk, and Andr Verleg. Graph-based generation of referring

expressions. Computational Linguistics, 29(1):53–72, 2003.

10. A Mostowski. On a generalization of quantifiers. Fund. Math., 44:235–273, 1957.

11. Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten

Lutz. Owl 2 web ontology language: Profiles. W3c working draft, W3C, October 2008.

12. Inanç Seylan, Enrico Franconi, and Jos de Bruijn. Effective query rewriting with ontologies

over dboxes. In IJCAI 2009, 2009.

13. Johan van Benthem. Essays in Logical Semantics. Reidel, 1986.

14. Kees van Deemter and Emiel Krahmer. Graphs and booleans: On the generation of referring

expressions. Computing Meaning, 3:397–422, 2007.

438 Generating Referring Expressions with OWL2

