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Abstract. ABox Reasoning in large scale description logic (DL) knowledge bases,

e.g. ontologies, is important for the success of many semantic-enriched systems.

Performance of existing approaches, such as the tableau-based approach, and the

disjunctive datalog approach, is restricted by their theoretical worst case com-

plexity bound. In this paper, we propose a soundness-preserving approximate

reasoning approach to address this issue. We first approximate an ontology in DL

RO, a major fragment of OWL2-DL, to DL EL++, the underpin of OWL2-EL,

plus an additional table maintaining the complementary relations between con-

cept names. Then we can perform ABox reasoning either internally, or externally

of the TBox with additional completion rules. The approximation and reasoning

can be performed in PTIME. Our preliminary evaluation shows that our approach

can outperform existing DL reasoners on real world and benchmark ontologies.

1 Introduction

With the fast development of the semantic web and knowledge intensive systems, the

representation and reasoning over large-scale ontologies have become important topics

for research community. Web Ontology Language (OWL), the de facto standard ontol-

ogy language, is based on the family of Description Logics (DLs). In the last decades,

many research attentions have been paid to complexity and reasoning algorithms of

various dialects of the DLs such as SROIQ, the underpinning of the OWL2-DL, and

EL++, the underpinning of the OWL2-EL [9].

Most of these works focus on TBox reasoning such as deciding subsumption be-

tween concept expressions, or checking whether a particular concept is satisfiable.

ABox reasoning such as deciding to which concepts a particular individual belongs

is usually realised by extensions of TBox algorithms [6], or by being reduced to TBox

reasoning [12]. Other works [7] reduces ontologies into disjunctive datalog to provide

dedicated ABox reasoning. In either case, the reasoning complexity is high for expres-

sive DL fragments. However, ABox can be encoded in very expressive DLs, rather

large and changing frequently for which traditional solutions can not provide efficient

answers.

To solve this problem, the approximation approaches have been studied and evalu-

ated [10, 14, 3, 13, 14]. However, most of these works still replying on reasoners of ex-

pressive DLs. For example, [10] achieves efficient query answering by pre-computing

the materialization of the original ontology with an OWL DL reasoner. [3, 13] are based
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on a specific reasoner KAON2 [8], which supports DL SHIQ. The applicability of

these approaches are restricted by the capability of the heavy-weight reasoner and hence

the reasoning complexity can not be substantially reduced.

In our early work [11] we presented an approximate reasoning approach to reduce

TBox reasoning in DL R to that in DL EL+. The reasoning complexity is reduced

from 2EXPTIME-hard to PTIME and the soundness of results is preserved. In this pa-

per, we extend this approach to support ABox reasoning in DL RO, i.e. DL SHO
plus role chains. Given an RO ontology, we first approximate it into an EL++ ontol-

ogy with a complement table (CT) maintaining the complementary relations between

named concepts, then extend the EL++ reasoning with additional completion rules to

entail logical consequence, for both TBox and ABox. This approach is tractable and

soundness-preserving.

The rest of this paper is organised as follows: in Sec. 2 we briefly introduce the DL

RO and EL++, and discuss the technical challenge of existing approximate reasoning

approaches. In Sec. 3 we present our approach for approximate ABox reasoning, par-

ticularly, we show how the ABox approximate reasoning should be combined with the

TBox approximate reasoning. In Sec. 4 we present some preliminary evaluation of our

approach and Sec. 5 concludes the paper.

2 Technical Motivations

In [11] we presented an approach to approximating R TBox to EL+ TBox with an

additional complement table. We note that EL++, an extension of EL+ that supports

singletons, is also tractable. Thus it is natural to allow the using of nominals in the

original ontology. This leads to the DL RO.

In order to motivate our investigation on syntactic approximation of RO ontolo-

gies to EL++ ontologies, this section first briefly introduces RO and EL++ and then

illustrates the technical challenges in their ABox reasoning and approximation.

In RO, concepts C, D can be inductively composed with the following constructs:

⊤ | ⊥ | A | C ⊓ D | ∃r.C | {a} | ¬C

where ⊤ is the top concept, ⊥ the bottom concept, A atomic concept, n an integer

number, a an individual and r an atomic role. Conventionally, C ⊔ D and ∀R.C are

used to abbreviate ¬(¬C ⊓¬D) and ¬∃R.¬C, respectively. Note that {a1, a2, . . . , an}
can be regarded as abbreviation of {a1}⊔{a2}⊔ . . .⊔{an}. Without loss of generality,

in what follows, we assume all the concepts to be in their negation normal forms (NNF)1

and use ~C to denote the NNF of ¬C. We also call ⊤,⊥, A, {a} basic concepts because

they are not composed by other concepts or roles. Given a KB Σ, we use CNΣ (RNΣ ,

INΣ) to denote the set of basic concepts (atomic roles, individuals) in Σ.

Target language EL++ supports

⊤ | ⊥ | A | C ⊓ D | ∃r.C | {a}.

1 An RO concept is in NNF iff negation is applied only to atomic concepts and singletons. NNF

of a given concept can be computed in linear time[4].
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Both RO and EL++ support concept inclusions (CIs, e.g. C ⊑ D), role inclu-

sions (RIs, e.g. r ⊑ s, r1 ◦ . . . ◦ rn ⊑ s), class assertions (e.g. a : C) and role asser-

tions (e.g. (a, b) : r). If C ⊑ D and D ⊑ C, we write C ≡ D. If C is non-atomic,

C ⊑ D is a general concept inclusion (GCI). For more details about syntax and seman-

tics of DLs, we refer the readers to [2]. Given a set of axioms Σ (a single axiom α), its

signature, denoted by Sig(Σ) (Sig(α)) is the set of all the concept names (including ⊤
and ⊥), role names and individual names appearing in Σ (α).

Traditionally in expressive and very expressive DLs, ABox reasoning is performed

together with the TBox by the tableau algorithm [6]. The tableau algorithm [5] con-

structs a tableau (as a witness of a model of the ontology) as a graph in which each

node x represents an individual and is labeled with a set of concepts it must satisfy,

each edge 〈x, y〉 represents a pair of individuals satisfying a role that labels the edge.

Instance checking Σ |= a : C is reduced to knowledge base consistence for the

extended knowledge base Σ′ = Σ ∪ {a : ¬C} [12]. To test this, a tableau is initialised

with the concept and role assertions in Σ′ and is then expanded by repeatedly apply-

ing the completion rules. Similar to other reasoning services, tableau-based instance

checking has to deal with the non-determinism of GCI, which results in an exponential

blowup of the search space.

Reasoning with EL++ is more efficient. [1] presents a set of TBox completion

rules (Table 1) 2 to compute, given a normalised EL++ TBox T , for each A ∈ CNT ,

a subsumer set S(A) ⊆ CNT in which for each B ∈ S(A), T |= A ⊑ B, and for

each r ∈ RNT , a relation set R(r) ⊆ CNT ×CNT in which for each (A, B) ∈ R(r),
T |= A ⊑ ∃r.B. These sets are initialised as: for each A ∈ CNT , S(A) = {A,⊤} and

for each r ∈ RNT , R(r) = ∅. Reasoning with rules R1-R8 is tractable.

Table 1. EL++ completion rules (no datatypes)

R1
If A ∈ S(X), A ⊑ B ∈ T and B /∈ S(X)
then S(X) := S(X) ∪ {B}

R2
If A1, A2, . . . , An ∈ S(X), A1 ⊓ A2 ⊓ . . . ⊓ An ⊑ B ∈ T and B /∈ S(X)
then S(X) := S(X) ∪ {B}

R3
If A ∈ S(X), A ⊑ ∃r.B ∈ T and (X, B) /∈ R(r)
then R(r) := R(r) ∪ {(X, B)}

R4
If (X, A) ∈ R(r) A′ ∈ S(A), ∃r.A′ ⊑ B ∈ T and B /∈ S(X)
then S(X) := S(X) ∪ {B}

R5
If (X, A) ∈ R(r), ⊥ ∈ S(A) and ⊥ /∈ S(X)
then S(X) := S(X) ∪ {⊥}

R6
If {a} ∈ S(X) ∩ S(A), X  R A and S(A) 6⊆ S(X)
then S(X) := S(X) ∪ S(A)

R7
If (X, A) ∈ R(r), r ⊑ s ∈ T and (X, A) 6∈ R(s)
then R(s) := R(s) ∪ {(X, A)}

R8
If (X, A) ∈ R(r1), (A, B) ∈ R(r2), r1 ◦ r2 ⊑ r3 ∈ T , and (X, B) 6∈ R(r3)
then R(r3) := R(r3) ∪ {(X, B)}

2 in R6 X  R A iff there exists C1, . . . , Ck ∈ CNT s.t. C1 = X or C1 = {b}, (Cj , Cj+1) ∈
R(rj) for some rj ∈ RNT (1 ≤ j ≤ k) and Ck = A
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When ABox A presents, an additional concept CA :=
d

a:C∈A
∃u.({a} ⊓ C) ⊓d

(a,b):r∈A
∃u.({a} ⊓ ∃r.{b}), where u is a fresh role name, is introduced. To this end,

instance checking a : C can be reduced to subsumption checking {a}⊓CA ⊑ C, which

can be realised by R1-R8. However, this approach can not be directly applied on more

expressive DLs.

To provide more scalable and efficient ABox reasoning service in expressive DLs,

approximation approaches have been studied. However, most of these approaches heav-

ily rely on existing reasoners. [14] presented approaches based on the idea of simpli-

fying concept expressions in an ontology or a query to speed up the instance retrieval.

The simplified ontology and query still needs to be processed by a heavy-weight rea-

soner, and the evaluation results showed that the number of subsumption tests can not

always be reduced. Semantic Approximation [10] uses a heavy weighted reasoner to

materialize the ontology and store in a database to speed up online query answering.

But once the ABox changed, the entire procedure has to be performed again. [3, 13]

present the SCREECH approach. It utilizes the KAON2 algorithm, which translates a

SHIQ TBox into disjunctive datalog, and executes the rules together with a SHIQ
ABox and a query by a datalog reasoning engine. By rewriting or eliminating all the

disjunctive rules the data complexity can be reduced from coNP-complete of OWL DL

to polynomial time. However this still relies on KAON2 to pre-translate the TBox. If the

ontology is in a language beyond the capability of KAON2, e.g. RO, this approach can

not handle. Also, when the ABox contains complex concept expressions, this approach

can not directly execute.

To sum up, tableau algorithms have difficulties to handle complex structured ax-

ioms; tractable DL algorithms can not support more expressive languages; while tradi-

tional approximation approaches still rely on existing DL reasoners. In what follows,

we presented our approach which is motivated and inspired by these works, and show

that it overcomes these difficulties.

3 The Approach

In this section, we first recall and extend the TBox approximation in [11] to support

ontology approximation from RO to EL++. Then we discuss how the ABox can be

reasoned internally and externally of the TBox. At the end, we discuss how the internal

and external reasoning of ABox can possibly be integrated.

3.1 Approximate RO Ontologies to EL
++

In approximation, we only consider concepts corresponding to the particular ontology

in question. We use the notion term to refer to these “interesting” concept expressions.

More precisely, a term is: (i) a concept expression in any axiom, or (ii) a singleton of

any individual, or (iii) the complement of a term, or (iv) the syntactic sub-expression

of a term. In order to represent terms that will be used in EL++ reasoning, we assign

names to them.
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Definition 1. (Name Assignment) Given S a set of concept expressions, a name as-

signment fn is a function as for each C ∈ S, fn(C) = C if C is a basic concept;

otherwise, fn(C) is a fresh name.

Now we approximate an RO ontology to EL++ plus a complement table (CT). Its

basic idea is to represent (non-EL++) terms with its name assignment:

Definition 2. (EL++
C

Transformation) Given an RO Ontology O = (TO,AO) and a

name assignment fn, its EL++
C

transformation Afn,EL
++

C

(O) is a triple (T ,A, CT )

constructed as follows:

1. T ,A and CT are all initialised as ∅.

2. for each C ⊑ D (C ≡ D) in T , T = T ∪{fn(C) ⊑ fn(D)} (T = T ∪{fn(C) ≡
fn(D)}).

3. for each β ∈ RIT , add β into T .

4. for each a : C ∈ A, A = A ∪ {a : fn(C)}.

5. for each (a, b) : r ∈ A, A = A ∪ {(a, b) : r}.

6. for each term C in O, CT = CT ∪ {(fn(C), fn(~C))}, and

(a) if C is the form C1⊓. . .⊓Cn, then T = T ∪{fn(C) ≡ fn(C1)⊓. . .⊓fn(Cn)},

(b) if C is the form ∃r.D, then T = T ∪ {fn(C) ≡ ∃r.fn(D)},

(c) otherwise T = T ∪ {fn(C) ⊑ ⊤}.

Step 2 rewrites all the concept axioms; Step 3 preserves all the EL++ role axioms;

Step 4 and 5 rewrite all the ABox axioms; Step 6 defines all the EL++ terms and con-

structs the complement table CT . We call this procedure an EL++
C

approximation.The

EL++
C

approximation approximates an RO ontology into an EL++ ontology with a

table maintaining the complements of all the basic concepts in linear time:

Proposition 1. (EL++
C

Approximation) For an Ontology O, let Afn,EL
++

C

(O) = (T ,A, CT ),

we have: (1)(T ,A) is an EL++ ontology; (2) A only contains basic concepts of T ; (3)

for each A ∈ CNT , there exists (A, B) ∈ CT ; (4) if (A, B) ∈ CT then A, B ∈ CNT

and (B, A) ∈ CT .

Proposition 2. For any Ontology O = (TO,AO) and (T ,A, CT ) its EL++
C

transfor-

mation, if O contains nO terms, then |T | ≤ nO + |TO|, |A| = |AO| and |CT | = nO,

where |T |(|A|, |TO|, |AO|) is the number of axioms in T (A, TO,AO) and |CT | is the

number of pairs in CT .

Given an EL++
C

transformation (T ,A, CT ), we normalise axioms of form C ⊑
D1 ⊓ . . . ⊓ Dn into C ⊑ D1, . . . , C ⊑ Dn, and recursively normalise role chain

r1 ◦ . . . ◦ rn ⊑ s with n > 2 into r1 ◦ . . . ◦ rn−1 ⊑ u and u ⊑ s. This procedure

can be done in linear time. In the following, we assume T to be always normalised.

For convenience, we use a complement function fc : CNT 7→ CNT as: for each

A ∈ CNT , fc(A) = B such that (A, B) ∈ CT .
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3.2 ABox Internalisation and Reasoning

Once we are able to approximate an RO ontology into EL++, it is straightforward to

perform ABox reasoning by internalising the ABox into TBox. This can be done as in

classical EL++ (cf. Sec. 2) by encoding the ABox as a concept. However this approach

will introduce additional concept names in the normalisation phase, thus complicates

the reasoning. Alternatively, we can do the following internalisation:

Definition 3. (EL++
C

ABox Internalisation) Given an RO ontology O, let Afn,EL
++

C

(O) =

(T ′,A′, CT ′), its EL++
C

ABox internalisation AI(Afn,EL
++

C

(O)) is a triple (T , ∅, CT )

constructed as follows:

1. T is initialised as T ′.

2. CT = CT ′.

3. for each a : C ∈ A′, T = T ∪ {{a} ⊑ C}.

4. for each (a, b) : r ∈ A′, T = T ∪ {{a} ⊑ ∃r.{b}}.

It’s easy to show that such internalisation can be constructed in linear time and the

triple (T , ∅, CT ) still satisfy Proposition 1. Also, T is normalised if T ′ normalised. To

this end, we reduce ABox reasoning to TBox reasoning on T . To utilize the comple-

mentary relations in CT , we propose additional completion rules (Table 2) to EL++.

Table 2. Complement completion rules

R9
If A, B ∈ S(X), A = fc(B) and ⊥ /∈ S(X)
then S(X) := S(X) ∪ {⊥}

R10
If A ∈ S(B) and fc(B) /∈ S(fc(A))
then S(fc(A)) := S(fc(A)) ∪ {fc(B)}

R11
If A1 ⊓ . . . ⊓ Ai ⊓ . . . ⊓ An ⊑ ⊥, A1, . . . , Ai−1, Ai+1, . . . , An ∈ S(X) and fc(Ai) /∈ S(X)
then S(X) := S(X) ∪ {fc(Ai)}

R9 realises axiom A⊓~A ⊑ ⊥. R10 realises A ⊑ B →~A ⊑~B. R11 builds up

the relations between conjuncts of a conjunction, e.g. A⊓B ⊑ ⊥ implies A ⊑~B. The

reasoning is tractable and soundness-preserving:

Theorem 1. (Complexity) For any EL++
C

internalisation (T , ∅, CT ) (T normalised),

TBox reasoning by R1-R11 will terminate in polynomial time w.r.t. |CNT |+|RNT |.

Theorem 2. (Concept Subsumption Checking) Given an RO ontology O = (TO,AO),
its vocabulary VO and AI(Afn,EL

++

C

(O)) = (T , ∅, CT ), for any two concepts C

and D constructed from VO, if AI(Afn,EL
++

C

({C ⊑ ⊤, D ⊑ ⊤})) = (T ′, ∅, CT ′),

then O |= C ⊑ D if fn(D) ∈ S(fn(C)) can be computed by rules R1-R11 on

(T ∪ T ′, ∅, CT ∪ CT ′).

Concering ABox reasoning, this indicates that, O |= a : C if fn(C) ∈ S({a}) can

be computed. And O |= (a, b) : r if fn(∃r.{b}) ∈ S({a}) can be computed. When C

is a term of O, such computation can be performed directly on (T , ∅, CT ).
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3.3 TBox-irrelevant ABox Completion

The ABox internalisation absorbs the entire ABox into the TBox and reduce ABox

reasoning to TBox reasoning. However, this approach has its limitation: (i) according to

Theorem 1 when a large amount of individuals present, more computations are needed

(individuals are converted into singletons); (ii) it yields some results useless in TBox

and ABox reasoning. For example, A ⊑ ∃r.B, x : A will yield ({x}, B) ∈ R(r) by

R3. To optimize the performance we separate the reasoning of TBox and ABox.

We start from a simpler case, in which the approximated TBox contains no nominal.

In this case, the ABox reasoning has no effect on the TBox reasoning, which can thus

be pre-computed.

Given Afn,EL
++

C

(O) = (T ,A, CT ), after TBox reasoning of R1-R11, we present

ABox completion rules (Table 3) to compute, for each a ∈ INA, a class set C(a) ⊆
CNT ∪ CNA in which for each A ∈ C(a), T ,A |= a : C, and for each r ∈ RNT ∪
RNA, a role set RO(r) ⊆ INA × INA in which for each (a, b) ∈ RO(r), T ,A |=
(a, b) : r. These sets are initialised as: A ∈ C(a) if a : A ∈ A, (a, b) ∈ RO(r) if

(a, b) : r ∈ A.

Table 3. TBox-independent EL++

C
ABox completion rules (no datatypes)

AR1
If A ∈ C(x), B ∈ S(A) and B /∈ C(x)
then C(x) := C(x) ∪ {B}

AR2
If A1, A2, . . . , An ∈ C(x), A1 ⊓ A2 ⊓ . . . ⊓ An ⊑ B ∈ T and B /∈ C(x)
then C(x) := C(x) ∪ {B}

AR3
If (x, y) ∈ RO(r) A ∈ C(y), ∃r.A ⊑ B ∈ T and B /∈ C(x)
then C(x) := C(x) ∪ {B}

AR4
If (x, y) ∈ RO(r), ⊥ ∈ C(y) and ⊥ /∈ C(x)
then C(x) := C(x) ∪ {⊥}

AR5
If (x, y) ∈ RO(r), r ⊑ s ∈ T and (x, y) 6∈ RO(s)
then RO(s) := RO(s) ∪ {(x, y)}

AR6
If (x, y) ∈ RO(r1), (y, z) ∈ RO(r2), r1 ◦ r2 ⊑ r3 ∈ T , and (x, y) 6∈ RO(r3)
then RO(r3) := RO(r3) ∪ {(x, z)}

AR7
If A, B ∈ C(x), A = fc(B) and ⊥ /∈ C(x)
then C(x) := C(x) ∪ {⊥}

AR8
If A ∈ C(x), fc(A) ∈ S(fc(B)) and B /∈ C(x)
then C(x) := C(x) ∪ {B}

AR9
If A1 ⊓ . . . ⊓ Ai ⊓ . . . ⊓ An ⊑ ⊥, A1, . . . , Ai−1, Ai+1, . . . , An ∈ C(x) and fc(Ai) /∈ C(x)
then C(x) := C(x) ∪ {fc(Ai)}

It’s easy to see that AR1-AR6 are for EL++ while AR7-AR9 are for EL++
C

trans-

formation. More precisely, AR1-AR2 are analogues to R1-R2, AR3-AR4 analogues

to R4-R5, AR5-AR6 analogues to R7-R8, AR7-AR9 analogues to R9-R11. This in-

dicates that similar algorithms can be applied and tractability and soundness are pre-

served. The fewer completion rules shall result in more efficient inference. Further-

more, AR5-AR6 can be processed ahead of the other rules because other rules will not
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generate any RO sets elements. This should further improve the efficiency and scala-

bility. This TBox-ABox-separated approach should have the same results as the ABox-

internalised approach.

3.4 Integrated ABox Approximation

ABox completion presented in Sec.3.3 has a restriction that the approximated TBox

should contain no nominal. For example, a : A, a : B, B ⊑ {b}, with internalisation

we will infer b : A, which can not be computed by AR1-AR9. The question arises that

whether the internalisation and ABox completion approach can be combined. In this

section we discuss the possibility of relaxing the nominal-free restriction.

Our basic idea is to partition the approximated ABox A into two disjoint-union

subsets AI and AE so that AI should be internalised into the approximated TBox T to

obtain an extended TBox TI that can be classified by R1-R11, while AE can be com-

pleted by AR1-AR9 after TBox reasoning over TI . There can be different partitioning

strategies. In what follows, we present a reachability-based partitioning. In general,

any ABox axiom that contains concept or individual name that is directly or indirectly

reachable to some nominal, should be internalised.

Definition 4. (Nominal-reachable Signature) Let Afn,EL
++

C

(O) = (T ,A, CT ), its

nominal-reachable signature SigNR(Afn,EL
++

C

(O)) (SigNR(O) for short) is a mini-

mal subset of Sig(T ) ∪ Sig(A) having the following properties:

1. for any a ∈ INT , we have a ∈ SigNR(O).

2. for any A ∈ CNT , we have A, fc(A) ∈ SigNR(O) if there exists C ⊑ D ∈ T s.t.

A ∈ Sig(C) and Sig(D) ∩ SigNR(O) 6= ∅.

3. for any a ∈ INT , we have a ∈ SigNR(O) if there exists a : A ∈ A ((a, b) : r ∈ A)

s.t. A ∈ SigNR(O) (b ∈ SigNR(O)).

4. for any A ∈ CNA, A, fc(A) ∈ SigNR(O) if there exists a : A ∈ A s.t. a ∈
SigNR(O).

Then the ABox can be partitioned into two parts, one’s signature is nominal-reachable,

the other’s not. The nominal-reachable part of the ABox should be internalised into the

TBox:

Definition 5. (Reachability-based Internalisation) Given an RO ontology O and

Afn,EL
++

C

(O) = (T ′,A′, CT ′), its reachability-based internalisation RbI(Afn,EL
++

C

(O))

is a triple (T ,A, CT ) constructed as follows:

1. CT = CT ′.

2. let AI = {α ∈ A′|Sig(α)∩SigNR(O) 6= ∅}, and AI((T ′,AI , CT )) = (TI , ∅, CT ),
then

– A = A′ \ AI .

– T = TI .
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For example, let T1 = {B ⊑ {b}} and A2 = {a : A, a : B}, then both of the

ABox axioms should be internalised. Similarly, let T2 = {A ⊑ {a},∃r.B ⊑ C} and

A2 = {b : B, (a, b) : r}, then the entire ABox should be internalised as well so that

A ⊑ C can be inferred. Given RbI(Afn,EL
++

C

(O)) = (T ,A, CT ), the reasoning can

be performed as follows:

1. classify (T , ∅, CT ) by R1-R11.

2. extend A as A = A ∪ {a : A|A ∈ S({a})} ∪ {(a, b) : r|({a}, {b}) ∈ R(r)}.

3. reason (T ,A, CT ) by AR1-AR9.

This integration approach of internalisation and ABox completion should have the

same results as the the internalisation approach. The tractability of the reasoning is also

preserved.

There could be other way of partitioning the ABox. The advantage of our proposal

is that it is purely syntactic thus can be performed efficiently.

4 Evaluation

We implemented the internalisation approach (cf. Sec.3.2) and the ABox completion ap-

proach (cf. Sec.3.3) separately in our REL reasoner. In our experiments, REL int sys-

tem implemented the approximation (Sec.3.1) and the internalisation approach; REL ext

implements the approximation and the ABox completion approach. To evaluate their

performance in practice, we compared with mainstream reasoners Pellet 2.0.1 and FaCT++

1.3.0.1. All experiments were conducted in an environment of Windows XP SP3 with

2.66 GHz CPU and 1G RAM allocated to JVM 1.6.0.07.

Our test suite consists of several real world or benchmark ontologies with various

size and expressivity of TBox and ABox. The VICODI 3 ontology is developed to rep-

resent the history of Europe. SEMINTEC 4 ontology is developed for semantic web

mining. WINE 5 ontology is an OWL-DL show case ontology, designed to exploit the

expressive power of OWL-DL. LUBM (Lehigh University Benchmark) 6 is a bench-

mark for OWL-Lite query answering. VICODI and SEMINTEC have relatively simple

TBox but large ABox. WINE has a rather complex TBox and a moderate ABox. LUBM

contains a moderately complex TBox and its ABox can be generated as large as needed.

In our evaluation, we generated 1 university. Only WINE has nominals. We also con-

verted datatype properties into object properties. As for WINE ontology, the expres-

sivity is beyond RO, but REL directly approximate those constructs, e.g. cardinality

restrictions, inverse roles, with names.

For each ontology, we retrieve the types of all the individuals and the relations

between all pairs of individuals. Each reasoner was given 10 minutes on each task.

Recall of REL is calculated against the others. Thus the time shown in our evaluation

includes approximation time (for REL), reasoning time, type and relation retrieval and

3 http://www.vicodi.org/about.htm
4 http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm
5 http://www.w3.org/TR/owl-guide/wine.rdf
6 http://swat.cse.lehigh.edu/projects/lubm/
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counting time. Time unit is second. REL ext is tested for all the ontologies. REL int

is tested only for WINE ontology as the others contain no nominal. The results are

presented in Table 4, in which “e/o” indicates that the reasoner exited with an error;

“t/o”indicates that the reasoner failed to finish the task in 10 minutes.

Table 4. Evaluation Results

Ontology retrieval Pellet FaCT++
REL ext REL int

time recall time recall

VICODI
concept 7.828 17.515 3.86 100% - -

role 9.656 t/o 3.828 100% - -

SEMINTEC
concept 4.5 4.422 2.484 100% - -

role 7.062 t/o 2.485 100% - -

WINE
concept 17.813 e/o 1.266 85.1% 1.641 98.2%

role 26.9 e/o 1.266 40.0% 1.453 91.5%

LUBM×1
concept 10.937 17.359 8.531 100% - -

role 26.891 t/o 8.625 100% - -

As we can see from Tabel 4. REL is (2 times to more than 20 times) faster than all the

other reasoners on all the ontologies, which indicates an improvement on the efficiency

of reasoning. For simple ontologies such as VICODI, SEMINTEC and LUBM, the

advantage of REL is not significant. While when the ontology has a relatively complex

TBox, especially when the TBox and ABox are connected, the benefits of approximate

reasoning become substantial. Note that for these two tasks, the time of REL was almost

the same: because our completion rules compute the instances of all the atomic concepts

and atomic roles together.

Concerning the completeness, when the ontology is simple, the recall of REL ext

is 100%. When the ontology TBox gets complex and contains nominals. Separate rea-

soning of TBox and ABox becomes not satisfying. By internalising the ABox into TBox

the recall was significantly improved. It’s interesting to see that the time of REL int

was not much longer than REL ext on the WINE. That is because WINE ontology

contains about 208 individuals, which is not a large number. It will be necessary to im-

plement the integrated solution as we discussed in Sec.3.4, when the ABox goes large

and TBox contains nominals.

To sum up, the evaluation showed that even naive implementations of our approach

can provide efficient and rather complete ABox reasoning services. Particularly, when

the ontology is complex and large, the efficiency can still be retained while the com-

pleteness is not sacrificed too much.

5 Conclusion & Future Work

In this paper, we presented an approximate reasoning approach to address the issue

of ABox reasoning over ontologies of expressive DL RO, a fragment of OWL2-DL

supporting ALC GCIs, nominals and role chains. Our approach first approximates an
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RO ontology to an EL++ ontology plus a complement table (CT) maintaining the

complementary relations between named concepts (including ⊤ and ⊥) and singletons.

Then we presented an internalisation approach to reducing ABox reasoning into TBox

reasoning, and presented additional completion rules to utilize the CT. For ontology

with no nominal in TBox, we presented an optimized ABox Completion approach. We

further discussed the possibility of combining the two approaches and presented one of

the possible solution.

Our approximate reasoning strategy is soundness-preserving and can be realised in

PTIME. Although we don’t guarantee completeness, our preliminary evaluation showed

that naive implementations of our approach can improve the efficiency of reasoning over

real world and benchmark ontologies, while maintaining a high recall.

In the future, we would like to further improve the completeness by exploiting

more reasoning patterns, to future improve the scalability by combining with relational

databases, to further improve the efficiency by optimising the implementations. The

lack of expressive benchmark in our evaluation also motivates us creating our own

benchmarks.
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