
On the feasibility of Description Logic knowledge bases

with rough concepts and vague instances

C. Maria Keet

KRDB Research Centre, Free University of Bozen-Bolzano, Italy, keet@inf.unibz.it

Abstract. A usage scenario of bio-ontologies is hypothesis testing, such as find-

ing relationships or new subconcepts in the data linked to the ontology. Whilst

validating the hypothesis, such knowledge is uncertain or vague and the data is

often incomplete, which DL knowledge bases do not take into account. In ad-

dition, it requires scalability with large amounts of data. To address these re-

quirements, we take the SROIQ(D) and DL-Lite family of languages and their

application infrastructures augmented with notions of rough sets. Although one

can represent only little of rough concepts in DL-Lite, useful aspects can be dealt

with in the mapping layer that links the concepts in the ontology to queries over

the data source. We discuss the trade-offs and demonstrate validation of the the-

oretical assessment with the HGT application ontology about horizontal gene

transfer and its 17GB database by taking advantage of the Ontology-Based Data

Access framework. However, the prospects for comprehensive and usable rough

DL knowledge bases are not good, and may require both sophisticated modular-

ization and scientific workflows to achieve systematic use of rough ontologies.

1 Introduction

Various extensions of DLs and integration of DLs with other formalisms have been

proposed, including to represent and reason over vague knowledge. To date, useful re-

sults have been obtained with fuzzy ontologies [1], but this is much less so for rough

ontologies that aim to combine a standard DL with one of the formalisations of rough

sets. In particular, [2–7] diverge in commitment as to which aspects of rough sets are

included in the ontology language and the authors are concerned with the theory in-

stead of demonstrating successful use of the rough DL in applications and ontology

engineering. However, it has been noted within the Semantic Web context that scientist

want to use ontologies together with data, such as hypothesizing that some subconcept

exists and subsequently to validate this either in the laboratory or against the instances

already represented in the knowledge base [8]. Such a hypothesised new concept is as-

sumed to have a set-extension in the knowledge base and one would want to be able

to match those instances with the right combination of object and data properties of

the putative concept, i.e., taking a ‘guessed’ collection of attributes that is subsequently

experimentally validated against the data and shown to be correct, or not; e.g., [9]. Such

guessing includes dealing with incomplete or otherwise vague data, hence, for which

some sort of rough ontology may be useful. Ideally, for all relevant individuals belong-

ing to the putative concept, each value of the selected properties is distinct, but this

may not be the case due to the limited data or insufficiency of the selected properties

Proc. 23rd Int. Workshop on Description Logics (DL2010), CEUR-WS 573, Waterloo, Canada, 2010.

314



so that some individuals are indistinguishable from each other and therewith instan-

tiating a rough concept. Despite the vagueness, it still can be useful in the ontology

engineering process to include such a rough concept in the ontology. To support such

usage of ontologies, one needs a language with which one can represent, at least, rough

concepts as the intensional representation of the corresponding rough set and a way to

(persistently) relate the data to the rough concepts. As it turns out, there is no perfect

DL language, reasoner, and ontology development tool that does it all with respect to

the semantics of rough sets, nor will there be if one adheres to the hard requirement

of staying within the decidable fragment of FOL, let alone within the tractable zone.

Some results can be obtained, however: in addition to representing most of rough sets’

semantics with SROIQ using the TBox only, the linking to data and, moreover, as-

certaining if a concept is really a rough concept can be achieved within the framework

of Ontology-Based Data Access (OBDA) by exploiting the mapping layer [10]. While

this, arguably, may not be perceived as a great outcome, it is possible (and the remain-

der of the issues can be passed on to an application layer with scientific workflows and

refinements in the technologies). To demonstrate it is not merely theoretically possible

to have rough concepts and vague instances in one’s DL knowledge base, but that it is

indeed practically possible, we take the use case about horizontal gene transfer with a

hypothesized (rough) concept Promiscuous Bacterium, and demonstrate how this can be

modelled more precisely in an OWL 2 DL ontology and deployed in an OBDA system

using a DL-LiteA ontology stored as an owl file so that the instances from the 17GB

large HGT-DB database can be retrieved.

The remainder of the paper is structured as follows. We first introduce the basics

of rough sets and discuss identification of rough concepts in Section 2. Trade-offs to

include such roughness features in DLs will be discussed in Section 3. Results of the

experimentation with rough concepts and with vague instances will be presented in

Section 4, where we consider both the HGT ontology with the HGT-DB database and

[7]’s septic patients. We close with conclusions in section 5.

2 Identifying rough concepts

To be able to have a correspondence of a rough set with a rough concept in an ontology

and to represent its essential characteristics, we first outline the basics of rough sets

following the standard “Pawlak rough set model” (see for a recent overview [11, 12]).

2.1 Rough sets

The Pawlak rough set model is depicted informally in Fig. 1 and formally, it is as fol-

lows. I = (U,A) is called an information system, where U is a non-empty finite set of

objects and A a finite non-empty set of attributes and such that for every a ∈ A, we

have the function a : U 7→ Va where va is the set of values that attribute a can have.

For any subset of attributes P ⊆ A, one can define the equivalence relation IND(P ) as

IND(P ) = {(x, y) ∈ U × U | ∀a ∈ P, a(x) = a(y)} (1)

C. Maria Keet. 315



IND(P ) generates a partition of U , which is denoted with U/IND(P ), or U/P for short.

If (x, y) ∈ IND(P ), then x and y are indistinguishable with respect to the attributes in

P , i.e, they are p-indistinguishable.

Given these basic notions, we can proceed to the definition of rough set. From the

objects in universe U , we want to represent set X such that X ⊆ U using the attribute

set P where P ⊆ A. X may not be represented in a crisp way—the set may include

and/or exclude objects which are indistinguishable on the basis of the attributes in P—

but it can be approximated by using lower and upper approximation, respectively:

PX = {x | [x]P ⊆ X} (2)

PX = {x | [x]P ∩X 6= ∅} (3)

where [x]P denotes the equivalence classes of the p-indistinguishability relation. The

lower approximation (2) is the set of objects that are positively classified as being mem-

bers of set X , i.e., it is the union of all equivalence classes in [x]P . The upper approx-

imation is the set of objects that are possibly in X; its complement, U − PX , is the

negative region with sets of objects that are definitely not in X (i.e., ¬X). Then, “with

every rough set we associate two crisp sets, called lower and upper approximation”

[11], which is commonly denoted as a tuple X = 〈X,X〉. The difference between the

lower and upper approximation, BPX = PX − PX , is the boundary region of which

its objects neither can be classified as to be member of X nor that they are not in X; if

BPX = ∅ then X is, in fact, a crisp set with respect to P and when BPX 6= ∅ then X
is rough w.r.t. P .

Set X Lower approximationUpper approximation

Universe U Granule with object(s)

Fig. 1. A rough set and associated notions (Source: based on [11]).

The accuracy of approximation provides a measure of how closely the rough set

is approximating the target set with respect to the attributes in P . There are several of

such measures, denoted with αPX , for instance αPX = |PX|

|PX|
and αPX = 1− |BP X|

|U | .

Clearly, if αPX = 1, then the boundary region BPX is empty and thus X is crisp.

Useful for subsequent sections is also the following property of approximations:

PX ⊆ X ⊆ PX (4)

The rough set notions reduct and core can be considered to be the set of sufficient

conditions (attributes) and the set of necessary conditions, respectively, to maintain the

316 Description Logics with rough concepts and vague instances



equivalence class structure induced by P . Thus, we have CORE ⊆ RED ⊆ P such that

[x]RED = [x]P and RED is minimal for any a ∈ RED (i.e., [x]RED−{a} 6= [x]P ),

and for any reduct of P , RED1, . . . , REDn, the core is its intersection, i.e., CORE =

RED1∩. . .∩ REDn. That is, those attributes that are in P but not in RED are superfluous

with respect to the partitioning. On the other hand, no attribute in CORE can be removed

without destroying the equivalence structure (it is possible that CORE is an empty set).

2.2 Some ontological considerations

As a first step toward rough ontologies, it would be a severe under-usage of DL knowl-

edge bases if one only were to copy Pawlak’s ‘information system’ essentials, because

1. In a logic-based (formal) ontology we have more constructors and possible con-

straints at our disposal, most notably a set of roles, R, over objects and universal

and existential quantification;

2. There is more flexibility on how to represent ‘attributes’ of a concept C ∈ C: either

with one or more roles R ∈ R (i.e., object properties in OWL) or value attributions

D ∈ D (i.e., data properties in OWL), or both;

3. We need a complete and appropriate model-theoretic semantics for C and C, and,

as counterpart of the rough set, a rough concept, which we denote with “≀C” for

presentation convenience to clearly distinguish it from a crisp concept;

4. Given that attributes are used to compute C and C, then those attributes must be

represented in the ontology, and with ≀C a tuple of the former two, then also it must

have the attributes recorded in the ontology.

Concerning item 3, the semantics of the approximations is fairly straightforward, with

E denoting the reflexive, symmetric and transitive indistinguishability (equivalence)

relation:

C = {x | ∀y : (x, y) ∈ E → y ∈ C} (5)

C = {x | ∃y : (x, y) ∈ E ∧ y ∈ C} (6)

Then there is rough sets’ tuple notation, X = 〈X,X〉, for which we may have an

analougous one for concepts, ≀C = 〈C,C〉. For ≀C, there are two issues: the notational

distinction between a crisp (C) and a rough (≀C) concept, and the tuple notation. Re-

garding the first issue, there are two ontological commitments one can take regarding

the sets—either X is a special type of rough set where α = 1 or a rough set is a special

type of a crisp set because it is defined by the two crisp sets X and X—and, sub-

sequently, if a ‘rough ontology’ consists of only rough concepts or may contain both

rough concepts and crisp concepts. Because rough sets are defined in terms of crisp

sets, and, correspondingly, rough concepts in terms of a combination of two crisp con-

cepts, this means that the crisp set and concepts are the ‘primitive’ ones and that we

end up with a rough ontology that has both rough and crisp concepts to be able to have

rough concepts properly defined in an ontology. For this reason, we maintain the, thus

far, syntactic distinction between a crisp concept C and a rough concept ≀C. Regarding

the second point, and, in fact, the semantics of ≀C, using a tuple notation is not ideal

for discussing ontological commitments of rough sets and rough concepts and so it is

useful to flatten it out. One can commit to the subsumption relation between the sets

C. Maria Keet. 317



as in (4) and their corresponding concepts as pursued by [5, 7] or take a more flexible

approach that subsumes the former by introducing two binary relationships, lapr and

uapr, to relate any rough concept and its associated approximations, which are typed

as follows:

∀φ, ψ.lapr(φ, ψ) → ≀C(φ) ∧ C(ψ) (7)

∀φ, ψ.uapr(φ, ψ) → ≀C(φ) ∧ C(ψ) (8)

Observe that here we are quantifying over sets, not objects that are member of the re-

spective sets; i.e., we make explicit the knowledge about the three sets and how they

relate, not about the instances in those sets. With these relations we can make explicit

that ≀C is identified by the combination of its C and C, which is achieved by the fol-

lowing set of constraints:

∀φ. ≀ C(φ) → ∃ψ.lapr(φ, ψ),

∀φ. ≀ C(φ) → ∃ψ.uapr(φ, ψ),

∀φ, ψ, ϕ.lapr(φ, ψ) ∧ lapr(φ, ϕ) → ψ = ϕ, (9)

∀φ, ψ, ϕ.uapr(φ, ψ) ∧ uapr(φ, ϕ) → ψ = ϕ,

∀φ1, φ2, ψ1, ψ2.lapr(φ1, ψ1) ∧ uapr(φ1, ψ2) ∧

lapr(φ2, ψ1) ∧ uapr(φ2, ψ2) → φ1 = φ2.

The axioms in (9) say that for each rough concept, there must be exactly one lower ap-

proximation and one upper approximation and for each combination of lower and upper

approximation, there is one rough concept, i.e., if either one of the approximations dif-

fer, we have a different rough concept.

Last, because a partitioning of the universe of objects is done by means of selecting

a specific subset P of A of rough sets’ information system, we have in the DL notion

of ontology that the set of ‘attributes’ amounts to R∪D. Moreover, one has to impose

at the knowledge layer that those attributes P taken from R∪D must be represented in

the ontology with ≀C as its domain so as to represent explicitly and persistently which

properties were used to obtain the rough set as extension of ≀C.

Overall, we thus have a more precise notion of ≀C cf. the tuple notation in [5], use

both R and D for the ‘attributes’ (properties) of the concepts (cf. R only in [4, 7]), in-

clude the properties of the indistinguishability/equivalence relation (cf. their omission

in [6] or using the properties of the similarity relation [2]), and adhere to proper decla-

ration ofC,C, and ≀C in that they all have the same collection of properties from R∪D
(cf. giving the ‘approximations’ different sets of attributes in [7]).

3 Considerations regarding rough DL knowledge bases

The previous section introduced two essential aspects for a rough ontology language:

the necessity to represent the indistinguishability relation E and declare it reflexive,

symmetric, and transitive, and the identity of a rough concept by its lower and upper

approximation by means of identification constraints involving DL roles. Currently,

there is no DL language with corresponding complexity results that has both features.

318 Description Logics with rough concepts and vague instances



On the one hand, one could decide to invent a new language that includes both fea-

tures and that is hopefully still tractable in the light of abundant data. However, if one

were to be faithful to (7-9), then a second order logic is required, which is out of scope.

Alternatively, identification constraints (ids) have to be added in the ontology for each

rough concept (perhaps guided with an outside-the-langauge ontology design pattern),

hence the requirement to have the more common id constraint in the language. On the

other hand, one can decide to push the envelope of extant languages and tools and make

concessions. From a KR perspective, the former may be more interesting, but with an

eye on applicability and demands from the most active user-base of ontologies—the

life sciences and health care—it is worthwhile to push extant languages and its related

tools as far as possible to gain better insight if development of a new language and

corresponding tools are worth the effort. Give the extant languages, SROIQ(D) [13]

suffices for representing E, but not id and it does not behave well in the light of large

ABoxes, whereas the languages in the DL-lite family [10] are well-suited to handle

large ABoxes, but then we cannot represent E’s relational properties and the id can

be represented only in DL-LiteA,id. Some other DL languages, such as DLRifd and

DLRµ, also have either one or the other feature, but not both.

For practical reasons, we narrow down the DL knowledge base further to the DL-

based OWL species, because they are W3C standardised languages, there are ontology

development tools for them, they have automated reasoners, and they are the DL of

choice among the bio-ontologists. If we represent the reflexivity, symmetry and transi-

tivity of E, then we are confined to the new OWL 2 DL, for this is the only one where

one can assert all three object properties [14, 15]. For ≀C, there are two principal op-

tions: either define its semantics outside the language, or declare a “RoughC” in the

ontology and let all rough concepts also be subsumed by it. In the latter option and

considering the ontology languages and tools such as Protégé and Racer, we cannot

represent the identification constraint anyway (nor the tuple notation ≀C = 〈C,C〉 pro-

posed by [5]), and for the former option the applications would have to be adjusted to

include a check if the rough concepts are declared correctly. Moreover, one should ask

oneself what can be gained from including C and C in the ontology, besides deducing

C ⊑ C ⊑ C based on the declared knowledge in the TBox (thanks to (5) and (6)).

Jiang and co-authors identify the specific TBox reasoning services for their RDLAC as

definitely satisfiable, possibly satisfiable, and rough subsumption [5]. However, consid-

ering rough sets’ usage, it is the interplay with the actual instances that is crucial: after

all, it is only based on the fact that, given a non-empty ABox, the boundary region is not

empty that makes a concept a rough concept, and if we do not even test it against the

actual instances in the knowledge base, then there is no point in bothering oneself to

include a merely hypothetical rough concept in the ontology that cannot be examined

either way if it really is a rough concept.

Thus, another hurdle is the data, which can be loaded into the ABox proper or stored

and dealt with in secondary storage. Considering the most widely used ontology devel-

opment tool Protégé, it loads the ABox in main memory, which is doable for small data

sets but not for the medium to large size biological databases that easily exceed several

GB. Setting aside supercomputers and the obstacle to wait a while on a query answer,

this, then, forces one to take the second option of secondary storage, which, in turn

C. Maria Keet. 319



and at the time of writing, locks one into DL-Lite (and for the bio-ontologist, OWL 2

QL) that can represent even less of rough set’s semantics (and of the subject domain)

than OWL 2 DL. With the latter option, and, realistically, the Ontology-Based Data Ac-

cess framework with QUONTO [10], the lack of expressiveness of the language can be

counterbalanced by putting some of the subject domain semantics in the mapping layer.

This is not ideal because it is not as maintainable as when it would be represented in

the ontology, and it is not transparent for the domain expert who ideally should query

just the ontology and not bother with the knowledge squeezed into the mapping layer,

but we can get the data out of the database and have our rough concepts.

4 Experimentation with a rough ontology and vague instances

Given these trade-offs, we will demonstrate how one can have either an ontology with

rough concepts represented fairly comprehensively regarding the semantics (in Exper-

iment 1) or have it with more limited semantics but linked to the data and be able to

perform the actual hypothesis testing against the data (Experiment 2) using the HGT as

use case. To be fair to the latest technologies for expressive DLs, we also experimented

with a more expressive ontology than the HGT ontology and then using much less data,

by revisiting the definitions of septic of [7] and data of just 17 patients. Additional files

(ontologies, mappings, queries, and data) are available online as supplementary ma-

terial at http://obda.inf.unibz.it/obdahgtdb/obdahgtdb.html. The results

will be discussed in Section 4.2.

4.1 Results

The background for Experiment 1 and 2 is as follows. A geneticist has an idea about

what a “promiscuous bacterium” is because some bacteria transfer and receive much

more genes from other bacteria than others do. It is not fully understood who they are

and why this is the case, hence, the first step is to analyse the data—in casu, stored in the

17GB HGT-DB database—using properties that indicate a certain promiscuity so as to

find bacteria with comparatively many anomalous (foreign) DNA in their chromosome.

Experiment 1 (Promiscuous bacteria in OWL 2 DL) We specify a first attempt for

representing the promiscuous bacterium (PromBact) as a subtype of Bacterium in

the HGT ontology with an additional object- and a data property, so that it must have

more than 5 so-called flexible hgt-gene clusters (FlexCl, which are sets of adjacent

or nearby genes that are horizontally transferred) and the percentage of genes on the

chromosome that are predicted to be horizontally acquired, hgtPerctg, as > 10:

PromBact ≡ Bact ⊓ ∃ hgtPerctg.real>10 ⊓ ≥ 6 hasHGTCluster.F lexCl (10)

In addition, we can add the assertions regarding the equivalence relation (relational

properties omitted for brevity) and that PromBact has exactly one lower and one upper

approximation, PromBactLapr and PromBactUapr, as follows:

320 Description Logics with rough concepts and vague instances



PromBact ⊑ = 1 lapr.PromBactLapr (11)

PromBact ⊑ = 1 uapr.PromBactUapr (12)

PromBactLapr ≡ ∀E.PromBact (13)

PromBactUapr ≡ ∃E.PromBact (14)

Running ahead of the data we retrieve with OBDA, PromBact is indeed a rough con-

cept, so we also have specified a refinement, PromBact′ to investigate if we now have

included enough properties to have an empty boundary, hence a crisp concept:

PromBact′ ≡ PromBact ⊓ ∃ hgtPerctg.real>10 ⊓
≥ 11 hasHGTCluster.F lexCl ⊓ nrHGTgenes.integer>150

(15)

Querying or instance classification with this OWL 2 DL version and the HGT data is

currently not feasible. ♦

Experiment 2 (Promiscuous bacteria in OBDA) As in Experiment 1, our first attempt
is to represent PromBact in DL-LiteA (roughly OWL 2 QL), where we do not have
existential quantification in the subclass position, no cardinality restrictions, limited ob-
ject property assertions, no class equivalence, and no data property restrictions. To not
have the intended meaning of PromBact as in (10) all over the place, we chose to put
it in the OBDA mapping layer; that is, we have PromBact ⊑ Bact in the DL-LiteA
ontology, and then make a mapping between PromBact in the ontology and a SQL
query over the relational database (for technical details about the OBDA framework
used, the reader is referred to [10]). The head of the mapping is:

PromBact(getPromBact($abbrev,$ccount,$percentage))

and the body, i.e. the SQL query over the database where the WHERE clause has the
set of interesting properties for PromBact (which were modelled as object and data
properties in the TBox in the previous experiment):

SELECT organisme.abbrev, ccount, organisme.percentage

FROM ( SELECT idorganisme, COUNT(distinct cstart)

as ccount FROM COMCLUSTG2 GROUP BY idorganisme

) flexcount, organisme

WHERE organisme.abbrev = flexcount.idorganisme AND

organisme.percentage > 10 AND flexcount.ccount > 5

Querying the database through the ontology with a SPARQL query using the OBDA

Plugin for Protégé and answered using DIG-QUONTO, 98 objects are retrieved where

Dehalococcoides CBDB1 and Thermotoga maritima are truly indistinguishable bacte-

ria, i.e. they have the same values for all the selected and constrained attributes, and

a few others are very close to being so, such as Pelodictyon luteolum DSM273 and

Synechocystis PCC6803 who have both 6 clusters and 10.1% and 10.2%, respectively,

(which, practically, still lie within the error-margin of genomics data and its statistics);

see online material for details. Hence, PromBact is actually a rough concept.
To improve the accuracy and examine if we can turn a subconcept of PromBact

into a crisp concept, a new data property—NrOfHGTgenes with integer values, set
to >150—is added and the second attribute set at >10 gene clusters, which thus revises

C. Maria Keet. 321



the assumption of what a promiscuous bacterium really is, i.e., we have PromBact′ in
the ontology such that PromBact′ ⊑ PromBact. The head of the mapping is:

PromBactPrime(getPromBactPrime($abbrev,$ccount,$percentage,$hgt))

and the body:

SELECT organisme.abbrev,ccount,organisme.percentage,organisme.hgt

FROM ...

WHERE organisme.abbrev = flexcount.idorganisme AND

organisme.percentage > 10 AND flexcount.ccount > 10 AND

organisme.hgt > 150

The query answer has only 89 objects and this change even eliminates the boundary

region, hence PromBact′ is a crisp concept with respect to the database. ♦

Experiment 3 (Revisiting septic patients) Patients may be septic or are certainly sep-

tic, according to the so-called Bone criteria and Bone criteria together with three out of

another five criteria, respectively. For instance, the Bone criteria are (from [7]):

– Has infection;

– At least two out of four criteria of the Systemic Inflammatory Response Syndrome:

• temperature > 38◦C OR temperature < 36◦C;

• respiratory rate > 20 breaths/minute OR PaCO2 < 32 mmHg;

• heart rate > 90 beats/minute;

• leukocyte count < 4000 mm3 OR leukocyte count > 12000 mm3;

– Organ dysfunction, hypoperfusion, or hypotension.

The respective encodings in Protégé 4.0 and RacerPro 2.0 preview are available online

as supplementary material, as well as data of 17 ‘patients’ such that the boundary region

of each concept is not empty. The experiments were carried out on a Macbook Pro with

Mac OS X v 10.5.8 with 2.93 GHz Intel core 2 Duo and 4 GB memory. Protégé 4.0 with

Pellet 2.0 did not work at all. Protégé 4.0 with FaCT++ works well with a few dummy

concepts and a few instances, but the esoteric definitions for septic appeared to be more

challenging: it crashed with an encoding including the indistinguishability relation E
and (with or without E), upon saving and reopening the owl file it had reordered the

braces in the definition in such a way as to change its meaning so that it does not

classify all 17 individuals correctly. These observations may be due to the fact that the

software used is still in the early stages. RacerPro 2.0 preview never crashed during

exerimentation and did return the correct classifications within about 2 hours. While

the latter is an encouraging result because it works with the real definitions and a small

data set, the automated reasoning clearly does not scale to [7]’s thousands of patients.

(The authors did not respond on a request for details of their experimental set-up.) ♦

4.2 Discussion

While a rough ontology such as the amended HGT ontology in OWL 2 DL can provide

a better way of representing the declarative knowledge of putative and actual rough

concepts, it is only with the less expressive DL-Lite-based OBDA system that it could be

experimentally validated against the data. The ontologies and OBDA provide a means

to represent the steps of successive de-vaguening during experimentation, they make

322 Description Logics with rough concepts and vague instances



the selected properties explicit, and, if desired, one can keep both ≀PromBact and

PromBact′ in the ontologies without generating inconsistencies.

However, TBox rough subsumption and possible and definite satisfiability reasoning

might be useful during engineering of rough ontologies. To improve outcomes for the

expressive ontology setting, one could split up the database and import into the ABox

all the data of only one organism at a time, do the instance classification, export the

results, merge the results after each classification step, and then manually assess them.

However, there are currently about 500 organisms in the database (which are soon to

be extended to about 1000) and, ideally, this should not be done with one-off scripting.

Alternatively, one may be able to design sophisticated modularization of both the on-

tology and the data(base) so as to execute the reasoning only on small sections of the

ontology and database, in the direction of, e.g., [16, 17].

Although a rough DL knowledge base works as proof-of-concept, the procedure

to carry it out is not perceived to be an ideal one. One might be able to turn into a

feature the cumbersome interaction between the more precise representation of rough

concepts in OWL 2 DL and the linking to data with OWL 2 QL (or a similar tractable

language) by upgrading it to a named scientific workflow. This guides the developer to

carry out in a structured, traceable, and repeatable manner the tasks to (i) develop a

basic ontology in OWL 2 QL or DL-LiteA, (ii) get the database, (iii) set up the OBDA

system, (iv) declare the mappings between the concepts and roles in the ontology and

SQL queries over the database, (v) find all rough concepts with respect to the data

and add them to the ontology, (vi) migrate this ontology to OWL 2 DL, (vii) add the

semantics from the WHERE clause in the SQL query of the mapping layer as object

and data properties in the ontology, (viii) add upper and lower approximations of each

rough concept, (ix) add the equivalence relation with its properties, (x) add the axioms

relating the approximations to the rough concepts and vice versa, and (xi) when the

rough reasoning services are implemented, run the reasoner with the enhanced ontology.

It will also be useful to go in the reverse direction in the light of updates to the database

and in case the ontology was inconsistent or a had an unsatisfiable concept.

5 Conclusions

Extension of standard Description Logics knowledge bases with the essential notions of

rough sets revealed both theoretical and practical challenges. Given rough sets’ seman-

tics, there is no, nor will there be, a DL that represents all essential aspects precisely,

although expressive languages, such as SROIQ(D), come close and some tools, such

as RacerPro, can handle complex rough concept descriptions with a small amount of

data. On the other hand, it is the interaction with large amounts of data that makes any

extension with roughness interesting and useful. This can be addressed with a tractable

Ontology-Based Data Access framework by exploiting the mapping layer that links the

concepts in the ontology over queries to the database. To validate the theoretical assess-

ment, we have experimented with rough concepts and vague instances using the HGT

case study and the recurring example of septic patients. The experimentation showed

it is possible to have rough knowledge bases. However, more work in the direction of

streamlining the rather elaborate procedure into a scientific workflow or developing im-

C. Maria Keet. 323



plementations of sophisticated ontology and data modularization, or both, is advisable

in order to achieve a platform for hypothesis-driven usage of rough ontologies that will

reap the greatest benefits to meet the users’ requirements.

Acknowledgements I thank Umberto Straccia, Ferdinando Bobillo, and Mariano

Rodrı́guez-Muro for feedback during the experimentation.

References

1. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for

the semantic web. Journal of Web Semantics 6(4) (2008) 291–308

2. Bobillo, F., Straccia, U.: Supporting fuzzy rough sets in fuzzy description logics. In: Proc.

of ECSQARU’09. Volume 5590 of LNCS., Springer (2009) 676–687

3. Fanizzi, N., D’Amato, C., Esposito, F., Lukasiewicz, T.: Representing uncertain concepts

in rough description logics via contextual indiscernibility relations. In: Proc. of URSW’08.

Volume 423 of CEUR-WS. (2008)

4. Ishizu, S., Gehrmann, A., Nagai, Y., Inukai, Y.: Rough ontology: extension of ontologies

by rough sets. In Smith, M.J., Salvendy, G., eds.: Proceedings of Human Interface and the

Management of Information. Volume 4557 of LNCS., Springer (2007) 456–462

5. Jiang, Y., Wang, J., Tang, S., Xiao, B.: Reasoning with rough description logics: An approx-

imate concepts approach. Information Sciences 179 (2009) 600–612

6. Liau, C.J.: On rought terminological logics. In: Proceedings of the 4th International Work-

shop on Rough Sets, Fuzzy Sets and machine Discovery (RSFD’96). (1996) 47–54

7. Schlobach, S., Klein, M., Peelen, L.: Description logics with approximate definitions—

precise modeling of vague concepts. In: Proc. of IJCAI’07, AAAI Press (2007) 557–562

8. Keet, C.M., Roos, M., Marshall, M.S.: A survey of requirements for automated reasoning

services for bio-ontologies in OWL. In: Proc. of OWLED’07. Volume 258 of CEUR-WS.

(2007) 6-7 June 2007, Innsbruck, Austria.

9. Marshall, M.S., Post, L., Roos, M., Breit, T.M.: Using semantic web tools to integrate ex-

perimental measurement data on our own terms. In: Proc. of KSinBIT’06. Volume 4277 of

LNCS., Springer (2006) 679–688

10. Calvanese, D., et al.: Ontologies and databases: The DL-Lite approach. In: Semantic Tech-

nologies for Informations Systems. Volume 5689 of LNCS., Springer (2009) 255–356

11. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1) (2007)

3–27

12. Pawlak, Z., Skowron, A.: Rough sets: Some extensions. Information Sciences 177(1) (2007)

28–40

13. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. Proc. of KR’06

(2006) 452–457

14. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 web ontology language structural

specification and functional-style syntax. W3c recommendation, W3C (27 Oct. 2009)

http://www.w3.org/TR/owl2-syntax/.

15. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2

Web Ontology Language Profiles. W3c recommendation, W3C (27 Oct. 2009)

http://www.w3.org/TR/owl2-profiles/.

16. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description logic el

using a relational database system. In: Proc. of IJCAI’09, AAAI Press (2009)

17. Baader, F., Bienvenu, M., Lutz, C., Wolter, F.: Query and predicate emptiness in description

logics. In: Proc. of KR’10. (2010)

324 Description Logics with rough concepts and vague instances


