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Abstract. Automated screening platforms allow biologists to acquire
large amounts of image data with high information content. However,
reliable automatic methods for analyzing this data are often not avail-
able. Here, we present an approach for detailed cell cycle analysis based
on live cell fluorescence microscopy image sequences. Our approach com-
prises segmentation and tracking of dividing cell nuclei, and classifies cells
into seven cell cycle phases as well as five abnormal morphological phe-
notypes. Moreover, we automatically quantify cell cycle phase durations
and perform a statistical analysis to determine temporal phenotypes.
Our approach was successfully applied to images from gene knockdown
experiments and experiments treated with small molecule drugs.

1 Introduction

Understanding gene regulation of the cell cycle is of high common interest since
errors in this process may lead to serious diseases such as cancer. High-content
image-based screening is a powerful technology for gene function studies, and
comprises automated microscopy as well as computational analysis to automat-
ically extract information in an unbiased way. In screening experiments for cell
cycle analysis usually live cell images of multiple cells are acquired. Multi-cell im-
age sequences can be either analyzed in a population-based manner, i.e. features
are determined for all cells and changes are studied for the whole population over
time. However, subtle effects, such as cell cycle phase prolongations of certain
cells, cannot be detected in this way. Therefore, single cell-based analysis has to
be performed, which requires to track the individual cells throughout an image
sequence. Based on tracking, the temporal evolution of single cells can be in-
vestigated, in particular, to study cell cycle phase progression. Previously, this
has been done based on phase contrast ([1]) and fluorescence (]2, 3]) microscopy
images. However, these studies distinguished only up to five cell cycle phases
and did not consider abnormal cellular morphologies. Also, none of these stud-
ies determined cell cycle phase durations which is an essential readout for gene
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function studies. In [4] seven normal phases were distinguished, but abnormal
morphologies were not considered. Here, we present an approach to automati-
cally determine morphological and temporal phenotypes on a single cell basis.

2 Materials and Methods

In this work, we analyze fluorescence microscopy 3D image sequences with three
slices per time step, including multiple cell nuclei (Fig. 1, left). We developed the
following image analysis approach: First, segmentation and tracking is performed
based on maximum intensity projection (MIP) images. Next, image features
are extracted based on original images and MIP images. Then, we perform
classification of each nucleus at each time step, and finally process the obtained
phase sequences and quantify phase durations using a finite state machine.

2.1 Segmentation and Tracking

For segmentation we developed a region-adaptive thresholding approach based
on Otsu’s method. Local thresholds are computed in overlapping image regions
and are applied to their non-overlapping center regions. For normal cell nu-
clei this method yields accurate results, however, for accurate segmentation of
abnormal morphologies additional processing steps are necessary. In our appli-
cation, abnormal morphologies are characterized by dim micronuclei attached to
a bright main nucleus and small detached chromosomes. Proper segmentation of
these structures is important to enable correct phenotype classification. For seg-
mentation of dim micronuclei attached to a bright normal nucleus we apply the
segmentation algorithm twice, where in the second run the bright normal nuclei
are masked out. To merge single detached chromosomes to their corresponding
main nucleus our approach automatically connects small objects (smaller than
the smallest regular nuclei in anaphase) to the closest regular nucleus in their
neighborhood by inserting a connecting line (Fig. 1, middle) .

For tracking dividing cells we developed a two-step approach. First, initial
trajectories (one-to-one correspondences) are determined using a feature point
tracking algorithm [5]. Second, mitosis events are detected and the respective
trajectories are merged, establishing one-to-many correspondences. The detec-
tion of a mitosis event requires that (1) the daughter nuclei are smaller than
the average nucleus, and (2) the Euclidean distance between daughter cells is
below a threshold. If (1) and (2) are fulfilled, a measure for the likelihood of
a mitosis event is computed, which is composed of three terms: The first term
includes the ratio of the mean nucleus intensity and the intensities of the po-
tential daughter nuclei, and yields values close to one if the daughter nuclei are
very bright compared to the mean nucleus intensity. The second term considers
the ratio of mother nucleus size and mean nucleus size, and yields values close
to one if the mother nucleus is smaller than the average. The third term takes
into account the analogous size ratio for the daughter nuclei, and consequently
is close to one if both daughters are smaller than the average. The terms can be
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individually weighted and sum up to a maximum value of one. If the likelihood
measure is sufficiently high, the respective case is considered as mitosis (Fig. 1,
right). Note that the number of possible daughter cells is not restricted to two,
and thus, also abnormal splits into more than two daughter cells can be tracked.

2.2 Feature Extraction and Classification

We compute features for each cell nucleus based on the MIP images and based
on single image slices of the original 3D images. In the latter case, the most
informative slice is selected for each nucleus based on maximum total inten-
sity. The reason for using the original image slices is that fine textures, which
are important for the classification of certain phases (e.g., prophase), can be
blurred in the MIP images leading to misclassifications. On the other hand,
the selected slice not necessarily contains the entire object, e.g., detached chro-
mosomes often were located in other slices. Consequently, we compute features
related to texture, like Haralick texture features or wavelet features, based on
the most informative slices, and features primarily related to object shape, e.g.,
size, circularity, or Zernike moments based on the MIP images. In addition, we
use dynamic features representing the temporal changes of nuclei. These fea-
tures are computed as differences of basic features (e.g., object size, mean and
standard deviation of intensity, shape features) between subsequent frames. In
total, we use 376 features. Our approach automatically classifies nuclei into 12
classes (inter-, pro-, prometa-, meta-, early ana-, late ana-, and telophase, ab-
normal early and late anaphase, abnormal telophase, abnormal interphase, and
cell death) (Fig. 2, bottom, right) using support vector machines (SVMs) with
a Gaussian radial basis function kernel. To obtain a more balanced data set we
limited the number of interphase samples to 1000 per sequence, which yielded
better results than using weighted SVMs.

2.3 Phase Sequence Analysis

To ensure consistency of the resulting phase sequences and to determine phase
lengths we developed a finite state machine (FSM), which models cell cycle pro-

Fig.1. MIP of a nocodazole treated experiment (left), segmentation with merged
detached chromosomes (middle), enlarged tracking result with cell divisions (right).
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gression and accepts only biologically plausible phase sequences. All 12 classes
are represented by states of the FSM and all possible transitions between classes
by state relations. Additionally, the FSM includes error states for all regu-
lar states that handle illegal phase transitions by correction or resetting. Note
that using 12 instead of seven classes increases the model complexity signifi-
cantly. The FSM processes phase sequences sequentially and each state includes
a counter to determine phase durations.

3 Results

We applied our approach to 48 3D image sequences acquired on a confocal laser
scanning microscope with an image acquisition interval of seven minutes and
three slices per time step (1024x1024 pixels, 8 bit), and a total observation
time of 15h to 25h. The imaged HeLa cells were fluorescently labeled with
histone EGFP (visualizing the DNA), and treated with three different doses
of the microtubule depolymerizing drug nocodazole (low, medium, and high).
For each concentration we acquired six treated and six non-treated control se-
quences. Moreover, we performed siRNA knockdown experiments targeting the
microtubule-associated gene ch-TOG and acquired six treated and six control
sequences. Both treatments caused a delay in a prometaphase-like state, and af-
terwards chromosomal abnormalities such as lagging chromosomes, segregation
defects, and appearance of micronuclei (Fig. 2, bottom, right).

The accuracy of our segmentation approach was evaluated based on four
sequences where ground truth was determined manually. We quantified the oc-
currence of under- and oversegmentations and obtained an overall accuracy of
98.1%. The tracking accuracy was determined based on the same sequences,
and we found that for a total number of about 16,900 matches, 40 mismatches
occurred (mostly caused by segmentation errors), yielding an overall accuracy of
99.8 %. Mitosis detection was evaluated based on 22 sequences, yielding an accu-
racy of 95.4 % and a positive predictive value of 92.0 %. The false positives were
caused by abnormal morphologies such as detaching micronuclei. To determine
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Fig. 2. Mean phase durations in minutes (y-axis) for the automatically analyzed image
sequences, and example images for all 12 classes.
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the classification accuracy we manually annotated 16 sequences from the noco-
dazole, and four sequences from the RNAi experiments. Using five-fold cross
validation we yielded an overall classification accuracy of 93.9 % for the nocoda-
zole, and 94.7 % for the RNAI data. Finally, we trained one SVM classifier with
the annotated nocodazole and one with the annotated RNAi data, and applied
them to the remaining, previously unseen test data. We determined the mitotic
phase lengths based on the classification results using our finite state machine.
To prove that our approach allows accurate determination of changes in mitotic
progression, we analyzed the effects of nocodazole and siRNA treatment on the
durations of mitotic phases. In particular, we tested whether prometaphase
in perturbed cells was significantly longer than in controls, and compared the
dose response of different nocodazole concentrations using Mann-Whitney tests
(a=5%). We found a highly significant prometaphase prolongation for all noco-
dazole concentrations (Fig. 2). The high concentration showed a stronger effect
of higher significance (p=4.2-107'?) compared to the medium and low concentra-
tions (p=1.1-10"7 and p=4.1-10"7). Cells treated with ch-TOG siRNA showed
an even stronger increase of prometaphase duration (Fig. 2, p=2.3-10712).

4 Discussion

We presented an automatic approach for cell cycle analysis from live cell image
sequences. Our approach allows accurate segmentation, tracking, and classifica-
tion of normal as well as morphologically abnormal cell nuclei. We systematically
evaluated the performance of the single steps of our approach based on real im-
age sequences from different experiments. Our approach robustly quantifies the
duration of mitotic phases and enables large-scale statistical analysis of phase
durations to determine temporal phenotypes.
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