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Abstract. Dynamic contrast-enhanced MRI of the breast (DCE-MRI)
is widely used for detection and quantification purposes of breast cancer.
The particular acquisition procedure of DCE-MRI over time leads to
motion artifacts which distort analysis results. In this work we examine
two criteria for a segmentation approach to separate areas affected by
motion artifacts from properly perfused regions. By application of our
approach to simulated perfusion data we showed that a homogeneity
measure based on perfusion parameters achieves the best segmentation
results with respect to the ground truth. This effect was confirmed when
segmenting patient data.

1 Introduction

In North America and Europe, breast cancer is the most frequent mortal disease
in women. Medical imaging techniques play an important role in diagnosis. In
particular high-risk cases DCE-MRI of the breast allows a sophisticated analysis
of lesion dynamics. A breast tumor leads to formation of new vessels, which
is referred to as angiogenesis [1]. In DCE-MRI a contrast agent (CA) is intra-
venously injected and works as a tracer of perfusion. The angiogenetic activity
leads to CA accumulations and allows for breast cancer detection through the
calculation of perfusion parameters.

A current method to determine perfusion parameters for different lesions is to
define regions with similar perfusion characteristics (Regions of Interest, ROI).
Calculating an average over the ROI reduces the influence of noise. Many tools
allow for manual ROI placement, although this carries the risk of missing im-
portant details of the data and is subject to inter- and intra-observer variability.
We employ a method by Glaßer et al. [2] to automatically generate ROIs in
DCE-MRI to derive perfusion parameters of tumorous tissue.

Motion artifacts which are based on patient motion during acquisition ham-
per the correct determination of perfusion parameters. They result in incorrect
inter-voxel correspondences between images at different times. In the automatic
region generation method, this results in smaller regions of homogeneously per-
fused tissue and produces new regions with mixed perfusion parameters.

To reduce the influence of motion a global registration approach can be ap-
plied (e.g. we use a method by Rueckert et al. [3]). It optimizes the voxel po-
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sitions using mutual information as similarity measure and a continuous defor-
mation function (e.g. B-Splines). Hence, there exists a high conformance at the
boundary between breast and background but in tumor regions within the breast
it is less accurate. This is caused by the fact that entropy is high even for images
in perfect registration because of change of CA concentration. This leads to a
less well pronounced minimum for the registration criterion. Other approaches
have tried to compensate for this. Melbourne et al. [4] analyze principal com-
ponents of the currently best registered two images and optimize them in an
iterative process. If periodic motion is present though, it will be propagated in
the principal components. Xiaohua et al. [5] merge the process of segmentation
and registration to incorporate knowledge of regional anatomy to align different
images, but no reliable evaluation for non-rigid registration results is provided.

Although many attempts have been conducted, a perfect registration is still
hard to achieve. Thus, remaining motion artifacts have to be identified by ab-
normal perfusion parameter characteristics. The goal of this study is to examine
which criteria are well suited for this purpose.

2 Materials and Methods

For the investigation presented here we use a region merging segmentation ap-
proach [2] and tested two different merging criteria. These criteria are defined
such that the algorithm produces homogeneous regions in terms of a defined
correlation threshold. The first criterion employs the raw intensity values which
have been measured at particular time steps. As regions contain multiple voxels,
image values are averaged over each time measurement when merged with other
regions. The vector V1 containing relevant information for a region R is

V1(R) = (R0, ..., Rn−1)
T

(1)

where n is the number of time points measured in the dataset. It is assumed that
similar perfusion characteristics lead to similar measured values in two different
regions. It should be noted that image artifacts, particularly noise, motion and
partial volume effects will be directly represented in the vector data. Hence,
they will influence the calculation of similarity of regions.

The second criterion uses general properties of the averaged perfusion time
course of a region. The curve properties are employed as indicators for diagnostic
purposes as well [6]. The feature vector V2 in ((2)) incorporates three parameters
which are calculated from the perfusion time curve.

V2(R) = (Sup(R), Sdown(R), REm(R))
T

(2)

Sup(R) =

(
R⌊n/2⌋ −R0

R0

)
(3)

Sdown(R) =

(
R⌊n/2⌋ −Rn−1

Rn−1

)
(4)

REm(R) =

(
max(R0, ..., Rn−1)−R0

R0

)
(5)
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Table 1. Comparison of criterion V1 and V2 using different statistical measures. The
best performing measures (SP, SE, REL, NPV) of either V1 or V2 are printed bold.

criterion V1 criterion V2

displacement SP SE REL NPV SP SE REL NPV

1 pixel 0.912 0.878 0.979 0.612 0.876 0.905 0.970 0.675

2 pixel 0.983 0.851 0.980 0.872 0.986 0.934 0.986 0.932

3 pixel 0.972 0.827 0.965 0.855 0.974 0.876 0.969 0.895

The upslope (Eq. (3)) characterizes the early enhancement intensity, the downs-
lope (Eq. (4)) shows the washout of CA from the tissue and the relative enhance-
ment in ((5)) represents the maximum enhancement of the curve. R denotes the
current region and n the number of measured time steps.

Two different experiments have been accomplished to test both similarity cri-
teria for their ability to distinguish between normal and motion distorted areas
in the image. The first experiment is performed with simulated data, showing
a lesion with two differently enhancing regions. Artificial motion displacement
is added with different magnitude and relative enhancement curves (REC) of
segmented regions are evaluated. This shows the effects solely caused by motion
artifacts. The second experiment is performed with patient data (manually reg-
istered and unregistered) to see whether similar effects as in the first experiment
can be observed.

3 Results

In this section we describe the outcome of the experiments previously outlined.
The different rows in Fig. 1 show the results of the segmentation of the simulated
dataset. The extent of motion influence increases from 0 pixels to up to 3 pixels
offset per time step. The 1 pixel and 2 pixel offset is a linear shift whereas the
3 pixel image is generated by a rotation.

Tab. 1 shows the detection performance for both criteria of the simulated
images. Therefore all segments have been manually classified as regions rep-
resenting motion artifacts (M) and regions not influenced by motion (P). The
specificity (SP) expresses the likelihood of a segment being classified as P and
belonging to class P. The sensitivity (SE) expresses the likelihood of a segment
being classified as M and belonging to class M. The relevance (REL) expresses
the proportion of segments correctly classified as P and all segments classified
as P. The negative predictive value (NPV) expresses the proportion of segments
correctly classified as M and all segments classified as M.

For the second experiment a ROI of a DCE-MRI data set showing contrast
enhancement in tumorous tissue has been manually registered by an expert.
Both the registered and unregistered image have been segmented with the pro-
posed approach. Results are shown for the parameter-based criterion V2 (Fig. 2),
because it achieves better results in the first experiment.
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4 Discussion

Both similarity criteria are able to segment the two differently perfused areas of
the simulated data (first row of Fig. 1). However, using criterion V2 results in
much fewer regions (avg. of 20) compared to criterion V1 (avg. of 40). This fact
enables a better distinction between regions showing correct perfusion character-
istics and those influenced by motion (see column 3 and 5 in Fig. 1). In Tab. 1
SE and the NPV characterize the performance of segmenting motion distorted
areas. The criterion using V2 leads to a better performance, especially when a
stronger influence of motion is present. V2 also performs better for the segmen-
tation of correctly perfused areas (SP and REL). Therefore this criterion should
be preferred. The second experiment analyzes patient data. The regional REC
of the manually registered image are very similar and indicate normal perfusion

original image segm. for V1 REC for V1 segm. for V2 REC for V2

Fig. 1. Each row depicts the results of simulated perfusion data with different extent
of motion influence. The first column shows the image itself, the second shows the
segmentation result for criterion V1 and the third column the enhancement curves for
the segmented regions. Column 4 and 5 show the results for criterion V2 likewise. The
two region curves showing the true perfusion characteristics are printed bold and black.
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Fig. 2. Segmentation results for manually registered (a) and unregistered (b) patient
data is shown. (c) and (d) present the REC of (a)/(b) for regions bigger than 5 voxels.

(a) (b) (c) (d)

characteristics (Fig. 2). The unregistered image leads to formation of new re-
gions near the boundary (black mark) which show different time courses (dotted
curves) than the correctly perfused parts. This implies that similar effects than
in the first experiment can be observed in patient data.

Further steps will be focused on the motion correction to DCE-MRI. The
proposed method can then be used to evaluate and conduct the correction process
although more experiments have to be performed with patient data. As the
parameter-based model yields promising results, the use of a more sophisticated
model might be useful. Though, we plan to implement a pharmacokinetic model
to measure the plausibility of derived REC to automatically distinguish between
realistic perfusion parameters and those influenced by artifacts.
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