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Abstract. The Iterative closest point (ICP) algorithm is a widely used
method for 3D point set registration. It iteratively establishes point cor-
respondences between two input data sets and computes a rigid trans-
formation accordingly. From a statistical point of view, the algorithm
implicitly assumes that the points are observed with isotropic Gaussian
noise. In this paper, we present the first variant of the ICP which ac-
counts for anisotropic localization uncertainty in both steps of the algo-
rithm and show that in the presence of anisotropic noise, the modified
ICP is better suited for both, establishment of point correspondences
and transformation computation.

1 Introduction

The iterative closest point (ICP) algorithm [1] is a widely used method for 3D
point set registration in the context of medical image processing. In order to
find an optimal alignment between two input point clouds the algorithm it-
eratively (1) establishes point correspondences given the current alignment of
the data and (2) and computes a rigid transformation accordingly. It can be
shown that the method converges to an at least local minimum with respect to
a mean-square distance metric. From a statistical point of view, the algorithm
implicitly assumes that the points are observed with zero-mean, identical and
isotropic Gaussian noise. In practice, however, point localization errors may
be highly anisotropic. Optical tracking systems and time-of-flight (TOF) cam-
eras, for instance, typically have a much higher localization uncertainty in the
view direction of the camera. Although various ICP variants have been pro-
posed in the literature [2], the issue of anisotropic noise has so far been given
very little attention. This may be due to the fact that all known closed-form
solutions for registering two point sets with known correspondences implicitly
assume isotropic noise [3]. To our knowledge, Estépar [4] were the first and
so far the only ones who proposed a variant of the ICP, the so-called general-
ized total least squares ICP algorithm (GTLS-ICP), that addresses this issue.
The applied iterative method for computing a rigid transformation based on
the current estimation of point correspondences accounts for anisotropic noise
in both the target and the source models. However, the standard closest point
operator based on the Euclidean distance is applied for establishing the point
correspondences (Fig. 1(e)).
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In this paper, we propose a closest point operator for handling point local-
ization inaccuracies and show that in the presence of anisotropic noise, it is
better suited for identifying corresponding points than the Euclidean distance.
Furthermore, we present a variant of the ICP algorithm based on this operator
and the recently introduced point registration algorithm by Balachandran and
Fitzpatrick [3].

2 Materials and Methods

2.1 Closest Point Operator and ICP with Anisotropic Weighting

Let P = {p1, . . . ,pNP
} be a noisy source point set (e.g., a set of points acquired

with a TOF camera) to be registered to a model point set X = {x1, . . . ,xNX
}

(e.g., the set of vertices from a surface mesh extracted from computed tomogra-
phy (CT) data). In the original ICP algorithm, the goal is to find the rigid body
transformation that minimizes the mean squared Euclidean distance between
corresponding points (Fig. 1(e)).

In order to account for anisotropic noise, we modify the original ICP algo-
rithm as follows: In addition to the two point sets to be registered, a 3-by-3
weight matrix Wi is provided for each point pi in the source point set, reflecting
the statistical noise model of the input data. Based on the definition of these
weights Wi, the closest point operator is defined as follows:

Cnew (p, X) = argminxi∈X ||Wi (p− xi)||2 (1)

As in [3], anisotropic localization errors can be accounted for by giving less
weight to the direction associated with the most noise (e.g., the axis along the
direction of view of a TOF camera). In addition, outliers can be removed by
setting Wi = 0. Wi = I ∀i yields the standard version Coriginal of the closest
point operator.

(e) (f)

Fig. 1. (a) Schematic illustration of the establishment of point correspondences. Ref-
erence mesh (brown solid line), noisy mesh (dotted blue line) and correspondences
(boxes) are shown for Coriginal (standard closest point operator) and Cnew (new closest
point operator with less weight given to the direction z). (b) Noisy submesh registered
to a reference liver mesh via the proposed anisotropic ICP.
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Given the weights Wi for each point in the noisy input data set, the aim of
the anisotropic ICP algorithm is to find a rotation matrix R and a translation
vector t such that the following error metric is minimized

e (R, t) =
1

NP

NP∑

i=1

||Wi (Ryi + t− pi)||22 (2)

where yi = Cnew(pi, X̂) with X̂ := {Rxj + t} , j = 1, . . . , NX . As in [3], we
assume, that the localization error in each point is normally distributed with
zero-mean and can be represented by three uncorrelated components along a set
of orthogonal principal axes x, y and z. We set Wi = diag(σ−1

ix , σ−1
iy , σ−1

iz ) with
σix, σiy, σiz denoting the standard deviations associated with point pi.

The modified ICP works as follows:

1. Initialize variables: k := 1; X0 := X; e0 :=∞; Rglobal := I; tglobal := 0
2. Compute the current corresponding points Y k =

{
yki
}
, i = 1, . . . , NP with

yki := Cnew(pi, X
k−1),

3. Compute the rotation matrix Rk; the translation vector tk and the registra-
tion error ek for mapping the point set Y k onto the point set P using [3]

(Rk, tk) = argminR,t

1

NP

NP∑

i=1

∣∣∣∣Wi

(
Ryk

i + t− pi

)∣∣∣∣2
2

(3)

ek =
1

NP

NP∑

i=1

∣∣∣∣Wi

(
Rkyk

i + tk − pi

)∣∣∣∣2
2

(4)

4. Apply the rigid body transformation computed in the previous step to Xk−1

to obtain the transformed model point set Xk.
5. Update the global rigid transformation

Rglobal = RkRglobal ; tglobal = Rktglobal + tk (5)

6. if
∣∣ek − ek−1

∣∣ < ǫ or the maximal number of iterations has been reached,
terminate. Otherwise, set k := k + 1 and go to step 2.

Note that the algorithm maps the model point set to the noisy source point
set because this allows us to perform all calculations in the coordinate system
in which the noise model is given. The inverse transformation is given by the
rotation matrix R−1

global and the translation vector −R−1
globalt

global.
We now show, that the presented algorithm converges to an at least local

minimium with respect to the error metric e by proving the following theorem:
Provided that the iterative registration algorithm proposed in [3] yields the

optimal rigid transformation with respect eq. 4, the registration error for mapping
corresponding points decreases in each iteration, i.e., ek ≤ ek−1 ∀k > 0.

Proof by contradiction: Let us assume that ∃k with ek > ek−1. Hence

NP∑

i=1

∣∣∣∣Wi

(
Rkyk

i + tk − pi

)∣∣∣∣2
2
>

NP∑

i=1

∣∣∣∣Wi

(
Rk−1yk−1

i + tk−1 − pi

)∣∣∣∣2
2

(6)
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Due to the definition of the closest neighbour (1), the following equation holds
for each point in the noisy data set pi (note: (R

k−1yk−1
i + tk−1) ∈ Xk−1)

∣∣∣∣Wi

(
yk
i − pi

)∣∣∣∣2
2
≤
∣∣∣∣Wi

(
Rk−1yk−1

i + tk−1 − pi

)∣∣∣∣2
2

(7)

In consequence (due to ai ≤ bi ∀i⇒
∑

ai ≤
∑

bi)

NP∑

i=1

∣∣∣∣Wi

(
yk
i − pi

)∣∣∣∣2
2
≤

NP∑

i=1

∣∣∣∣Wi

(
Rk−1yk−1

i + tk−1 − pi

)∣∣∣∣2
2

(8)

This, however, would mean that R̂k := I and t̂ = 0 would yield a better reg-
istration result than Rk and tk in step k of the algorithm (eq. 6), which is in
contradiction to the presupposition of the theorem. Hence, ek ≤ ek−1 ∀k, q.e.d.

2.2 Experiments

To evaluate the proposed variant of the ICP algorithm, five liver meshes were
extracted from human CT data (approx. 1000 vertices per mesh). For each
liver, four submeshes were extracted representing a cranial, caudal, dorsal and
ventral view on the liver respectively. Next, zero-mean, identical Gaussian noise
with covariance matrices diag(1, 1, σ2) (cranial/caudal) or diag(1, σ2, 1) (dor-
sal/ventral) was added to the meshes, with σ2 ∈

{
12, 32, 52, 72, 92

}
mm. Both,

Coriginal and Cnew were then applied to establish point correspondences between
the two meshes, and the mean percentage of correct correspondences was de-
termined. Next, both versions of the ICP algorithm were used to register the
two point sets (Fig. 1(f)). After convergence, the percentage of correct point
correspondences was computed again, and the translation error and the rotation

(a) Correct correspondences (b) Translation error

Fig. 2. Mean percentage of correct point correspondences before application of the ICP
(a) and mean translation error after running the ICP (b) as a function of the standard
deviation σ corresponding to the direction of the most noise (both averaged over 20
submeshes). Isotropic represents the standard closest point operator Coriginal and the
standard ICP respectively. When Cnew was applied, the component of the weight
matrix corresponding to the most noise was set to 1/σ, 1/(σ − 2) and 1/(σ + 2) for a
correct noise estimation (anisotropic(σ)), underestimated noise (anisotropic(σ-2)) and
overestimated noise (anisotropic(σ+2)) respectively, while the weights corresponding
to the remaining two components was set to 1 (all values in mm).
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error were determined as in [4], with the null vector and the identity matrix
serving as ground truth.

3 Results

As shown in Fig. 2, the proposed closest point operator Cnew performs consid-
erably better than the standard operator in the presence of anisotropic noise.
Even for a standard deviation of 9mm along the view direction of the camera,
the method yields a rate of correct correspondences of 87 ± 5% compared to
54 ± 6% with the standard method. Similar improvements were obtained for
the translation error (2.3 ± 1.9 mm vs. 8.5 ± 7.9mm) the percentage of correct
correspondences after ICP convergence (87 ± 4 % vs. 52 ± 6 %) as well as for
the rotation error (0.2 ± 0.1◦ vs. 0.6 ± 0.4◦). Furthermore, the results indicate
that the noise distribution must not be known exactly.

4 Discussion

In this paper, we presented the first variant of the ICP which accounts for
anisotropic noise in both steps of the iterative algorithm: Computation of point
correspondences and transformation computation. The presented results indi-
cate that the proposed method is better suited for 3D point registration than
the standard approach in the presence of anisotropic noise, even when the noise
distribution is not exactly known. To establish the new method as a standard
procedure, the following work remains to done: (1) Efficient implementation for
run-time optimization, (2) assessment of convergence speed and accuracy with
random initial positions, (3) comparison with other variants of the ICP as well
as with other methods for point registration in the presence of anisotropic noise
(e.g. [4]), and (4) evaluation of the effects of anisotropic noise in the reference
data set.
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