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Abstract. Stress granules and processing bodies play a major role in
analysing the physiology of cells under various environmental conditions.
We present a fully automatic approach to detect such particles in fluo-
rescence labeled microscope images. The detection is based on scale-
adaptive analysis of wavelet coefficients allowing for an accurate detec-
tion of particles with a large variety in size. Results on real images
illustrate the appropriateness of our approach and proof high quality.

1 Introduction

Systems biology on the cellular level requires detailed analysis of different par-
ticles in cells like stress granules (SGs) and processing bodies (PBs). They are
suggested to be dynamically linked to places of mRNA sorting and storage or
degradation [1]. To understand and clarify the physiological roles of SGs and
PBs, it is important to investigate the alterations of number, size, shape or con-
tacts of these particles under different physiological conditions. Consequently
the fully automatic detection of SGs and PBs is an essential tool to gain deeper
insights into their biological role and function.

To detect spot-like particles, global and local thresholding techniques are still
used in microscopy [2, 3]. Further techniques include h-dome transform followed
by clustering [4]. Level set methods [5] on the other hand assume an approxi-
mately constant grey level shared by all target entities which typically does not
hold for microscopy images. In [6, 7] a method to detect particles in microscopy
images based on wavelet coefficients is proposed, but best-suited to detect par-
ticles with limited variation in size. Wavelet-based approaches are assumed to
be superior to Fourier-based ones as their basis functions have local support.

We present an extension to the approach in [6, 7] aiming at the variable size of
target entities by automatic scale-adaptation and test-based hypothesis selection.

2 Materials and Methods

The method in [6] is based on multi-scale analysis of wavelet coefficients. The
original image I0(x, y) is recursively smoothed yielding images I1(x, y), . . . ,
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IS(x, y). Wavelet coefficients Ws(x, y) are derived as

Ws(x, y) = Is(x, y)− Is−1(x, y), s ∈ {1, . . . S} (1)

For denoising, the amplitude-scale-invariant Bayes estimator [8] is applied,
yielding adjusted coefficients W̃s(x, y). Features are represented by wavelet co-
efficients of adjacent scales. As the coefficients are correlated across scales due
to the nature of the wavelet transform applied, adjacent scales are combined to
a correlation image

c[a,b](x, y) =

b∏

s=a

W̃s(x, y) (2)

This correlation image is globally thresholded and the resulting connected com-
ponents yield the final particles detected. The interval of scales [a, b] used to
correlate the wavelet coefficients defines the scales at which the particles of in-
terest are represented. If all particles share the same characteristics, one interval
is appropriate. In other cases one single interval either includes irrelevant scales
or excludes important ones, in both cases often yielding incorrect particle size
or shape, or missing particles.

To overcome these shortcomings we propose a new scale-adaptive technique
which applies the wavelet-based segmentation to a set of – usually overlapping
– intervals [an, bn], corresponding to different scales of particles. If for a target
particle an appropriate interval is available, it is usually correctly detected in this
interval. However, in many cases the particle is also found in adjacent intervals
with incorrect size or shape (Fig. 1). This results in the necessity to select the
correct one from overlapping and, thus, competing particle hypotheses. For this
we propose an approach based on statistical hypothesis testing.

Typically hypotheses from the correlation image of a coarse scale result in
larger regions than hypotheses from finer scales. Additionally, regions can be
split up in finer scales due to the presence of multiple smaller particles or varying
gray values inside larger particles.

We assemble competing hypotheses in trees whose nodes correspond to the
particle regions detected in different intervals. The trees are build bottom-up

Fig. 1. Segmentation for two adjacent in-
tervals (top: coarse, bottom: fine) and re-
sulting hypotheses trees.
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Fig. 2. Distribution of granule size de-
tected in intervals [a1, b1] and [a2, b2].
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starting with particle hypotheses from the finest scale. At each coarser level
edges are inserted between a region and all overlapping regions of the next finer
scale. Fig. 1 gives an example of the resulting hypotheses trees for two intervals.

In principle, two different regions at a coarse scale may both overlap with
the same region at the next finer scale, destroying the tree characteristics of
the hypothesis graph. However, this happened only once for the whole test
data. Such constellations can for example be resolved using a simple criterion of
largest overlap. The selection of one hypothesis out of several competing ones
is accomplished using again a bottom-up procedure, starting from the fine scale
leaves. Parent nodes are compared with their children and inferior nodes are
deleted.

For comparison we employ the concept of meaningful events ([9]). This con-
cept is tightly related to statistical hypothesis testing. In our case the null hy-
pothesis H0 models the case where no real particle is present at the location to
be analyzed, rather a particle was detected due to noise or chance. To compute
the likelihood P (Fi | H0) of a particle Fi detected under H0, the observations
at all pixels are assumed to be pairwise independent

P (Fi | H0) =
∏

(x,y)∈Fi

P
(
C[an,bn](x, y) = c[an,bn](x, y) | H0

)
(3)

where C[an,bn](x, y) are random variables modelling the correlation value ob-

served at position (x, y). P
(
C[an,bn](x, y) = c[an,bn](x, y) | H0

)
is the probabil-

ity to observe the value c[an,bn] at location (x, y) due to noise. Following [10]

we estimate P
(
C[an,bn](x, y) | H0

)
as the discretized histogram of the complete

correlation image for interval [an, bn].
The p-value p(Fi) of Fi is the probability to observe a particle under the null

hypothesis with correlation values at least as extreme as the ones of Fi. I.e., a
particle with extremer values has at each pixel location in the correlation image
a value larger than the one observed for Fi.

Fig. 3. Detection of stress granules. Left: Detail of image no. 8 with stress granules of
varying sizes. Middle: Detection results using the method [6]. Right: Detection results
using the scale-adaptive method (Image values scaled for visualization of results).
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Still assuming independence of pixels this yields

p(Fi) =
∏

(x,y)∈Fi

P
(
C[an,bn](x, y) ≥ c[an,bn](x, y) | H0

)
(4)

We use this concept to compare a set of overlapping particle hypotheses to delete
inferior nodes from the trees. We keep the particles with smallest p-value which
consequently are assumed to be the ones most unlikely caused by chance. As
p-values of particles with different size of support are compared, these raw p-
values are normalized according to their support to allow fair comparison. In
the case of multiple children their p-values are multiplied for comparison with
the parent and we decide for Fi at the coarser scale if

p (Fi)
1

|Fi| <
∏

{k|Fk child of Fi}

p (Fk)
1

|Fk| (5)

and for particles Fk on the finer scale otherwise.

3 Results

The proposed approach is tested on 10 microscope images of U2OS osteosar-
coma cells stressed with sodium arsenate for one hour before fixation. SGs were
labeled by immunostaining of ZBP1 in red, and for 5 images PBs were labeled
by immunostaining of DCP1A in green.

For our application, two overlapping intervals of scale [a1, b1] = [2, 3] and
[a2, b2] = [3, 4] have shown to be sufficient and will be used for the experiments
reported in the following. Fig. 3 shows a detail of image no. 8 with fluorescently
labeled SGs, and segmentation results for the method [6] with scales [a, b] = [2, 4]
and the proposed scale-adaptive method, respectively. For the scale-adaptive
method the distribution of the size of granules detected in each of the scale
intervals is depicted in Fig. 2. In analogy to Fig. 3, Fig. 4 gives segmentation
results for PBs in a part of image no. 2.

Fig. 4. Detection of processing bodies. Left: Detail of image no. 2 with processing
bodies. Middle: Detection results using the method [6]. Right: Detection results using
the scale-adaptive method. (Image values scaled for visualization of results).
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4 Discussion

Stress granules show a large variety of different sizes and shapes. Using only
one interval of wavelet coefficients as in [6] imposes the implicit constraint on
similar shape and size for all granules. As can be seen from Fig. 3 (middle) this
allows to detect a set of pronounced granules, however, misses several smaller
granules and sometimes leads to incomplete segmentation for large granules, i.e.
their shapes show deep convexities unusual for granules. In contrast, applying
our new scale-adaptive approach based on selection of detection results from
different scale intervals overcomes this problem. The detection is improved as
detected granules cover a larger range of different scales and have more accurate
contours (Fig. 3, right). The local adaptivity of our method shows also in Fig. 2.
Detections from interval [a2, b2] correspond mainly to large-sized granules, while
small granules are detected predominantly in interval [a1, b1].

Detection results for PBs also demonstrate the ability of our approach to
automatically select features from the best scale. Compared to the results of
method [6] our detection also includes PBs of less saliency (Fig. 4) avoiding the
canceling effect of coarse scales. The variance in size among PBs is smaller than
among SGs. Accordingly, a single fine-scale interval should be sufficient to detect
the majority of PBs. Indeed, although intervals [a1, b1] and [a2, b2] are used for
PBs detection, 99% of the PBs are selected from interval [a1, b1].
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