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Abstract. An approach for automatic object localization in medical
images utilizing an extended version of the generalized Hough transform
(GHT) is presented. In our approach the shape model in the GHT is
equipped with specific model point weights, which are used in the voting
process. The weights are adjusted in a discriminative training procedure,
which aims at a minimal localization error of the GHT. Furthermore,
these weights yield information about the importance of points, such that
non-discriminative points can be excluded from the model. Thereby, the
size of the model is decreased, thus reducing processing time. The algo-
rithm is presented in 2D but should be easily extendable for 3D images.

1 Introduction

The task of object localization in medical images is of high interest in many
applications in the area of computer-aided diagnosis, e.g., for a fully-automatic
segmentation of organs or bones.

For model-based segmentation an initial positioning of the model in the im-
age is required. This initialization is often carried out manually or specialized
solutions are developed for the particular problem at hand using, e.g., gray-
value thresholding, morphological operators or anatomical knowledge [1]. More
advanced, automatic approaches are given by an atlas-based registration [2] or
an initial global search of the object conducted, e.g., with evolutionary algo-
rithms [3], template matching [4] or the generalized Hough transform (GHT) [5].

In this work, we will focus on the GHT, which, in general, is a robust method
and therefore well suited even for the localization of partially occluded or noisy
objects. However, one drawback is the high computational demand given by the
vast global search, as it is the case for all aforementioned automatic procedures.
To reduce its computational complexity two measures have been undertaken. On
the one hand, we will not search for scaled or rotated occurrences of our object;
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but instead, will try to include this variation into our model. On the other hand,
a weight will be assigned to each model point relative to its importance such that
nonrelevant points can be removed from the model; thus reducing model size and
runtime. Model point weights are determined through a log-linear combination
of model point knowledge and a discriminative training [6] with respect to a
minimal localization error.

2 Materials and Methods

2.1 Generalized Hough Transform

The GHT [7] is a model-based method for object localization utilizing a voting
process to identify the likeliest position of the object of interest. To this end, the
image space is mapped to a transformation parameter space, known as Hough
space, which depicts possible locations of the object.

The shape model of the object is represented by vectors from each model
point to a given reference point, usually the center of the model. Furthermore,
directional information obtained from the gradient direction is added to each
point. This information is stored in a look-up-table, the so called r-table, where
model points with similar gradient directions are grouped together.

To perform the localization, an edge image is created from the original image.
For each edge point ei the model points mj with similar gradient direction are
retrieved from the r-table. Through the relation c = ei −mj the position c of a
possible reference point is determined and the vote in the corresponding cell in
the Hough space is increased by the weight of the model point mj .

At the end of the voting process the Hough space is searched and the cell
with the highest vote is returned as the assumed position of the object.

The GHT can be extended to find rotated or scaled occurrences of the object
of interest as well. However, due to a vast rise in complexity these extensions
will not be considered here.

The model used in our extended GHT is built by extracting a number of edge
points from a predefined region of interest around the reference point, which
avoids the manual generation of a shape model. Yet, the model may contain
points, which are not relevant for object localization. To reduce its size, the im-
portance of model points is determined using a discriminative training algorithm
as described below and points with low importance are eliminated thereafter.

2.2 Discriminative Training of Model Point Weights

Let us regard the model points of our initial model as individual sources of know-
ledge via their contribution to the Hough space. The aim of the training approach
is to determine the importance of points which is achieved by an adequate com-
bination of knowledge sources and a minimal localization error criterion.

For the derivation of the training approach, we have to take a probabilistic
view of the GHT. Instead of searching for the maximal number of votes in the
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Hough space, we define a posterior probability

p(ci|X) =
Ni

N
(1)

with ci being a cell i in the Hough space, X a set of features extracted from a
given image and Ni, N being the number of votes in cell i and in the complete
Hough space. By identifying the cell with the highest posterior probability the
localization task is now realized with a Bayesian classifier ĉ = argmaxci p(ci|X).

The posterior probability of the Hough cells can be further divided into con-
tributions from the individual model points

pj(ci|X) =
Ni,j

Nj
(2)

where Ni,j and Nj are the number of votes cast by model point j. A recombina-
tion of the model point posteriors can be achieved through a log-linear modeling
following the maximum entropy principle [8]

pΛ(ci|X) =
exp

(∑
j λj · log pj(ci|X)

)

∑
k exp

(∑
j λj · log pj(ck|X)

) (3)

The coefficients Λ = {λj}j are the model point weights, which need to be es-
timated. To this end an error function E is defined, which accumulates the
localization error on the different images Xn

E(Λ) =
∑

n

∑

i

ε(c̃n, ci) ·
pΛ(ci|Xn)

η

∑
k pΛ(ck|Xn)η

(4)

Here, the Euclidian distance of the correct cell c̃n to a cell in the Hough space ci
is chosen as error measure ε weighted by an indicator function. The exponent η
in the indicator function controls the influence of the alternative hypotheses ck
on the error measure. By applying a gradient descent scheme to (4) the optimal
weights λj can be determined with respect to a minimal localization error [6].

2.3 Material and Design of Experiments

The algorithm was tested on a set of 30 thorax radiographs, which were acquired
in a follow-up study of 11 patients. The images have an isotropic resolution of
0.185mm with varying image sizes. To evade noise in the training process, the
images were downsampled twice with a Gaussian filter to a spacing of 0.74mm.

The given task is to localize the collar bone in all images. For this purpose the
intersection of collar bone and lung wall was annotated to obtain a ground-truth
for training as well as evaluation of the algorithm.

The dataset was divided into a training and a test dataset, each consisting
of 15 images. The model used for the localization task was created from a set of
8 training images.
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Table 1. The table shows a comparison of the initial and the final model regarding the
number of model points, the average runtime per image in minutes and the localization
error on the training and test data in mm displayed as ”mean ± std (max)”.

model size runtime error on training data error on test data

initial model 2684 1.2 2.2 ± 2.1 (6.9) 3.8 ± 2.6 (10.2)

final model 920 0.7 1.9 ± 2.1 (8.2) 3.0 ± 2.1 (6.7)

Using this model the GHT is performed on the training images with equal
weights for all points, followed by the computation of the optimal model point
weights as described above. Based on these weights a subset of points necessary
for object localization is determined as final model. Subsequently, the weighted
final model is tested on the complete dataset.

Experiments were run on a desktop pc with 2.4GHz. The GHT is imple-
mented in Matlab and not yet optimized for speed.

3 Results

The initial model extracted from part of the training images and the final model
resulting after the discriminative training are shown in Fig. 1. It is clearly visible
that the computed point weights allow a strong reduction of the model size. Only
about 35% of the initial points were kept, reducing the processing time by almost
50% as can be seen in Tab. 1.

By further examining the model it becomes obvious that not only the edge
of the collar bone is important for its detection; but also the lung wall and
surrounding bones are of high interest. The inclusion of these structures helps
to distinguish the collar bone from the ribs, which show a similar edge response.

Since the initial model was extracted from the training data a very good
localization result was achieved on these images, which even grew slightly better
for the final model. As one could expect the error on the unknown test data is
slightly higher, but should be sufficient for the initialization of a segmentation.

Fig. 1. Comparison of the initial model (left) extracted from the images and the final
model (middle). Shown are the point locations with corresponding gradient directions.
For illustration an annotated example image is displayed right
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4 Discussion

The combination of the GHT with the discriminative training algorithm to deter-
mine adequate model point weights shows promising results. The introduction
of point weights into the model brings about several advantages. First, no initial
shape model needs to be extracted from the data via automatic or manual seg-
mentation, but a number of edge points from the region of interest are sufficient
for the GHT algorithm. Second, large models can be exploited during training,
since the number of model points can be diminished afterwards keeping only
discriminative points. In addition, neighboring structures, which may be help-
ful in the localization task, can easily be included in the model by extracting a
larger ROI around the object of interest. Furthermore, by extracting the model
directly from the dataset, the variation of the object of interest in the underlying
images is captured. Thus no rotation or scaling of the model was necessary in
the process of the GHT. This implies a considerable reduction of runtime and
memory need. Runtime was further decreased through the reduction of model
size, while the localization error slightly improved to about 3.0mm on average.

The algorithm is expected to be applicable to detect arbitrary objects, which
show a clear response in the edge image. Experiments will be conducted to reveal
further possible features to be able to detect objects, which are not characterized
by their edge image. Future work will also include an iterative approach, where
random points are gradually included in the model and evaluated by DMC to
further improve localization accuracy.
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