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Abstract. We propose a new correspondence optimization algorithm
for building 3D statistical shape models (SSMs) of genus-0 shapes. The
main contribution of our work is the use of parameter space propaga-
tion to generate consistent spherical parameterizations of the training
shapes. We present evaluation results for two data sets: A set of 30 liver
shapes from different patients, and a set of 25 left ventricles covering the
cardiac cycle of a single patient. Our evaluation shows that the use of
parameter space propagation improves the robustness of correspondence
optimization algorithms and leads to fast convergence.

1 Introduction

In medical imaging, statistical shape models (SSMs) are mainly employed in
segmentation algorithms like the active shape model (ASM), which shows good
performance in terms of both segmentation accuracy and running time [1]. SSMs
are learned from a set of training examples, which have to be provided in a
landmark representation, that is, each training shape has to be represented with
the same number of points, and points with same index on different shapes
have to describe the same anatomical feature. The challenging optimization
problem of computing a landmark representation automatically from a set of
unnormalized training meshes is known as the correspondence problem.

To tackle the correspondence problem, Kotcheff and Taylor [2] introduced a
general optimization scheme, which we follow in our work: Each training shape is
mapped to a suitable parameter space, and correspondence is then optimized by
reparameterization. The correspondence of the reparameterized shapes can be
assessed with various objective functions, for example the Minimum Description
Length (MDL) objective function [3].

The natural parameter space for the construction of 3D SSMs of shapes with
genus-0 topology is the unit sphere. Davies et al. [4] construct area-preserving
spherical parameterizations of the training shapes, whereas Heimann et al. [5]
use conformal mapping to generate angle-preserving spherical parameterizations
of liver shapes. We concentrate on area-preserving parameterizations, because
they allow for an easy reconstruction of the shapes using uniform sampling.
It is crucial to parameterize the shapes consistently — that means to map the
same anatomical features to similar regions in the parameter spaces — in order
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to decrease the convergence time and to prevent that the optimization process
gets trapped in a poor local optimum [6]. Recently, we introduced parameter
space propagation [7] to generate consistent parameterizations more efficiently
and without a complex optimization process as proposed in [6, 8]. The key idea
of our method is to propagate the parameterization of a reference shape to all
other shapes.

In this paper, we propose a new optimization algorithm that automatically
establishes correspondence of shapes with genus-0 topology. The main novelty
is the use of parameter space propagation in order to generate consistent param-
eterizations. Our evaluation shows that the use of parameter space propagation
avoids that correspondence optimization algorithms get trapped in poor optima
and leads to a fast convergence towards a good solution.

2 Materials and Methods

2.1 Consistent Parameterization by Propagation

We use parameter space propagation [7] in order to consistently generate spheri-
cal parameterizations of the training shapes. In this method, an area-preserving
parameterization of an arbitrarily selected reference shape S,r is computed. Ev-
ery other shape S is aligned to the reference shape using the ICP algorithm in
order to derive a common coordinate system. Based on the Euclidean distance
in this coordinate system, a fuzzy correspondence between points in S and Spef
is established. The points of S are then mapped to the unit sphere by interpo-
lation of the parameter space coordinates of the corresponding points of Sier. A
subsequent correction method handles triangles that are inverted or overlap on
the unit sphere. Parameter space propagation is a heuristic method, but works
robustly for typical organ shapes. By computing surface normals of the triangles
of the generated parameterizations, we verified that only valid parameterizations
were generated for our test data sets.

2.2 Optimization Algorithm

In this section, we present our optimization algorithm, which minimizes the ob-
jective function £ = 22:1 log(\; + €), where the \; are the eigenvalues of the
t x t covariance matrix of the shapes, which is determined by numerical integra-
tion [3, 8]. We set the regularization constant € to 0.005. The correspondence
measure £ is (up to a constant term) the so-called DetCov function [2].

Our algorithm follows the general minimization approach with parametric
regularization [8]. We start with generating sampling points for each shape
which are initially uniformly distributed over the sphere. The optimization works
iteratively: In each iteration, we select a shape uniformly at random and re-
parameterize its sampling points using two kinds of re-parameterizations:

— Uniform rotation: We consider rotations of the sampling points around the
x, y and z-axis, one after another, in randomly determined order. For each
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axis, we choose the optimal rotation angle between —15° and +15° using a
line search algorithm.

— Clamped plate spline warps: We map the sampling points of a randomly
selected spherical cap to the unit circle using orthographic projection, ma-
nipulate them using a clamped plate spline warp [8] and project them back to
the sphere. The optimal parameters for the spline transformation are found
using gradient descent optimization, with numerically estimated gradients.

Additionaly, we optimize the pose parameter rotation directly. The other
pose parameters are handled prior to the optimization process, by scaling the
shapes to same size and translating them to the origin.

2.3 Evaluation Method

With our evaluation, we want to show that 1) our optimization algorithm is able
to generate SSMs for different sets of genus-0 shapes and that 2) the use of pa-
rameter space propagation enables us to compute SSMs of high-quality. To show
1), we tested our algorithm on data sets with different organs: A set of 30 liver
shapes from different patients, and a set of 25 left ventricles (LVs) which cover
the whole cardiac cycle of a single patient with a myocardial infarction. To ver-
ify our second hypothesis, we started our algorithm with three different kinds of
parameterizations: Parameterizations generated with our propagation method,
parameterizations generated using Davies’s method (see [7] for implementation
details) and parameterizations which are generated independently from each
other. We used a fixed number of iterations (n = 3000). Prior to the parameter-
ization, the liver shapes are aligned into a common coordinate system, to ensure
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Fig. 1. The first mode of variation of the ventricle and liver models, optimized using
parameterizations generated with our method (top row) and independently computed
parameterizations (bottom row). o = /A1 denotes the standard deviation of the first
mode of the respective SSM.
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that our results are not tampered by poor initial alignment. The meshes in the
LV data set are already aligned, as they were generated from a single 4D MRI
volume. In order to compare the quality of the generated models, we calculate
the standard measures specificity and generalization ability as described in (8],
by sampling 10000 shapes randomly from the respective probability distribution.

3 Results

Figure 2 shows the evolution of the objective function during the execution of
the algorithm. The figure shows that the algorithm converges quickly towards
a local optimum in case of consistent parameterization. But the final objective
function value after 3000 iterations is smaller in case of independently com-
puted parameterizations. However, only the shapes of the models generated
with consistent parameterization look plausible, as illustrated in Fig. 1. This
visual impression is confirmed by evaluating the models using the specificity and
generalization ability measures. On both data sets, our optimization algorithms
produces significantly better models in case of consistent parameterization. A
comparison between the two different methods for consistent parameterization
shows that the parameter space propagation generates better models on the ven-
tricle data set (Fig. 3). On the liver data set, the differences between the two
approaches are very small. Here, initialization with parameter space propaga-
tion leads to models with slightly better generalization ability, but which are also
slightly less specific than the models generated using initialization with Davies’s
method. The required optimization time for a liver model was approximately
300 minutes, and 210 minutes for a ventricle model on a 2.4 GHz CPU.

4 Discussion

We presented a new algorithm for correspondence optimization, which employs
parameter space propagation to generate consistent spherical parameterizations.
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Fig. 2. The evolution of the objective function during execution of the algorithm using
different methods of parameterization.
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Fig. 3. Specificity and generalization ability of the generated ventricle models.
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Using this technique, the algorithm quickly converges to a SSM which captures
the variation of organ shapes present in the training set well. Our evaluation
shows that the use of parameter space propagation improves the robustness of
the correspondence optimization process. In comparison to Davies’s method [6],
initialization with parameter space propagation produces models which are more
compact, but have comparable if not better quality in terms of specificity and
generalization ability.

Possible directions for future research are an extended evaluation of our ap-
proach on other organ shapes, a comparison of different objective functions as
well as algorithmic techniques to decrease the computation time of the algo-
rithm.
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