
Determination of a Vessel Tree Topology
by Different Skeletonizing Algorithms

Andre Siegfried Prochiner1, Heinrich Martin Overhoff2

1Carinthia University of Applied Sciences, Klagenfurt, Austria
2University of Applied Sciences Gelsenkirchen, Gelsenkirchen, Germany

heinrich-martin.overhoff@fh-gelsenkirchen.de

Abstract. For navigated interventions of parenchymatous organs, plans
must be adjusted according to organ motion and deformation. Vessel
trees and especially their furcations are assumed to serve as landmarks
for continuous registration. Three heuristic skeletonization algorithms
were investigated to determine their ability to detect furcations correctly.
A body-centered cubig grid-based algorithm was rated to fulfill these
specifications, and an efficient implementation was developed.

1 Introduction

In navigated surgery and radiotherapy, interventions are often planned with re-
spect to anatomical landmarks. Whereas distances between bony landmarks
stay constant, landmarks in parenchymatous organs change their relative loca-
tion e.g. due to altered patient positions or during resections. A vessel tree can
serve as landmark system for such organs, because at least its topology remains –
aside from resected parts – unaltered even during organ deformation, and vessel
furcations can securely be detected.

Skeletonization is a common preprocessing step during the raster to vector
transformation of a volume data set and consists of the reduction of objects in
the 3D image volumes to a data reduced but topology conserving representation.
For simplicity, a skeleton can be regarded as a medial axis of an object [1, 2].
More formally, it is the set of the centers of those spheres, which fully cover the
object’s volume and do not fully cover each other [3, 4].

Several algorithms, defined on a regular cartesian or on a body centered cubic
grid respectively, were implemented in Matlab and investigated for their ability
to generate correct skeletons of synthetic 3D objects. The most reliable one was
chosen to skeletonize a vessel tree, that was constructed from a segmented 3D
ultrasound image volume. Furthermore, the execution times of the programs
were measured to detect hints for an efficient implementation.

2 Materials and Methods

In the following, a skeletonization is performed by removing voxels p ∈ O from
the object voxel set O while preserving the object’s topology.

356 Prochiner & Overhoff

A 3D object Oc ⊂ Z
3 with known skeleton Sc ⊂ Oc was defined on a regular

cartesian grid. This object was transformed into object O and skeleton S ⊂ O
defined on a body-centered cubic (BCC) grid). Skeletonization algorithms were
implemented for both grids:

A the algorithm reported in [1] with modifications [5] for objects on a regular
Cartesian grid,

B the algorithm reported in [4] for objects on a BCC grid and
C Algorithm B applied after distance transform.

Each algorithm generated a skeleton Ti, i = 1, 2, 3. A visual evaluation of
the coincidence generated vs. correct skeleton (T1 vs. Sc, T2 and T3 vs. S) was
performed. In a second step, the algorithm with the best skeleton reconstruction
was applied to generate the skeleton of the hepatic vein vessel tree.

2.1 Distance Transform

A distance transform determines the shortest distance di between a voxel pi ∈ O
and the surface of this object. Voxels pi with identical distances di = Dκ

construct a voxel set Sκ for 0 ≤ Dκ ≤ Dmax, 0 ≤ κ ≤ κmax. Oκ =
⋃

1≤j≤κ Sj
denotes the object’s surface with thickness Dκ. Without the distance transform,
all voxels p of the surface of objectO are analyzed during skeletonization and can
potentially be removed from the objects. When applying the transform, only the
surface voxels p having the current maximum surface distance Dκ are analyzed.
The voxel decimation begins with Õ0 = S0. Due to the voxel decimation, surface
voxels are eliminated from Õ which is thus transformed into Ô. Iteratively, for
1 ≤ κ ≤ κmax the decimation is performed on voxel sets Õκ = Ôκ−1 ∪ Sκ.

2.2 Cartesian Grid Algorithm

In [5], an algorithm is presented where object surface points are classified by 62
neighborhood templates. If a voxel pc of the surface of object Oc coincides with
one of the templates, it can be removed.

2.3 Body-centered Cubic Grid Algorithms

A BCC grid is a subset of a regular cartesian grid and is defined by B ={
p ∈ Z

3
∣∣ px ≡ py ≡ pz (mod 2)

}
. Given an object O ⊂ B, the object’s back-

ground is defined by Ō = {p |p 6∈O ∧ p ∈ B } = {p |p ∈ B \ O}.
On a BCC grid, the distance vector sets Dα are composed of the vectors vα

to the nearest neighbors of a point p ∈ B and the neighborhoods Nα (p) are
given by

D6 =
{
v6 ∈ Z

3
∣∣ |vx|+ |vy|+ |vz| = 2

}

D8 =
{
v8 ∈ Z

3
∣∣ |vx|+ |vy|+ |vz| = 3

}

D14 = D6 ∪ D8

(1)

Vessel Tree from Skeletonizing 357

Nα (p) = {q |q ∈ B ∧ vα = p− q ∈ Dα} , α = 6, 8, 14. (2)

A point set P ⊂ Q ⊂ B is a connected component of Q, if for each pair of
points p,q ∈ P a sequence of points p1, ...,pm ∈ P exists, such that p1 = p,
pm = q and pi ∈ N14 (p) holds for 1 < i < m. C (Q) is the number of connected
components of Q. An object point p ∈ O is a simple point, if

C (N14 (p) \ O) = 1 ∧ C
(
N14 (p) \ Ō

)
= 1. (3)

Simple points can be removed from object O with conservation of the object’s
topology. In addition to pure skeletonization, in each step, a removed voxel can
be assigned to its nearest remaining voxel. This assignment stops at skeleton
voxels. Thus, the voxels each skeleton arm represents are known explicitly.

The classification of an object point p as simple is the most frequently pro-
cessed step and should be done efficiently. Two alternative simple point qualifi-
cations were implemented for Algorithm B as well as for algorithm 3:

– like in [4], the connectivity of 24 so-called checking rings Rij (p) ⊂ N14 (p) ,
1 ≤ i ≤ 3, 1 ≤ j ≤ 8, |Rij | = 6 was determined during skeletonization.

– The simplicity of a point q was determined once for all of itsN = 214 possible
N14 (q)-neighborhoods and the binary results were stored in a database be-
fore skeletonization. During skeletonization, the simplicity of the individual
N14 (p)-neighborhood was determined by data base access.

For large objects with irregular surfaces – like a highly resolved vessel tree
volume – overskeletonization is a common problem. To avoid it, object surface’s
voxels p are classified as stubble points, if p ∈ Ôκ−1 ∧ q = N14(p) ∩ Õκ ∧
|N14(q) ∩ Õκ| > 2. Stubble points typically generate only short skeleton arms
and are removed from Õκ before the next simple point classification is processed.

3 Results

The skeletonization results are demonstrated in the following figures. Figure 1
shows a synthetic F-shaped object which consists of 313 voxels and its skele-
ton (opaque voxels) found by Algorithm C. Comparison with the ideal skeleton

Fig. 1. Process of skeletonization and
reconstruction of a synthetic object. (top
left) Object, (top right) sequence of thin-
ning steps with removed simple points
(semi transparent) and remaining points
(opaque), (bottom left) skeleton, (bot-
tom right) voxels assigned to skeleton
branches.

358 Prochiner & Overhoff

Table 1. Execution times for different realizations of simplicity testing (BCC algo-
rithms).

object

simplicity test single voxel vessel tree 1 vessel tree 2

procedural 5.5 ms 1407 s 45178 s

data base 3.8 ms 1300 s 44874 s

(semi-transparent voxels) is performed by the euclidean distances between of
the pairwise nearest voxels of ideal vs. real skeleton: 228 (80/0/3/2) voxels had
distance 0 (1/1.41/1.73/2).

Algorithms A and B (Fig. 2) show results with additional furcations and
reduced precision at the skeleton’s branches. Obviously, the distance transform
supports the detection of the correct skeleton.

Algorithm C was chosen to skeletonize two hepatic vein vessel trees. The
trees were acquired in ultrasound image volumes and contained the inferior vena
cava, the three branches of the hepatic vein and some of the segmental veins.
Due to the limited image volume, the vessels are partially cut off. Anatomically,
vessel trees 1 and 2 are identical, but tree 2 has the 8-fold resolution of tree 1.
Visually, the skeletons reflect the topological properties well, especially for the
segmental veins. In detail, for vessel tree 1, the left and right hepatic vein are
marginally overskeletonized (Fig. 3). Each of the skeleton’s arms belongs to
one vein, i.e. none was erroneously assigned to two veins and no furcation was
missing.

The Matlab code was processed on a PC equipped with an Intel Core2Duo
E8400 3GHz processor, 3GB RAM, 1333MHz main board FSB frequency. The
execution times for the simplicity analysis are shown in Tab. 1 demonstrating
that data base access is superior to procedural determination.

Fig. 2. Skeleton of the synthetic object (gray voxels) generated by (left) BCC grid
based Algorithm B without distance transform and (right) cartesian grid based Algo-
rithm A. Ideal skeleton is shown for comparison (red cubes).

Vessel Tree from Skeletonizing 359

Fig. 3. Hepatic vein vessel tree (top), its skeleton from Algorithm C (center), and
its reconstruction (bottom). Distal (left column), proximal (center column) and right
oblique (right column) view.

4 Discussion

The heuristics reported in [4] for objects defined on a BCC grid is rated as
promising for the skeletonization of vessel trees. Simplicity analysis is faster
using data base access than using explicit procedural analysis. Obviously, the
skeletonization’s execution times depend severely on the cardinality of O.

Ongoing work is addressed to analyze the observed overskeletonization of
vessels and to investigate the coincidence of vessel tree skeletons for data sets
representing the same object, but but with reduced cardinality.

References

1. Ma M, Sonka M. A fully parallel 3d thinning algorithm and its applications. Comput
Vis Image Underst. 1996;64:420–33.

2. Palagyi K, Kuba A. A 3D 6-subiteration thinning algorithm for extracting medial
lines. Pattern Recognit Lett. 1998;19:613–27.

3. Blum H. A transformation for extracting new descriptors of shape. In: Wathen-
Dunn W, editor. Models for the Perception of Speech and Visual Form. Cambridge:
MIT Press; 1967. p. 362–80.

4. Brunner D, Brunnett G, Strand R. A high-performance parallel thinning
approach using a non-cubic grid structure. Chemnitzer Informatik-Berichte.
2006; p. 1–13. Available from: http://www.tu-chemnitz.de/informatik/service/if-
berichte/pdf/CSR-06-08.pdf.

5. Wang T, Basu A. An improved fully parallel 3D thinning algorithm.
Univ. of Alberta, Dept. of Computer Science; 2005. http://www.cs.ualberta.
ca/TechReports/2005/TR05-31/TR05-31.pdf, rev. 2009.09.05.

